Critical algebras and the Frattini congruence, II
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Abstract

We prove that any finite subdirectly irreducible algebra in a congruence modular
variety with trivial Frattini congruence is critical. We also show that if A and B are
critical algebras which generate the same congruence modular variety, then the variety
generated by the proper sections of A equals the variety generated by the proper
sections of B.

1 Introduction

An algebra C is a section of A if there is a subalgebra B < A and a surjective homomorphism
v : B — C. Cis a proper section unless B = A and ¢ is an isomorphism. The class of
proper sections of A is denoted (HS — 1)A. A is critical if it is finite and does not belong
to the subvariety generated by its proper sections.

Problem 25 of H. Neumann’s book [9] asks the following question: If A and B are critical
groups generating the same variety, must the varieties generated by (HS—1)A and (HS—1)B
be the same? 1. D. Macdonald had previously shown in [6] that the answer is affirmative if
A and B are p—groups. Assuming that ) is generated by a critical p—group C, Macdonald
showed how to construct equations axiomatizing var((HS — 1)C) relative to V solely from
the fact that V is generated by a critical p—group. His construction of equations works the
same way for A or B when V = var(A) = var(B), so the result follows. Using properties
of the Frattini subgroup, R. Bryant gave an affirmative answer to Neumann’s question for
arbitrary finite groups in [1]. The same question for other types of algebras is considered in
the papers [10], [7], [11] and [5]. The last of these, by E. W. Kiss and S. M. Vovsi, subsumes
the others with respect to this question. In their paper, Kiss and Vovsi prove that if A and
B are critical algebras such that V := var(A) = var(B) is congruence permutable, then the
varieties generated by (HS —1)A and (HS —1)B are the same. Their proof is an elaboration
of Bryant’s argument. An interesting aspect of [5] is that the proof given seems to show that
the ‘correct’ generalization of the Frattini subgroup is a Frattini congruence, not a Frattini
subalgebra.

This note is a sequel to the Kiss—Vovsi paper. The first part proves, with simpler argu-
ments, a far broader result than any of those mentioned. Let A and B be critical algebras
generating the same variety. We give an easy necessary and sufficient condition for (HS—1)A
and (HS — 1)B to generate the same variety. From these conditions it is possible to deduce
that when A and B are simple then (HS—1)A and (HS—1)B do generate the same variety.
Weak local modularity hypotheses on A and B suffice to force (HS — 1)A and (HS — 1)B



to generate the same variety. It will follow that if V := var(A) = var(B) is congruence
modular, then (HS —1)A and (HS — 1)B generate the same variety. This solves a problem
raised in [5].

The Kiss—Vovsi definition of the Frattini congruence is re-introduced in Section 3, along
with a concept from [2] which I call the normalization of a subdirectly irreducible algebra.
If A is a finite subdirectly irreducible algebra with abelian monolith and A generates a
congruence modular variety, then it turns out that A is isomorphic to its normalization iff
its Frattini congruence is trivial. Any such algebra is critical.

2 Varieties Generated by Proper Sections

Let (S — 1)A denote the class of all proper subalgebras of A and (H — 1)A denote the
class of all proper homomorphic images of A. A finite algebra A is S—critical or H—critical
if it is not a member of the variety generated by (S — 1)A or (H — 1)A, respectively. Any
critical algebra is both S—critical and H-critical and any H-critical algebra is subdirectly
irreducible.

The following simple lemma allows us to avoid introducing the Frattini congruence in
our discussion of Neumann’s problem.

LEMMA 2.1 If A and B are S—critical and generate the same variety, then (S —1)A and
(S — 1)B generate the same variety.

PROOF. Let V denote var(A) = var(B) and set @ = SP(A)NSP(B). Q is a quasivariety
which is contained in V' and which contains the free algebras of V. Since V is finitely
generated, Q contains a finite relatively free algebra which generates V. Choose C to be a
member of Q which generates ) and has least cardinality for this property.

Claim. (S —1)C and (S — 1)A generate the same variety.

Proor or CLAIM. By the minimality hypothesis on C, any proper subalgebra of C
generates a proper subvariety of V. Hence, no proper subalgebra of C has a homomorphism
onto A. Since all subalgebras of C belong to SP(A), it follows that (S—1)C C SP((S—1)A).
Hence (S —1)C is contained in var((S —1)A). Conversely, since C generates V, C € SP(A)
and (S—1)A doesn’t generate V, it follows that C has a homomorphism onto A. If h : C — A
is onto and A’ is a proper subalgebra of A, then C’' := h™1(A’) is a proper subalgebra of C
which has a homomorphism onto A’. Hence, (S — 1)A is contained in var((S — 1)C). We
get that var((S — 1)A) = var((S — 1)C).

It follows from the Claim that var((S — 1)A) = var((S — 1)C) = var((S — 1)B). This
proves the lemma. |

Lemma 2.1 corresponds to one half of Proposition 1 of [5] in the case that var(A) =
var(B) is a congruence permutable variety. In the other half of Proposition 1 of [5] it is
proved that when A and B are S—critical algebras in a congruence permutable variety and
var(A) = var(B), then A/®, = B/®p, where ® denotes the Frattini congruence (defined in
the next section). This other half of Proposition 1 can also be extended to arbitrary varieties



by using the idea of the proof of Lemma 2.1. (In particular, if A and B are S—critical algebras
which generate the same variety and the Frattini congruence of A is trivial, then A = B.)
If an algebra A is critical, it is subdirectly irreducible. Denote its monolith by pia.

THEOREM 2.2 Let A and B be critical algebras which generate the same variety. The
inclusion
var((HS — 1)A) C var((HS — 1)B)
holds if and only if
A/pua € var((HS — 1)B).

PRrOOF. Notice that (HS —1)A = H[(S—1)AJU(H —1)A. Lemma 2.1 guarantees the
equality in

H[(S —1)A] C var((S —1)A) = var((S — 1)B) C var((HS — 1)B).

Therefore, the inclusion

var((HS — 1)A) C var((HS — 1)B)
holds if and only if

(H—-1)A C var((HS — 1)B).
But the condition (H — 1)A C var((HS — 1)B) is equivalent to A/ua € var((HS —1)B). 1
It follows from this theorem that critical algebras A and B which generate the same

variety have the property that

var((HS — 1)A) = var((HS — 1)B)
if and only if A/pua € var((HS —1)B) and B/upg € var((HS — 1)A).

COROLLARY 2.3 If A and B are simple critical algebras which generate the same variety,
then (HS — 1)A and (HS — 1)B generate the same variety. |

The Kiss—Vovsi result can be extended from congruence permutable varieties to congru-
ence modular varieties by simply combining Theorem 2.2 with their Proposition 2. Let’s see
how to extend it further still.

If A is a finite algebra and o <  in Con (A), then the prime quotient (o, 5) will be
called modular if the (a, #)—minimal sets are of type 2, 3 or 4 and these minimal sets have
empty tails. If the (a, 3)—minimal sets are of type 3 or 4 and these minimal sets have empty
tails, then (a, () is distributive. Modular and distributive quotients have the following nice
properties. Assume that A’ is finite, A : A’ — A is onto and that («, 3) is a prime quotient
of A. Set o = h™(«a) and 3’ = h1(B). If {a, ) is modular (distributive), then

(1) (o, ) is modular (distributive), and

(77) there is a homomorphism of Con (A’) onto a modular (distributive) lattice which sep-
arates o and .



In particular, it follows that if all prime quotients of A are modular (distributive), then
Con (A) is a modular (distributive) lattice. For stronger results, Theorems 8.5 and 8.6 of [3]
can be rephrased to say that a locally finite variety V is congruence modular (distributive)
if and only if all prime quotients of finite members of V are modular (distributive).

LEMMA 2.4 Assume that A and B are critical algebras which generate the same variety
and that (0, ua) is distributive. Then A = B and so var((HS — 1)A) = var((HS — 1)B).

PRrROOF. If (0, p1a) is distributive and A € var(B), then a local version of Jénsson’s
Lemma proves that A € HS(B). Since A ¢ (HS — 1)B, it must be that A = B. |

For the next theorem, a congruence # on a finite algebra is hereditarily modular if each
prime quotient («, 5) with 0 < a < 3 < 6 is modular.

THEOREM 2.5 Assume that A and B are critical algebras which generate the same
variety and that (0, ua) and (0, ug) are modular. If every abelian congruence on either A
or B is hereditarily modular, then var((HS — 1)A) = var((HS — 1)B).

PROOF. Assume the hypotheses of the theorem, but that var((HS —1)A) < var((HS —
1)B). By Lemma 2.4, it must be that typ(0,ua) = typ(0,us) = 2. Since A € var(B),
There is a finite algebra C which is a subdirect product of subdirectly irreducible algebras
from HS(B) for which there is an onto homomorphism A : C — A. Since C is a subdirect
product of subdirectly irreducible algebras from HS(B), C has meet—irreducible congruences
ni, © < n, such that C/n; € HS(B). For each i, let nf denote the unique upper cover of 7;.
Let 6 = ker h and let 6* be its unique upper cover. Let 6 be the least congruence on C
such that C/0 € var((HS — 1)B). Clearly, § < n} for all i while § £ n; holds if and only if
C/n; = B. By rearranging indices if necessary, we may assume that 6 £ n; for i < j and
that 0 <, for j < i < n. (This implies that C/n; = B for ¢ < j, in which case (n;,n}) is
modular of type 2.) Since

Op=An<0<(An)ANCA\ m),
<n 1<j Jj<i<n
and typ(n;, nf) = 2 for i < j, it must be that 6 is abelian. If § < ¢*, then
A/ua = C/§" €e H(C/0) C var((HS — 1)B).

But if this were so, then Theorem 2.2 would force var((HS — 1)A) C var((HS — 1)B) which
contradicts the assumption in the first sentence of this proof. Hence 6 £ * and so 0* < 6 V6.
Since 6 is abelian, ¢ is meet—irreducible and (4, 0*) is modular of type 2, the interval 1[0, 0V 6]
is abelian. It follows that h(d V 0) is an abelian congruence of A. By hypothesis, h(d V 0) is
hereditarily modular. Therefore, every prime quotient in the interval I[d,d V 0] of Con (C)
is modular.

The following comparabilities and non—comparabilities in Con (C) have been established:

(17) 0 <m; for all j <i<mn.



(1ii) 0 L m; for i < 7.
(1v) 6 £ §*.

Con (C) has a homomorphism onto a modular lattice which separates all modular prime
quotients. Such a homomorphism preserves all the comparabilities listed, of course. It also
preserves the listed non-comparabilities, since (n;,n) is modular for ¢ < j and every prime
quotient in the interval I[0,d V 0] is modular. We may henceforth assume that Con (C) is
a modular lattice, as long as we depend only the comparabilities and non—comparabilities
listed in this paragraph.

Let A = A, n. By modularity, we have (n; AA) < A whenever A\ £ ;. Since A, 7; = 0,
the zero congruence is a meet of lower covers of A\. Therefore, the interval I[0, )] is a
complemented modular lattice; hence I[0V §, A V §] is a complemented modular lattice. But
0 is meet—irreducible, so we must have AV¢§ < §*. Since # < A, this gives us the contradiction
that 0 < 0*. |

Theorem 2.5 solves the problem raised in [5] since, when var(A) = var(B) is congruence
modular, then all prime quotients of A and B are modular.

We mention that there are critical algebras such that var(A) = var(B) but for which
var((HS — 1)A) # var((HS — 1)B). Such examples can be easily constructed where var(A)
= var(B) is a variety of G—sets.

3 Normalization

In this section we discuss a process called ‘normalization” which converts a subdirectly irre-
ducible algebra (in a congruence modular variety) into a better—behaved and related algebra.
This process is described in [2], but not named.

We shall follow the notation of [2] except in the following cases: First, when R is a binary
relation on S we will write S X g S X - - - xS, with n factors, to denote the subset of S™ which
consists of the tuples (s1,...,s,) with (s;, s;41) € R. If A is an algebra and « is a congruence,
we use boldface notation A x, --- X, A to indicate the subalgebra of A™ supported by
AXgq o Xq A (This notation differs from [2] in the following way: what we write as A x, A
is denoted by A(«) in [2].) Next, we will write A in this section for something which is
denoted D(A) in [2]. Finally, if A is an algebra, B is a subalgebra and 6 is a congruence on
A, then BY denotes the subalgebra of A whose universe is {r € A | Jy € B ((z,y) € 0)}.
(This notion does not occur in [2].)

Definition 3.1 Assume that A is a subdirectly irreducible algebra with monolith p. The
normalization of A is defined as follows: if p is nonabelian, then the normalization of A is
A if p is abelian, then the normalization of A is

o~

A = (A X A)/Au,(ow).

The congruence (jto 4+ Ay 0:0))/ A, (0:0) OD A is denoted fi. A is normal if it is isomorphic to
its normalization.



The next lemma summarizes those properties of the normalization which are proved in

2].

LEMMA 3.2 Let K be a finite set of finite algebras and A be a subdirectly irreducible
algebra. Assume that var(K) and var(A) are congruence modular. Let p be the monolith of

A.

(7 A is a normal subdirectly irreducible algebra and i is its monolith.

)

) AJ(0: 1) = A/(0: ).
(i) (0:f) = fu.
)

)

(11

(1v) fu is the kernel of a retraction.

(v) If A € var(K), then A is isomorphic to the normalization of some subdirectly irre-
ducible algebra in HS(K). 1

We will require the following technical lemma.

LEMMA 3.3 Let A be a finite subdirectly irreducible algebra with abelian monolith . If
var(A) is congruence modular, then |A| < |A| with equality holding iff n = (0 : ).

SKETCH OF PROOF. Let (1, ..., C,, be an enumeration of the (0 : p)—classes of A. Each
p—class is a subset of some C; and the different p—classes in a single C; have the same size.
Therefore, the size of each C; is determined by the size s; and number n; of u—classes it
contains. This implies that |A| = X", |Ci| = X nys;.

Now, in A x, A we have (0 : p1)g = (0 : p10) and that each (0 : p)o—class is of the form
C; x, C; for a uniquely chosen 7. Each such (0 : p)o—class contains n; different po—classes
and they are of size s?. Using this, one calculates that

|A %, Al =X n;s;.

Each (0 : p)o—class C' is a union of A, g, —classes and, by examining A, .,y on C, one
can show that for a single pp—class D C C we have that every element of C'is A o.)—
related to some element of D and that D intersects exactly s; of the A, (o.,)—classes. Hence,

|C/A, )| = si- This yields
A] = S s < S mass = | A

Furthermore, equality holds iff each n; = 1, which means exactly that = (0 : ). |

LEMMA 3.4 Let A be a subdirectly irreducible algebra which generates a congruence
modular variety. If the monolith y of A is abelian, then A is normal iff

(i) pp=(0:p) and

(74) p is the kernel of a retraction.



PRrROOF. By Lemma 3.2, both (i) and (¢7) of this lemma hold in the normalization of A,
hence in A. We will argue that if (i) and (i) hold, then A is isomorphic to its normalization.
Let p: A — A be a retraction of A with kernel p. Define a homomorphism

i Ax, A—Ax,Ax,A:(ab)— (a,b pla))=(ab,pb)).
If d(x,y, z) is a difference term for var(A), then by Proposition 5.7 we have that
d:Ax, Ax, A—A:(ab,c)v— d(ab,c)

is a homomorphism. The composite di : A x, A — A is easily checked to be a surjective
homomorphism with kernel A, ,. Hence,

A= (Ax,A)/A,,

Since = (0 : u), the algebra on the righthand side is the normalization of A. This finishes
the proof. 1

Somewhat surprisingly, condition (7) of Lemma 3.4 is extraneous. That is, in a congruence
modular variety, a subdirectly irreducible with abelian monolith is normal iff its monolith is
the kernel of a retraction. This fact is a consequence of the following lemma (whose proof
does not require congruence modularity).

LEMMA 3.5 Let A be a subdirectly irreducible algebra with monolith . If u is the kernel
of a retraction, then (0 : pu) < .

PROOF. Assume otherwise that p is the kernel of the retraction p : A — A and that
< (0:p). Let B = p(A). Since ker p = p < (0 : p), there exists (¢,d) € (0: p)|s — Op.
Choose b € B such that |b/u| > 1 and then pick a« € A — B such that (a,b) € p. Since

i = Cg*(a,b) < Cg*(c,d),

there is a Mal’cev chain connecting a to b by polynomial images of {¢,d}. Since b € B and
a ¢ B, this implies the existence of a polynomial p € Pol; A such that p(c) = u € B and
p(d) = v & B or the same with ¢ and d interchanged. Assume that p(z) = tA(z,wy, ..., w,)
where t is a term and w; € A. Applying p to the equality t*(c,wy,...,w,) = u (and using
p(c) = ¢, p(u) = u) yields

2 (e, p(wn), .., p(wn)) = t2(p(c), p(wn), ..., p(wn)) = plu) = u = t4(c,wr, . .., wy).
Now, using that (¢,d) € (0: p) and (w;, p(w;)) € ker p = u we can change the ¢ to d to get
tA(d, pwy), ..., p(wy)) = t*(d,wy, . .., w,) = v.

But this is impossible! We have d, p(w;) € B, so
v="t8d, p(w), ..., pwn)) = t%(d, p(w), ..., pwn)) € B,

and yet we chose v = p(d) € A — B. This ends the proof. |

7



The argument just given establishes a more general (and more technical) result than we
claimed. Although we see no use for the more general result now, we include its statement for
completeness: if A is an arbitrary algebra, p: A — A is an arbitrary retraction, u = ker p,
B = p(A) and § = Cg™((0 : p)|p) (that is, # is the extension of the contraction of (0 : p)),
then B = B. In the case of the lemma, A is subdirectly irreducible with monolith x. In
this case, p < (0 : p) implies p < @ which leads to the contradiction

A=B"<B’=B.
We connect the foregoing with the Frattini congruence and critical algebras.

Definition 3.6 If A is an algebra, B is a subalgebra of A and @ is a congruence on A, then
we say that B contains 0 if B = B. Let ®4 be the join of all congruences 6 which are
contained in all maximal proper subalgebras of A. ®4 is the Frattini congruence of A.

It is easy to see that ®, is the largest congruence contained in all maximal proper
subalgebras of A. Let’s call a congruence § on A non-generating if

B =A—B=A

whenever B is a subalgebra of A. It is straightforward to see that the Frattini congruence
majorizes every non-generating congruence and, when A is finitely generated, the Frattini
congruence is the largest non-generating congruence.

THEOREM 3.7 Let A be a finite subdirectly irreducible algebra which generates a con-
gruence modular variety. Assume that the monolith p of A is abelian. The following
implications hold among the conditions enumerated below: (i) <= (i1) = (iii) = (iv).

(1) A has trivial Frattini congruence.

(i)

(i2i) p=(0:p).
)

(1v) A is critical.

1 is the kernel of a retraction.

Proor. We will argue that (ii) = (i) = (i1) = (iii) = (iv).

Assume that (i7) holds. Since pu is the kernel of a retraction it cannot be a non-generating
congruence. For suppose that p : A — A is a retraction with p(A) = B and p = ker p.
Then B* = A even though B # A. Hence, when (i) holds, the Frattini congruence is not
above u. This proves (7). (Here is a different argument: Since A is finite and p is a minimal
abelian congruence, Theorem 2.1 of [4] can be used to show that B := p(A) is a maximal
subalgebra. B does not contain p, so p £ ®4.)

If (¢) holds, then p is not contained in some maximal proper subalgebra B < A. The
congruence y is abelian and not contained in B, so Theorem 2.1 of [4] proves that u|g = Op.
Hence, B is a pu—transversal. It follows that p is the kernel of a retraction onto B.

The implication (i) == (dii) follows from Lemma 3.4. We now prove that if A is
subdirectly irreducible and g = (0 : ), then A ¢ var((HS — 1)A). For A equal to the
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normalization of A, we have A € var(A). Therefore, to prove A ¢ var((HS — 1)A) it will
suffice to prove that A ¢ var((HS — 1)A). Assume otherwise that A € var((HS — 1)A).
From Lemma 3.2 (v), we get that A is the normalization of some subdirectly irreducible
algebra B € HS((HS — 1)A) = (HS — 1)A. But now (referring to Lemma 3.3), we have a
cardinality problem:

4] < |B| < |A] = |A].

(The equality |A| = | A| follows from the fact that = (0 : x).) This contradiction concludes
the proof. 1

The only implication in this proof which requires congruence modularity is (iii) = (iv).
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