
GROUPS WITH IDENTICAL SUBGROUP LATTICES

IN ALL POWERS

KEITH A. KEARNES AND ÁGNES SZENDREI

Abstract. Suppose that G and H are groups with cyclic Sylow subgroups. We
show that if there is an isomorphism λ2 : Sub (G × G) → Sub (H × H), then there
are isomorphisms λk : Sub (Gk) → Sub (Hk) for all k. But this is not enough to
force G to be isomorphic to H , for we also show that for any positive integer N

there are pairwise nonisomorphic groups G1, . . . , GN defined on the same finite set,
all with cyclic Sylow subgroups, such that Sub (Gk

i ) = Sub (Gk
j ) for all i, j, k.

1. Introduction

To what extent is a finite group determined by the subgroup lattices of its finite
direct powers? Reinhold Baer proved results in 1939 implying that an abelian group
G is determined up to isomorphism by Sub (G3) (cf. [1]). Michio Suzuki proved in
1951 that a finite simple group G is determined up to isomorphism by Sub (G2) (cf.
[10]). Roland Schmidt proved in 1981 that if G is a finite, perfect, centerless group,
then it is determined up to isomorphism by Sub (G2) (cf. [6]). Later, Schmidt proved
in [7] that if G has an elementary abelian Hall normal subgroup that equals its own
centralizer, then G is determined up to isomorphism by Sub (G3). It has long been
open whether every finite group G is determined up to isomorphism by Sub (G3).
(For more information on this problem, see the books [8, 11].)

One may ask more generally to what extent a finite algebraic structure (or algebra)
is determined by the subalgebra lattices of its finite direct powers. If A = (X;F ) is
an algebra on a finite set X with defining operations F , then a function t : Xn → X
is called a term operation of A if t can be obtained from the operations in F by
composition. It is known (Corollary 1.4 of [12]) that if A and B are algebras defined
on the same finite set X, then Sub (Ak) = Sub (Bk) for all finite k if and only if
A and B have the same term operations (in which case we say that they are term

equivalent). While this is as complete an answer as can be expected for arbitrary
finite algebras, it raises natural questions about groups.
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Problem 1.1. [13] Must term equivalent finite groups be isomorphic?

Problem 1.2. If G and H are finite groups defined on the same set and Sub (G3) =
Sub (H3), must G and H be term equivalent?

Problem 1.3. If G and H are finite groups defined on possibly different sets and
Sub (Gk) ∼= Sub (Hk) for all finite k, then must G be isomorphic to a group that is
term equivalent to H? (I.e., must G be weakly isomorphic to H?)

In this paper we solve Problem 1.1 negatively. Our counterexamples show that,
contrary to expectation, a finite group is not determined up to isomorphism by the
subgroup lattices of its finite direct powers. In [3] we answer Problem 1.2 affirmatively
for finite groups with abelian Sylow subgroups. We do not know the full answer to
Problem 1.3, but we show here that if G and H have cyclic Sylow subgroups and
Sub (G2) ∼= Sub (H2) then G must be weakly isomorphic to H.

2. Groups with cyclic Sylow subgroups

It is well known (see e.g. [5], p. 281) that if G is a finite group whose Sylow
subgroups are cyclic, then

• the commutator subgroup G′ of G has odd order, and G′ is the product of
some normal Sylow subgroups of G, hence

• G′ and G/G′ are cyclic groups of relatively prime order.

Therefore G is a semidirect product G0 ×ϕ G
′ of G′ by a cyclic subgroup G0

∼= G/G′

of G. This means that, up to isomorphism, G′ = P1 × · · · × Pk is a product of cyclic
groups of relatively prime, odd, prime power order, G0 is cyclic with order relatively
prime to |G′|, and the structure of G = G0 ×ϕ G

′ is determined by a homomorphism

ϕ : G0 → Aut (G′) = Aut (P1 × · · · × Pk) = Aut (P1) × · · · × Aut (Pk).

Any such homomorphism ϕ is determined by its components ϕi : G0 → Aut (Pi).
It is easy to see that, in order for the semidirect product G0 ×ϕ G

′ determined
by the data G0, G

′ = P1 × · · · × Pk, and ϕ = (ϕ1, . . . , ϕk) to be a group whose
commutator subgroup is exactly G′, it is necessary and sufficient that all of the
component functions ϕi be nonconstant (i.e., |ϕi(G0)| > 1 for all i).

We cite a theorem below (Theorem 2.1) which says essentially this: if G0 and
G′ = P1 × · · · × Pk are fixed as above, and ϕ = (ϕ1, . . . , ϕk) and ψ = (ψ1, . . . , ψk)
are homomorphisms ϕ, ψ : G0 → Aut (G′) that determine two semidirect products of
G′ by G0 in the manner just described (whose commutator subgroups are both G′),
then the resulting semidirect products are isomorphic if and only if ϕ and ψ have
the same image.

(
I.e., iff ϕ(G0) = ψ(G0).

)
One of the main results that we prove in

this section (Corollary 2.11) says essentially this: the resulting semidirect products
are weakly isomorphic if and only if the component functions ϕi and ψi have the
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same image for all i.
(
I.e., iff ϕi(G0) = ψi(G0) for all i.

)
Notice the difference in

the conditions: if ϕ(G0) = ψ(G0) then ϕi(G0) = ψi(G0) for all i, since the latter are
obtained from the former by projection. But the conditions ϕi(G0) = ψi(G0) for all i
imply only that ϕ(G0) and ψ(G0) are subdirect products of the same factor groups.
The flexibility of the subdirect product construction allows us to construct examples
where ϕ(G0) 6= ψ(G0) even though ϕi(G0) = ψi(G0) for all i, and hence to construct
term equivalent groups that are not isomorphic.

Our goals are to do more than construct such examples. The tools used to con-
struct these examples also apply to show that if G and H are groups with cyclic
Sylow subgroups, and there is a lattice isomorphism λ : Sub (G) → Sub (H) that is
cardinality-preserving in the sense that |λ(S)| = |S| for every subgroup S ⊆ G,
then G is weakly isomorphic to H. We show further that if G and H are groups with
cyclic Sylow subgroups, and there is a lattice isomorphism λ : Sub (G2) → Sub (H2)
(which is not assumed to be cardinality-preserving), then G is weakly isomorphic
to H. To reach these goals we need to introduce some notation that allows us to
compare two groups on different underlying sets.

Since G′ is cyclic, the automorphisms of G′ are the functions of the form x 7→ xr

for some fixed r satisfying 1 ≤ r < |G′| and gcd(r, |G′|) = 1. Hence the mapping
that assigns to every automorphism of G′ the corresponding exponent r mod |G′|
is an isomorphism between Aut (G′) and the group Z∗

|G′| of units modulo |G′|. The
isomorphism referred to here will be called the standard isomorphism between
Aut (G′) and Z∗

|G′|. We will use the same language when refer to the isomorphism

between Aut (P ) and Z∗
|P | where P is a Sylow subgroup contained in G′.

Now suppose that G and H are finite groups whose Sylow subgroups are cyclic.
There is a simple criterion for G and H to be isomorphic.

Theorem 2.1. (Exercise 10.1.9 of [5]) Let G = G0×ϕG
′ and H = H0×ψH

′ be finite

groups whose Sylow subgroups are cyclic. Then G ∼= H if and only if

(a) |G| = |H|, |G′| = |H ′|, and

(b) ϕ(G0) and ψ(H0) are corresponding subgroups of Aut (G′) and Aut (H ′) under

the standard isomorphisms Aut (G′) ∼= Z∗
|G′|

∼= Aut (H ′).

In [2], Honda found a necessary and sufficient condition for the existence of a
cardinality-preserving isomorphism between the subgroup lattices of G and H pro-
vided all Sylow subgroups of G and H are cyclic. Using the semidirect decomposition
of G and H as in Theorem 2.1 we can rephrase Honda’s criterion as follows.

Theorem 2.2. Let G = G0 ×ϕ G
′ and H = H0 ×ψ H

′ be finite groups whose Sylow

subgroups are cyclic. Write G′ = P1 ×· · ·×Pk and H ′ = Q1 ×· · ·×Ql as products of

Sylow subgroups, and write ϕ = (ϕ1, . . . , ϕk) and ψ = (ψ1, . . . , ψl) in terms of their

components. There exists a cardinality-preserving isomorphism between the subgroup

lattices of G and H if and only if
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(a) |G| = |H|, |G′| = |H ′|, and

(b) if |Pi| = |Qj|, then the subgroup ϕi(G0) of Aut (Pi) has the same order as the

subgroup ψj(H0) of Aut (Qj).

Note that since G′ has odd order, the automorphism groups Aut (Pi) ∼= Z∗
|Pi|

∼=

Aut (Qj) are cyclic. Therefore the condition in (b) is equivalent to requiring that
ϕi(G0) and ψj(H0) are corresponding subgroups of Aut (Pi) and Aut (Qj) under the
standard isomorphisms Aut (Pi) ∼= Z∗

|Pi|
∼= Aut (Qj).

Example 2.3. Suppose that λ : Sub (G) → Sub (H) is an isomorphism. It is clear
that if λ is cardinality-preserving, then |G| = |H|. The converse is not true, even
for finite groups G,H whose Sylow subgroups are cyclic. Indeed, let p1, p2, p3 be
distinct primes such that p1p2 | p3 − 1, and for i = 1, 2 let Gi = Si × Zi where Si is
a noncommutative group of order pip3 and Zi (the center of Gi) is a cyclic group of
order p3−i. Then |G1| = |G2| = p1p2p3, and for each i = 1, 2, the subgroup lattice
of Gi is the direct product of the subgroup lattices of Si and Zi. Thus the subgroup
lattice of G1 as well as that of G2 is isomorphic to the direct product of the height
2 lattice with p3 + 1 atoms and the 2-element chain. However, every isomorphism λ
between the subgroup lattices of G1 and G2 must map Z1 to Z2, because Zi is the
only atom in the subgroup lattice of Gi that has more than two covers. Therefore λ
is not cardinality-preserving.

In [9], A. P. Street used Honda’s theorem to construct a group G and a binary term
◦ in the language of G so that (G; ◦) is also a group, and there exists a cardinality-
preserving isomorphism between the subgroup lattices of G and (G; ◦), although G
and (G; ◦) are not isomorphic. It is not stated or proved in [9], but one can show
that the group (G; ◦) in this example is term equivalent to G. In Theorem 2.10
below we will prove that if finite groups G and H have cyclic Sylow subgroups and a
cardinality-preserving isomorphism between their subgroup lattices, then G is weakly
isomorphic to H.

IfG is a group, then we will call a binary term ◦ in the language ofG a group term

for G if ◦ induces a group operation on G. To prepare for Theorem 2.10 we prove a
type of “Chinese Remainder Theorem” that shows how to find a single group term
on a group G from given group terms on some quotients of G. The upcoming lemma
will concern the situation where G has normal subgroups M1, . . . ,Mk satisfying the
conditions

• |Mi| and |Mj| are relatively prime for all i 6= j, and
• G/K is abelian, where K = M1 · · ·Mk is the join of the Mi.

Part of the normal subgroup lattice of G is depicted in Figure 1 for the case k = 3.



GROUPS WITH IDENTICAL SUBGROUP LATTICES 5

r

r

r

r

r

r

r

r

r

Q
Q

Q
QQ

�
�

�
��

�
�

�
��

Q
Q

Q
QQ

�
�

�
��

Q
Q

Q
QQ

Q
Q

Q
QQ

�
�

�
��

M1 M2 M3

M3 M2 M 1

K

G

Figure 1

If M i = M1 · · ·Mi−1Mi+1 · · ·Mk, and ◦i is a group term for G/M i for each i, then
the lemma proves that there is a single group term ◦ for G such that x ◦ y = x ◦i y
in G/M i for all i.

Lemma 2.4. Let G be a finite group, let Mi (i = 1, . . . , k) be normal subgroups of G
of pairwise relatively prime order such that G/K is abelian for K = M1 · · ·Mk. Let

M i = M1 · · ·Mi−1Mi+1 · · ·Mk (i = 1, . . . , k). Suppose that for every i, ◦i is a binary

term in the language of G that is a group term for G/M i. Then

(1) there exists a binary term ◦ such that, for each i, ◦ induces the same operation

on G/M i as ◦i;
(2) ◦ is a group term for G, and the operation induced by ◦ on G is uniquely

determined by the requirement in (1); moreover

(3) if the group (G/M i; ◦i) is term equivalent to G/M i for all i, then (G; ◦) is

term equivalent to G.

Proof. It is easy to see that for any group H, two terms t, t′ induce the same operation
on H if and only if the identity t = t′ holds in H. Such terms will be called in this
proofH-equivalent. It is also clear thatH-equivalent terms induce the same operation
on all quotients of H as well.

Let us write the binary term ◦i in the form x ◦i y = xyci(x, y) where ci(x, y) =
xu1yv1 · · ·xuryvr . Since ◦i is a group term for G/M i, the identities x = x ◦i 1 =
x · xu1+···+ur and y = 1 ◦i y = y · yv1+···+vr hold in G/M i. Hence the identities
xu1+···+ur = 1 = yv1+···+vr hold in G/M i. This implies that the term

xyci(x, y)x
−(u1+···+ur)y−(v1+···+vr) = xy(xu1yv1 · · ·xuryvrx−(u1+···+ur)y−(v1+···+vr))

is G/M i-equivalent to ◦i, and in the parentheses on the right hand side the exponents
of the x’s and the exponents of the y’s sum up to 0. Therefore we can assume
without loss of generality that the term ◦i was selected so that in ci(x, y) we have
u1 + · · ·+ur = 0 = v1 + · · ·+vr. This condition is equivalent to requiring that ci(x, y)
is a product of commutators.
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By assumption the orders of the normal subgroups Mi (i = 1, . . . , k) of G are
pairwise relatively prime. Therefore, by the classical Chinese Remainder Theorem,
there exist integers mi such that mi ≡ 1 (mod |Mi|) and mi ≡ 0 (mod |Mj|) for all
j 6= i. Now we define the term ◦ as follows:

x ◦ y = xy
(
c1(x, y)

)m1

· · ·
(
ck(x, y)

)mk .

To check (1) let g, h ∈ G. Since ci(x, y) is a product of commutators, ci(g, h) belongs
to the commutator subgroup G′ of G. However, by assumption G/K is abelian, so
G′ ⊆ K. Thus ci(g, h) ∈ K = M1 · · ·Mk. Since M1, . . . ,Mk are normal subgroups of
pairwise relatively prime order, K is the direct product of M1, . . . ,Mk. So the choice
of mi with the property that |Mj| divides mi for all j 6= i implies that

(
ci(g, h)

)mi ∈

Mi for all i. Moreover, since mi ≡ 1 (mod |Mi|), we have
(
ci(g, h)

)miM i = ci(g, h)M i.

This shows that ◦ induces the same operation on G/M i as ◦i.
The intersection of the normal subgroups M i (i = 1, . . . , k) is trivial, therefore the

mapping

ν : G→

k∏

i=1

(G/M i), g 7→ (gM1, . . . , gMk)

is an embedding. Since ◦ is a term and by the requirement in (1) we have
(G/M i; ◦) = (G/M i; ◦i) for all i, the mapping ν is also an embedding of the algebra
(G; ◦) into the direct product of the algebras (G/M i; ◦i). This uniquely determines
the operation induced on G by ◦. Furthermore, since each (G/M i; ◦i) is a group,
and every subalgebra of a finite group is a group, we conclude that (G; ◦) is a group.
This finishes the proof of (2).

Finally, assume that each group (G/M i; ◦) = (G/M i; ◦i) (i = 1, . . . , k) is term
equivalent to G/M i. Then for each i there is a binary term ?i in the language of
the group (G; ◦) such that (G/M i; ?i) = (G/M i; ·) where (G/M i; ·) is the quotient
group G/M i with its original multiplication · inherited from G. Now we can apply
parts (1) and (2) of this lemma to the group (G; ◦) in place of G and to the groups
(G/M i; ?i) in place of (G/M i; ◦i) to conclude the following: there exists a term ? in
the language of (G; ◦) such that

(2.1) (G/M i; ?) = (G/M i; ·) for all i,

and the operation induced by ? on G is the unique operation for which these equalities
hold. Since the original operation of G, in place of ?, obviously satisfies (2.1), we get
that ? induces the original group operation on G. Hence (G; ◦) is term equivalent to
G. �

The version of Lemma 2.4 that concerns weak isomorphism rather than term equiv-
alence is a little more complicated, but it is a version that we will find useful.
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Theorem 2.5. Let G be a finite group with normal subgroups K,Mi,M i (i = 1, . . . , k)
satisfying the hypotheses of Lemma 2.4, and let H also be a finite group with normal

subgroups L,Ni, N i (i = 1, . . . , k) satisfying these hypotheses. Suppose that for each

1 ≤ i ≤ k there is an isomorphism

βi : H/N i → (G/M i; ◦i)

where (G/M i; ◦i) is a group term equivalent to G/M i. If these isomorphisms sat-

isfy βi(hNi)K = βj(hNj)K for all h ∈ H and all 1 ≤ i, j ≤ k, then there is an

isomorphism β : H → (G; ◦) where (G; ◦) is term equivalent to G.

Proof. Since G,K,Mi and M i satisfy the hypotheses of Lemma 2.4, there is a group
term ◦ for G that induces the same operation on G/M i as ◦i for each i. By part (3)
of that lemma, (G; ◦) is term equivalent to G. To complete the proof we must exhibit
an isomorphism β : H → (G; ◦).

Since βi : H/N i → (G/M i; ◦) is an isomorphism for all i, it follows that
∏
βi :

∏
H/N i →

∏
(G/M i; ◦)

is an isomorphism. Since
⋂
N i = {1}, the natural map α : H →

∏
H/N i is an

embedding, as is the natural map γ : (G; ◦) →
∏

(G/M i; ◦). The desired isomorphism
is β = γ−1 ◦ (

∏
βi)◦α. To show this, it suffices to prove that β is a bijective function,

and for this it suffices to prove that
∏
βi maps the image of α bijectively onto the

image of γ. In fact, since
∏
βi is injective and α and γ are forced to have images of

the same size, it suffices to prove that
∏
βi maps the image of α into the image of γ.

The image of the natural homomorphism

α : H →
∏

H/N i, h 7→ (hN 1, . . . , hNk)

is the set of tuples of the form (hN 1, . . . , hN k). If we apply
∏
βi to such a tuple we

obtain
(
β1(hN1), . . . , βk(hN k)

)
, which is a tuple of the form (g1M 1, . . . , gkMk) (since

βi maps cosets of N i to cosets of M i). In order for this tuple to be in the image of
γ, it is necessary and sufficient that it equal a tuple of the form (gM 1, . . . , gMk). In
other words, there must exist a g ∈ G such that gM i = giM i = βi(hN i) for all i. If
there is such a g, then clearly

gK = β1(hN1)K = · · · = βk(hN k)K,

so the condition in the theorem statement must hold. Conversely, since K is a
product of the Mi, and the M i are the kernels of the coordinate projections of this
product, any sequence of cosets g1M1, . . . , gkMk contained in the same coset of K
have a common coset representative. Thus, if β1(hN1)K = · · · = βk(hN k)K, then
there is a g such that gM i = βi(hN i) for all i. This completes the proof that β is an
isomorphism. �
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For later applications let us analyze what it means in Theorem 2.5 that the iso-
morphisms β1, . . . , βk satisfy the condition that

(2.2) βi(hNi)K = βj(hNj)K for all h ∈ H and all 1 ≤ i, j ≤ k.

Suppose all other assumptions of Theorem 2.5 hold for G,K,Mi,M i and H,L,Ni, N i

and the isomorphisms βi (i = 1, . . . , k). Note that these assumptions force |G| = |H|,
|K| = |L|, and |Mi| = |Ni|, |M i| = |N i| for all i.

If condition (2.2) is satisfied, then for any element l = n1 · · ·nk from L = N1 · · ·Nk

(ni ∈ Ni) and for arbitrary indices i 6= j we have

βi(lNi)K = βi(niNi)K = βj(niNj)K = βj(N j)K = M jK = K.

Thus each βi maps the normal subgroup L/N i of H/N i into the normal subgroup
K/M i of G/M i. For cardinality reasons the map is onto. Hence

(2.3) βi(L/N i) = K/M i for all i.

Thus βi induces an isomorphism between the quotient of H/N i modulo L/N i and
the quotient of (G/M i; ◦i) modulo K/M i. Alternatively, (2.3) implies that each βi
induces an isomorphism

βi : H/L→ (G/K; ◦i), hL 7→ βi(hN i)K.

Now condition (2.2) can be restated in terms of the βi as follows: βi(hL) = βj(hL)
for all h ∈ H and 1 ≤ i, j ≤ k. Equivalently,

(2.4) β1 = · · · = βk.

This shows that condition (2.2) implies conditions (2.3) and (2.4). The converse
is also true: if (2.3) and (2.4) hold for the βi, then (2.3) ensures that the induced
isomorphisms βi exist, and as was observed earlier, (2.4) just restates condition (2.2)
in terms of the βi. This proves that condition (2.2) is equivalent to the conjunction
of conditions (2.3) and (2.4).

Next we prove a lemma on term equivalent groups that will imply that under the
assumptions on G,K,Mi,M i as above, every operation ◦i on G/K coincides with the
original operation · on G/K.

Lemma 2.6. If G = (G; ·) is a finite group and (G; ◦) is a group term equivalent to

G, then

(1) G and (G; ◦) have the same subgroups, the same normal subgroups, and the

same sections;

(2) the operation ◦ coincides with the original group operation · on every abelian

section of G; and

(3) a section is abelian as a section of G if and only if it is abelian as a section

of (G; ◦).
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Proof. Since G and (G; ◦) are term equivalent, they have the same subgroups, and
G2 and (G2; ◦) have the same subgroups that are equivalence relations on G. The
latter means that G and (G; ◦) have the same congruences, hence the same normal
subgroups. If S is a subgroup

(
of both G and (G; ◦)

)
, then S and (S; ◦) are also term

equivalent, and hence they have the same normal subgroups. Thus G and (G; ◦) have
the same sections. This proves (1).

To prove (2), recall that by the argument at the beginning of the proof of
Lemma 2.4, we can express ◦ in terms of the original operation · of G as follows:
x ◦ y = xyc(x, y) for all x, y ∈ G where c(x, y) is a product of commutators. The
same equality holds for all elements x, y of any section S/N of G as well. Therefore,
if S/N is abelian, then x ◦ y = xy for all x, y ∈ S/N . Item (3) follows from (2). �

By assumption, the groups (G/M i; ◦i) and G/M i are term equivalent, and the
quotient G/K of G/M i is abelian, therefore by Lemma 2.6, the operations ◦i and ·
coincide onG/K. Thus the target group (G/K; ◦i) of each βi is in fact the groupG/K
with its original operation inherited from G. Hence the β i’s are all isomorphisms from
H/L to G/K. So, to check that the β i’s are equal, it suffices to check on a generating
set for H/L. In symbols, it suffices to check that for some elements h1, . . . , ht such
that h1L, . . . , htL generate H/L, we have

β1(hjL) = · · · = βk(hjL) for all j,

or, equivalently,

(2.5) β1(hjM 1)K = · · · = βk(hjMk)K for all j.

If G = K (and hence H = L) in Theorem 2.5, then condition (2.2) is automatically
satisfied. Thus we get the following corollary.

Corollary 2.7. Assume that Gi (i = 1, . . . , k) are finite groups of pairwise relatively

prime order. If Gi is weakly isomorphic to Hi for each i, then G =
∏
Gi is weakly

isomorphic to H =
∏
Hi.

Next we study the relation of term equivalence within the class of subdirectly
irreducible finite groups with cyclic Sylow subgroups.

Let p be a prime, n ≥ 1, and let 1 ≤ r < pn be an integer such that neither r nor
its order m modulo pn is divisible by p. Let Gpn,r(a, c) denote the group generated
by the elements a, c subject to the relations

ap
n

= 1, cm = 1, and c−1ac = ar.

The lemma below summarizes some basic properties of this group. The case r = 1
when Gpn,r(a, c) is the cyclic group 〈a〉 of order pn will be excluded from the lemma.

Lemma 2.8. If p is a prime, n ≥ 1, and 2 ≤ r < pn is an integer such that neither

r nor its order m modulo pn is divisible by p, then the group G = Gpn,r(a, c) has the

following properties.
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(1) The cyclic group P = 〈a〉 is a normal Sylow p-subgroup of G, and G0 = 〈c〉
is a complement of P in G.

(2) The Sylow subgroups of G are cyclic and G′ = P .

(3) G = P ∪
⋃(

a−lG0a
l : 0 ≤ l < pn

)
.

(4) The order of every element of G \ P divides m.

(5) G is subdirectly irreducible with minimal normal subgroup 〈ap
n−1

〉.

Proof. (1) follows from the defining relations of G. Thus every element of G can be
written uniquely in the form ciaj with 0 ≤ i < m and 0 ≤ j < pn. For elements of
this form we have

(ciaj)(ckal) = ci+kar
kj+l.

In particular, a−lcial = cia(1−ri)l. It is easy to check that ri 6≡ 1 (mod p) for all 1 ≤ i <
m. For, otherwise, the order d of r modulo p is a proper divisor of m, and rd = 1+pt
for some integer t. Hence (rd)p

n−1

≡ 1 (mod pn). Thus d 6= m | dpn−1, implying
that p | m. This contradicts our assumption on m, and proves ri 6≡ 1 (mod p) for
all 1 ≤ i < m. The consequence of this is that every element of G of the form ciaj

(1 ≤ i < m, 0 ≤ j < pn) is a conjugate of ci by a unique power al of a. This proves
(3). (4) follows immediately from (3).

If M is a normal subgroup of G such that M 6⊆ P , then by (3) there is an element
ci with 1 ≤ i < m such that a−lcial ∈ M for some, and hence for all l. We saw in
the preceding paragraph that {a−lcial : 0 ≤ l < pn} = {ciaj : 0 ≤ j < pn}. Since
the elements of this set belong to M and include ci, it follows that P ⊆ M . Thus
every normal subgroup of P is comparable to P , so G has a unique minimal normal
subgroup: the subgroup of P of order p. This proves (5).

Finally, we prove (2). The fact that the Sylow subgroups of G are cyclic follows
from (1) and the assumption that m is not divisible by p. Thus G′ is the product of
some normal Sylow subgroups. However, every normal subgroup of G is comparable
to P , therefore the only normal Sylow subgroup of G is P . Since G is non-abelian,
we get that G′ = P . �

Lemma 2.9. Let G = Gpn,r(a, c) where p is a prime, n ≥ 1, and 1 ≤ r < pn is an

integer such that neither r nor its order m modulo pn is divisible by p. Then for every

integer 1 ≤ s < pn such that p - s and the order of s modulo pn is m, there exist a

group (G; ◦) on the underlying set of G and an isomorphism δ : Gpn,s(a, c) → (G; ◦)
with δ(a) = a, δ(c) = c such that (G; ◦) is term equivalent to G.

Proof. If the common order of r and s modulo pn is m = 1, then r = s = 1. In this
case we have nothing to prove. Note also that the assumptions on p, r and m imply
that m = 1 if p = 2. Therefore we assume from now on that p is odd and m > 1,
hence 2 ≤ r, s < pn. Since r and s are of the same order m modulo pn and the group
Z∗
pn of units modulo pn is cyclic, therefore there is an integer t with gcd(t,m) = 1

such that s ≡ rt (mod pn). Since m is not divisible by p, we can choose t so that it
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satisfies the additional condition t ≡ 1 (mod pn). By interchanging the role of r and
s we see that there exists an integer t′ with gcd(t′, m) = 1 such that r ≡ st

′

(mod pn)
and t′ ≡ 1 (mod pn). Thus r ≡ st

′

≡ rtt
′

(mod pn) and tt′ ≡ 1 (mod pn). Since
the order of r modulo pn is m, the first congruence implies that tt′ ≡ 1 (mod m).
It follows that the identity xtt

′

= x holds in G, because by Lemma 2.8 (4) the order
of every element of G divides pn or m. Consequently, τ(x) = xt and τ ′(x) = xt

′

are
term operations of G such that τ ′ = τ−1.

Now let ◦ be the binary term operation of G defined by

x ◦ y = τ ′
(
τ(x) · τ(y)

)
= τ−1

(
τ(x) · τ(y)

)
.

It is clear from this definition that (G; ◦) is a group. For every element g ∈ G, τ
restricts to the cyclic group 〈g〉 as an automorphism, therefore ◦ coincides with ·
on 〈g〉. Hence the powers of g with respect to these two group operations are the
same. We will use the notation gn (n ∈ Z) for the n-th power of g in both groups
G and (G; ◦). Thus, in particular, in the group (G; ◦) we have ap

n

= 1 and cm = 1.
Furthermore, since τ(a) = at = a, we have

c−1 ◦ a ◦ c = τ ′
(
τ(c−1) · τ(a) · τ(c)

)
= τ ′(c−tact) = τ ′(ar

t

) = τ ′(as) = as.

This proves that there exists an isomorphism δ : Gpn,s(a, c) → (G; ◦) that satisfies
δ(a) = a and δ(c) = c.

It remains to show that (G; ◦) is term equivalent to G. By construction, ◦ is a
term operation of G. To see that · is a term operation of (G; ◦), observe first that ·
can be expressed via ◦ as follows:

xy = τ
(
τ−1(x) ◦ τ−1(y)

)
= τ

(
τ ′(x) ◦ τ ′(y)

)
.

Here τ and τ ′ are term operations of (G; ◦) because the powers of elements with
respect to the group operations · and ◦ are the same. Thus · is a term operation of
(G; ◦), proving that (G; ◦) is term equivalent to G. �

Now we are able to prove our first main result.

Theorem 2.10. Let G and H be finite groups whose Sylow subgroups are cyclic. If

there is a cardinality-preserving isomorphism from Sub (G) to Sub (H), then G is

weakly isomorphic to H.

Proof. Let G and H satisfy the assumptions of the theorem. Since the Sylow sub-
groups of G and H are cyclic, G = G0 ×ϕ G

′ and H = H0 ×ψ H
′ where G0 and G′

are cyclic of relatively prime order and similarly H0 and H ′ are cyclic of relatively
prime order. Since there is a cardinality-preserving isomorphism between the sub-
group lattices of G and H, conditions (a)–(b) from Theorem 2.2 hold for G and H.
In particular, by condition (a), we have |G0| = |H0| and |G′| = |H ′|. Let P1, . . . , Pk
be the Sylow subgroups of G contained in G′, and let Q1, . . . , Qk be the Sylow sub-
groups of H contained in H ′ so that |Pi| = |Qi| for all i. Then, up to isomorphism,
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we have G′ = P1 × · · · × Pk and H ′ = Q1 × · · · × Qk. Write ϕ = (ϕ1, . . . , ϕk) and
ψ = (ψ1, . . . , ψk) in terms of their components.

Let Pi = 〈ui〉, Qi = 〈vi〉 (i = 1, . . . , k), and G0 = 〈g0〉, H0 = 〈h0〉. Furthemore, let
ϕi(g0) be the automorphism x 7→ xri and let ψi(h0) be the automorphism x 7→ xsi

where ri and si are relatively prime to |Pi| = |Qi| (i = 1, . . . , k). According to
condition (b) from Theorem 2.2, the subgroup ϕi(G0) = 〈ϕi(g0)〉 of Aut (Pi) has the
same order as the subgroup ψi(H0) = 〈ψi(h0)〉 of Aut (Qi) for all i; equivalently, ri
and si have the same multiplicative order mi modulo |Pi| for all i. This order divides
|G0|, so it is relatively prime to |Pi|. The kernel of ϕi is the subgroup Ci = CG0

(Pi) of
G0, which is normal in G0Pi. Therefore the quotient group G0Pi/Ci has order mi|Pi|
and is generated by the elements ã = uiCi and c̃ = g0Ci which satisfy the defining
relations of the group G|Pi|,ri(a, c). Since G|Pi|,ri(a, c) also has ordermi|Pi|, we conclude
that G0Pi/Ci ∼= G|Pi|,ri(a, c). In fact, there is an isomorphism ιi : G|Pi|,ri(a, c) →
G0Pi/Ci such that ιi(a) = uiCi and ιi(c) = g0Ci. Similarly, the kernel of ψi is the
subgroup Di = CH0

(Qi) of H0, which is normal in H0Qi, and there is an isomorphism
κi : G|Pi|,si

(a, c) → H0Qi/Di such that κi(a) = viDi and κi(c) = h0Di.
Let us fix an index i (1 ≤ i ≤ k). By Lemma 2.9 there exist a group (G|Pi|,ri(a, c); �i)

and an isomorphism δi : G|Pi|,si
(a, c) → (G|Pi|,ri(a, c); �i) with δi(a) = a and δi(c) = c

such that (G|Pi|,ri(a, c); �i) is term equivalent to G|Pi|,ri(a, c). Using the isomorphisms
ιi and κi we can carry over this result to the groups G0Pi/Ci and H0Qi/Di as follows:
the mapping γ′i = ιi ◦ δi ◦ κ

−1
i is an isomorphism

γ′i : H0Qi/Di → (G0Pi/Ci; �i) with γ′i(viDi) = uiCi and γ′1(h0Di) = g0Ci

where (G0Pi/Ci; �i) is a group term equivalent to G0Pi/Ci. Since G0Pi/Pi ∼= G0 and
H0Qi/Qi

∼= H0 are isomorphic cyclic groups with g0 generating G0 and h0 generating
H0, there is an isomorphism

γ′′i : H0Qi/Qi → G0Pi/Pi = (G0Pi/Pi, ·) with γ′′i (h0Qi) = g0Pi.

We have γ′′i (viQi) = γ′′i (Qi) = Pi = uiPi.
Now we want to apply the special case k = 2 of Theorem 2.5 to the group G0Pi

and its normal subgroups CiPi, Pi, Ci in place of G and K,M1 = M2,M2 = M 1, to
the group H0Qi and its normal subgroups DiQi, Qi, Di in place of H and L,N1 =
N 2, N2 = N 1, and to the isomorphisms γ ′i and γ′′i in place of β1, β2. The assumptions
of Lemma 2.4 hold for G0Pi and its normal subgroups Pi and Ci, because Pi and
Ci (⊆ G0) have relatively prime order and G0Pi/CiPi ∼= G0/Ci is cyclic. Similarly,
the assumptions of Lemma 2.4 hold for H0Qi and its normal subgroups Qi and Di.
To see that all assumptions of Theorem 2.5 hold, it remains to verify the condition
expressed by (2.2) on the relationship between γ ′

i and γ′′i . By the remarks following
the proof of Theorem 2.5 it suffices to show that condition (2.3) holds for γ ′

i and γ′′i ,
and that condition (2.5) holds for γ ′i and γ′′i and the generating element h0(DiQi) of
the cyclic group H0Qi/DiQi. Explicitly, these conditions require that the following
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equalities hold:

γ′i(DiQi/Di) = CiPi/Ci, γ′′i (DiQi/Qi) = CiPi/Pi,

and

γ′i(h0Di)(CiPi) = γ′′i (h0Qi)(CiPi).

The third equality holds, because γ ′i(h0Di) = g0Ci and γ′′i (h0Qi) = g0Pi. The second
equality holds, because γ ′′i is an isomorphism between cyclic groups and DiQi/Qi

and CiPi/Pi are subgroups of the same order in these cyclic groups. To establish the
first equality recall that γ ′i = ιi ◦ δi ◦ κ

−1
i . Thus the first equality holds if and only if

δi(Vi) = Ui for the subgroup Ui = ι−1
i (CiPi/Ci) of (G|Pi|,ri(a, c); �i) and the subgroup

Vi = κ−1
i (DiQi/Qi) of G|Pi|,si

(a, c). We have |Ui| = |Vi| = |Pi|, therefore Ui is the
cyclic subgroup of (G|Pi|,ri(a, c); �i) generated by a, while Vi is the cyclic subgroup
of G|Pi|,si

(a, c) generated by a. The construction of the operation �i in Lemma 2.9
shows that �i coincides with the original group operation · on every cyclic subgroup
of G|Pi|,ri(a, c). Hence Ui coincides with the cyclic subgroup of G|Pi|,ri(a, c) generated
by a. Since δi(a) = a, it follows that δi(Vi) = Ui, and hence that the first equality
above holds.

Thus we can apply Theorem 2.5 to conclude that for each i, there is an isomor-
phism γi : H0Qi → (G0Pi; ◦i) where the group (G0Pi; ◦i) is term equivalent to G0Pi.
According to the proof of Theorem 2.5, the image of h0 under γi is the unique element
g ∈ G0Pi such that

(
γ′i(h0Di), γ

′′
i (h0Qi)

)
= (gCi, gPi). This equality holds for g = g0,

therefore γi(h0) = g0 for all i. The isomorphism γi also satisfies γi(Qi) = Pi for all i,
because Pi is a normal Sylow subgroup of G0Pi, and hence of (G0Pi; ◦i) as well (cf.
Lemma 2.6), Qi is a normal Sylow subgroup of H0Qi, and |Pi| = |Qi|.

Now we want to apply Theorem 2.5 again, this time to the group G and its normal
subgroups K = P1 · · ·Pk, Pi and P i = P1 · · ·Pi−1Pi+1 · · ·Pk, to the group H and
its normal subgroups L = Q1 · · ·Qk, Qi and Qi = Q1 · · ·Qi−1Qi+1 · · ·Qk, and to
some isomorphisms βi to be defined later. The assumptions of Lemma 2.4 hold for
G,K, Pi: the Pi’s are of relatively prime order, and G/K ∼= G0 is cyclic. Similarly,
the assumptions of Lemma 2.4 hold for H,L,Qi. To define the isomorphisms βi
notice that H0Qi is a complement of Qi in H, therefore the natural map νi : H0Qi →
H/Qi, h 7→ hQi is an isomorphism. Similarly, µi : G0Pi → G/P i, g 7→ gP i is an
isomorphism. Since (G0Pi; ◦i) is term equivalent to G0Pi, µi is also an isomorphism
(G0Pi; ◦i) → (G/P i; ◦i) for some group (G/P i; ◦i) that is term equivalent to G/P i.
Thus the mappings βi = µi◦γi◦ν

−1
i yield isomorphisms βi : H/Qi → (G/P i; ◦i) for all

i. The properties of γi established earlier imply that the equalities βi(h0Qi) = g0P i

and βi(L/Qi) = K/P i hold for all i. As a consequence of the first equality, we have
βi(h0Qi)K = (g0P i)K = g0K for all i. Hence β1(h0Q1)K = · · · = βk(h0Qk)K where
h0L is a generating element of the group H/L. Thus conditions (2.3) and (2.5) are
satisfied. Therefore, by the remarks following the proof of Theorem 2.5, condition
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(2.2) is also satisfied. This shows that all assumptions of Theorem 2.5 are met. Hence
we get that there is an isomorphism β : H → (G; ◦) where the group (G; ◦) is term
equivalent to G. This concludes the proof that G is weakly isomorphic to H. �

The preceding result combined with Theorem 2.2 leads to the following corollary,
which is also one of our main results.

Corollary 2.11. Let G = G0 ×ϕG
′ and H = H0 ×ψ H

′ be finite groups whose Sylow

subgroups are cyclic. Write G′ = P1 ×· · ·×Pk and H ′ = Q1 ×· · ·×Ql as products of

Sylow subgroups, and write ϕ = (ϕ1, . . . , ϕk) and ψ = (ψ1, . . . , ψl) in terms of their

components. Then G and H are weakly isomorphic if and only if

(a) |G| = |H|, |G′| = |H ′|, and

(b) if |Pi| = |Qj|, then the subgroup ϕi(G0) of Aut (Pi) has the same order as the

subgroup ψj(H0) of Aut (Qj).

Proof. The sufficiency of conditions (a) and (b) follows from Theorems 2.2 and 2.10.
To prove their necessity let H be weakly isomorphic to G, that is, H is isomorphic
to a group (G; ◦) term equivalent to G. We may assume without loss of generality
that H = (G; ◦), because if (a) and (b) hold for G and H = (G; ◦), then they also
hold for G and any group H isomorphic to (G; ◦). By Lemma 2.6, G and (G; ◦) have
the same normal subgroups and the same abelian quotients. Since the commutator
subgroup is the largest normal subgroup modulo which the quotient group is abelian,
it follows that G and (G; ◦) have the same commutator subgroups. This proves that
(a) holds for G and H = (G; ◦). Thus k = l, and we may assume that Qi = Pi for all
i. Condition (b) is independent on the choice of the subgroups G0 and H0, because
the complements of the commutator subgroup are conjugate in G as well as in (G; ◦).
Therefore we may assume that G0 = H0. The order of ϕi(G0) is the index of the
centralizer of Pi in G0 where the centralizer is computed in G. Similarly, the order of
ψi(G0) is the index of the centralizer of Pi in G0 where the centralizer is computed
in (G; ◦). Since Pi is abelian, the centralizer of Pi in G0 — whether computed in G
or (G; ◦) — is the largest subgroup S ⊆ G0 whose join with Pi is abelian. Since by
Lemma 2.6 the groups G and (G; ◦) have the same subgroups and the same abelian
subgroups, this condition determines the same subgroup in G as in (G; ◦). Thus
condition (b) is satisfied. �

The next corollary has a direct bearing on Problem 1.1. See Example 2.14 for the
complete negative answer.

Corollary 2.12. Let G and H be finite groups whose Sylow subgroups are cyclic. If

there is a cardinality-preserving isomorphism between the subgroup lattices of G and

H, then Gκ and Hκ have isomorphic subgroup lattices for all cardinals κ.

Proof. If G,H are finite groups such that the Sylow subgroups of G,H are cyclic and
there exists a cardinality-preserving isomorphism between the subgroup lattices of
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G and H, then by Theorem 2.10 the group G is term equivalent to a group (G; ◦)
that is isomorphic to H. Since G and (G; ◦) have the same term operations, Gκ and
(G; ◦)κ have the same subgroups for all κ. Since (G; ◦) ∼= H, the subgroup lattices of
(G; ◦)κ and Hκ are isomorphic for all κ. Thus Gκ and Hκ have isomorphic subgroup
lattices for all κ. �

Our earlier results can be modified to a result concerning purely abstract lattice
isomorphisms between subgroup lattices.

Theorem 2.13. Let G,H be finite groups whose Sylow subgroups are cyclic. If there

is a lattice isomorphism λ : Sub (G2) → Sub (H2), then G is weakly isomorphic to H.

Proof. The proof given here was suggested by the referee, and is based on Corol-
lary 2.11. It is shorter than our original proof, which was based on Theorem 2.5. We
will argue that it is possible to determine the order of G, the order of G′, and the
index of the centralizer of each Sylow subgroup of G′ within some complement G0 of
G′ from the lattice structure of Sub (G2). It then follows from Corollary 2.11 that
Sub (G2) determines G up to term equivalence.

We first argue that, for any finite group G, the lattice structure of Sub (G2) deter-
mines the order of every subgroup of G2. Let M be a minimal subgroup of G2. M
has prime order p. Consider all height-two intervals I = [{1}, N ] in Sub (G2) that
contain M . I ∼= Sub (N) is isomorphic to the subgroup lattice of a group whose order
is divisible by two primes, so this interval has either one atom (if N ∼= Zp2), or two
atoms (if N ∼= Zp × Zq), or p + 1 atoms (if N ∼= Zp × Zp), or max(p, q) + 1 atoms
(if N is nonabelian of order pq). Moreover, for at least one interval I we must have
p + 1 atoms. Therefore p is the smallest integer n > 1 such that there is an interval
I of height two with n+ 1 atoms that contains M . This shows that the order of any
minimal M ≤ G2 can be determined. Now, a subgroup P ≤ G2 is a p-subgroup if and
only if all minimal subgroups contained in P have order p. The order of a p-subgroup
P is ph where h is the height of P in Sub (G2). If H ≤ G2 is an arbitrary subgroup,
then its Sylow p-subgroups are its maximal p-subgroups, which as we have seen can
be determined. The order of H can be determined by multiplying the orders of its
Sylow p-subgroups for different p.

Now we restrict the argument to groups G whose Sylow subgroups are cyclic. A
Sylow subgroup P ≤ G2 is normal if and only if it is the unique subgroup of its
order. If P is a normal Sylow subgroup of G2, then P ≤ Z(G2) if and only if P
centralizes every other Sylow subgroup Q. This happens if and only if PQ is abelian.
Since PQ is isomorphic to the square of a finite group, it follows from [4] that PQ
is abelian if and only if the interval [{1}, P ∨Q] ∼= Sub (PQ) is modular. Therefore
we can determine from the structure of Sub (G2) which normal Sylow subgroups
are contained in Z(G2). This allows us to determine the location of (G2)′ = (G′)2

in Sub (G2), and therefore its order, since the commutator group is the join of all
normal Sylow subgroups P ≤ G2 such that P 6≤ Z(G2).
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From the orders of G2 and (G2)′ we derive the orders of G and G′ by taking
square roots. It remains to show that for each Sylow subgroup contained in G′ we
can determine the index i of its centralizer in some complement G0 of G′. Since
the square of a Sylow p-subgroup contained in G′ is simply a Sylow p-subgroup
P ≤ (G2)′, and any complement C of (G2)′ in Sub (G2) is conjugate to the square of
any complement G0 of G′ in Sub (G), it follows that the index of the centralizer of P
in C is i2. Therefore we can determine i by finding the index of the centralizer of P
in C and then taking its square root.

A complement C of (G2)′ is isomorphic to the square of a cyclic group. Although
the factorization of C into two factors is not unique, we can certainly locate subgroups
D and E in [{1}, C] ∼= Sub (C) which are complements within this interval and for
which [{1}, D] and [{1}, E] are distributive. D and E must be isomorphic cyclic
subgroups of C whose product is C. There is a unique cardinality-preserving isomor-
phism µ : [{1}, D] → [{1}, E], so we can determine which subgroups are squares with
respect to this direct factorization of C. But the centralizer of P within C is a square
with respect to any representation of C as a square, so the centralizer of P in C is
the largest subgroup F ≤ C that is a square with respect to this factorization and
has the property that PF is abelian. As PF is isomorphic to the square of a finite
group, it is abelian if and only if [{1}, P ∨ F ] ∼= Sub (PF ) is a modular interval of
Sub (G2). Therefore we can locate F , determine i, and we are done. �

Next we describe the example promised in the abstract of the paper.

Example 2.14. We show that for any positive integer N there is a finite set X
and N binary operations on X, ◦1, . . . , ◦N , such that the structures Gi = (X; ◦i)
are pairwise nonisomorphic term equivalent groups. To show this, it is enough to
exhibit N weakly isomorphic finite groups that are pairwise nonisomorphic. For if
G1, . . . , GN are pairwise weakly isomorphic and pairwise nonisomorphic, then we can
take X to be the underlying set of G1, and then replace each Gi, i > 1, with an

isomorphic copy G̃i defined on X and term equivalent to G1. Then G1, G̃2, . . . , G̃N

will be term equivalent groups defined on X that are pairwise nonisomorphic.
To construct a large collection of groups that are pairwise weakly isomorphic and

nonisomorphic, let p1, . . . , pk be distinct primes congruent to 1 modulo 3 where k is
an integer to be determined later. Each Gi will be a group of the form Z3 ×ϕ (Zp1 ×
· · · × Zpk

) where ϕ is a homomorphism

ϕ : Z3 → Aut (Zp1 × · · · × Zpk
) = Aut (Zp1) × · · · × Aut (Zpk

).

Any such homomorphism ϕ = (ϕ1, . . . , ϕk) is determined by its components ϕi : Z3 →
Aut (Zpi

). Since each pi is congruent to 1 modulo 3, for each i there are exactly three

homomorphisms ϕi : Z3 → Aut (Zpi
), and they are x 7→ x, x 7→ xmi and x 7→ x(mi

−1)

where mi is a fixed element of multiplicative order 3 in Z∗
pi

. Thus we may represent

ϕ = (ϕ1, . . . , ϕk) by the sequence (ε1, . . . , εk) where εi ∈ {1, mi, m
−1
i } and ϕi is
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x 7→ xεi . If (ε1, . . . , εk) is any sequence where εi ∈ {mi, m
−1
i } for each i, then each ϕi

will be nonconstant, hence the resulting group will have commutator subgroup equal
to {0} × Zp1 × · · · × Zpk

. Moreover, when each ϕi is nonconstant we have |ϕi(Z3)| =
3. Therefore it follows from Corollary 2.11 that any two tuples (ε1, . . . , εk) and
(ε′1, . . . , ε

′
k), where εi, ε

′
i ∈ {mi, m

−1
i } for all i, represent weakly isomorphic groups.

This yields a family of 2k pairwise weakly isomorphic groups. We can determine
the isomorphism relation on this family using Theorem 2.1. Namely, that theorem
indicates that tuples (ε1, . . . , εk) and (ε′1, . . . , ε

′
k) (with εi, ε

′
i ∈ {mi, m

−1
i }) represent

isomorphic groups if and only if the tuples (ε1, . . . , εk) and (ε′1, . . . , ε
′
k) generate the

same multiplicative subgroup of Z∗
p1
× · · · × Z∗

pk
, and since the two tuples have order

three this will happen if and only if (ε′1, . . . , ε
′
k) = (ε1, . . . , εk) or (ε−1

1 , . . . , ε−1
k ). Thus,

the isomorphism relation on our family of groups partitions the family into 2-element
subsets. It follows that the family contains a subfamily of 2k−1 pairwise weakly
isomorphic and nonisomorphic groups. If k is chosen so that 2k−1 ≥ N , then we have
a family of the targeted size.

This example gives a negative solution to Problem 1.1 and to Problem 7.6.11 (a)
in Schmidt [8] (which asks whether the isomorphism types of the subgroup lattices
of finite powers of a group G are sufficient to determine the isomorphism type of G).
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[3] K. A. Kearnes and Á. Szendrei, Term equivalence of groups, preprint.
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