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A Hamiltonian property for nilpotent algebras

K. A. Kearnes*

Abstract. In this paper we show that any finite algebra A satisfying a weak left nilpotence condition has
the property that all maximal subuniverses are congruence blocks. Conversely, if every subalgebra of A2

has the property that all maximal subuniverses are congruence blocks, then A satisfies the aforemen-
tioned nilpotence condition.

1. Introduction

The algebra is said to be Hamiltonian if every nonempty subuniverse is a
congruence block. This concept originates in group theory; every abelian group is
‘‘Hamiltonian’’ in the sense just defined, but Hamiltonian groups are usually
defined to be nonabelian groups where every subgroup is a congruence block (i.e.,
is normal). For general algebras, the Hamiltonian property was fairly well under-
stood (see [8]) before a satisfactory definition for the word ‘‘abelian’’ was settled on,
so the general definition of ‘‘Hamiltonian’’ includes no restriction to nonabelian
algebras. In fact, interest in the Hamiltonian property has been stimulated by the
problem of determining its true relationship to the abelian property. We say that an
algebra A is abelian if the diagonal subuniverse of A2 is a congruence block. Clearly
this means that if A2 is Hamiltonian, then A is abelian. Conversely, it has been
proven that if A is a finite algebra and every homomorphic image of a subalgebra
of A�A� is abelian, then A is Hamiltonian. See [7] for the proof.

Returning to groups, a well-known theorem of Wielandt is that a finite group is
nilpotent if and only if its maximal subgroups are normal. (For a proof, see Corollary
10.3.4 of [1].) In this paper we will call an algebra quasi-Hamiltonian if its maximal
subuniverses are congruence blocks. (Throughout, a maximal subuniverse will always
mean a nonempty, proper subuniverse which is maximal under inclusion among all
such subuniverses.) As we have stated it, Wielandt’s Theorem does not immediately
generalize to other types of algebras. For example, there are non-nilpotent pointed
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groups where every maximal subuniverse is a congruence block. (One can add a
new constant operation to a carefully selected non-nilpotent group in such a way as
to destroy all maximal subuniverses which are not congruence blocks.) However,
there is a slight modification of Wielandt’s Theorem which holds for pointed
groups:

THEOREM. Let A be a finite pointed group. If A is nilpotent, then A is
quasi-Hamiltonian. Con6ersely, if e6ery subalgebra of A2 is quasi-Hamiltonian, then
A is nilpotent.

In fact, this version of Wielandt’s Theorem holds not just for finite pointed
groups, but for any finite algebra which generates a congruence modular variety.
This fact can be deduced from Corollary 3.8 of this paper. In this paper, we
generalize Wielandt’s Theorem to any finite algebra. This requires isolating the
correct notion of nilpotence.

A commutator theory for congruences of arbitrary algebras is outlined in
Chapter 3 of [2]. An algebra is said to be left nilpotent if for some k\0 it is the case
that

(1]k+1� [1, . . . [1, [1, 1]]]=0, (k pairs of brackets).

The definition of right nilpotence is symmetric to this one. Nilpotence properties of
finite algebras are studied in [3] and there it is shown that the properties

L. A is left nilpotent.
HL. Every homomorphic image of A is left nilpotent

R. A is right nilpotent.
HR. Every homomorphic image of A is right nilpotent

are related as in the diagram

HR [ HL
n n
R [ L

In particular, left nilpotence is the weakest form of nilpotence one might express in
terms of the commutator. However, there is a slightly weaker nilpotence condition
that can be phrased in terms of tame congruence theory:
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C(1, N2; d) holds whenever d)u and N is a �d, u�-trace. (†)

We prove in this paper that (†) is weaker than left nilpotence. Our main result is the
following extension of Wielandt’s Theorem: If A is a finite algebra satisfying (†),
then A is quasi-Hamiltonian. Conversely, if every subalgebra of A2 is quasi-Hamil-
tonian, then A satisfies (†). It is not hard to show that, in a congruence modular
variety, condition (†) is equivalent to the four previously displayed nilpotence
conditions and for such varieties these conditions describe what is usually referred
to simply as ‘‘nilpotence’’.

The version of Wielandt’s Theorem which we prove here has an interesting
application. The paper [6] characterizes minimal locally finite varieties via a
Mal’cev-like condition. For varieties generated by abelian algebras, this result from
[6] is weaker than the results in [5] or the results combined in [12] and [13]. But one
can recover these stronger results from the Mal’cev-like condition of [6] by applying
our version of Wielandt’s Theorem. The way to do this is explained in Section 4
of [6]. We also mention that Theorem 2.1 of this paper, which describes how
minimal abelian congruences restrict to maximal subalgebras, is interesting in its
own right. This theorem is critical in the proof of the main result of [4] which
describes when a locally finite variety has a locally solvable direct factor. In
particular, [4] uses Theorem 2.1 to simplify the procedure for proving that a locally
finite variety is of the form V1×V2×V3 where V1 is locally strongly solvable, V2

is locally solvable and congruence permutable, and V3 is neutral. One can sub-
stantially shorten the McKenzie-Valeriote decidability proof in [11] using this
descendant of Theorem 2.1.

Our reference for notation and general algebraic information is [10], our
reference for tame congruence theory is [2] and our reference for commutator
theory is both [2] and [3].

2. A preliminary result

In this section, we examine how minimal abelian congruences on finite algebras
restrict to subalgebras. The earliest ancestor of this result is the title result of M.
Valeriote’s paper, [14]. Section 4 of R. McKenzie’s paper, [9], contains an evolved
version. We further refine the arguments to obtain the following:

THEOREM 2.1. Assume that A is a finite algebra, B is a maximal subuni6erse of
A and g is a minimal abelian congruence in Con A. If g �B\0, then B is a union of
g-blocks.
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We shall argue by contradiction to establish this theorem. So, in addition to the
hypotheses of the theorem, we shall assume that g �B\0 and that B is not a union
of g-blocks. In this paper we shall use the notation that if S¤A and u �Con A,
then Su={x �A � (x, y) � u for some y � S}. Note that Bg is a subuniverse of A
which contains B and is a union of g-blocks. By the maximality of B, our
assumption that B is not a union of g-blocks may be expressed as: B g=A.

There is no effect to either the hypotheses or conclusion of Theorem 2.1 if we
expand A by adding constant operations for each element of B. This has the effect
of simplifying some notation, so we assume in our proof that every element of B is
the interpretation of a constant term. This implies, in particular, that A is generated
by any a �A−B. For any such a and any unary polynomial p � Pol1A we may
always express p as p(x)= tA(x, a) where t is some binary term.

LEMMA 2.2. There exists a U �MA(0, g) and an idempotent term operation e(x)
such that e(A)=U and the body of U is contained in B. Furthermore, if V �MA(0, g)
and V=h(A) for some term operation h satisfying h(g)¤/ 0A, then the body of V is
contained in B.

Proof. First we will show that there is a �0, g�-trace of A which contains at
least two elements of B. Assume instead that none of the �0, g�-traces contain two
elements of B. Since g �B\0, there exists a pair (c, d) � g �B−0B. The g-block in A
containing these elements is connected by traces. Let N be a �0, g�-trace containing
c. Our assumption that no two elements of a trace lie in B forces NSB={c}.
There is a unary polynomial f such that f(A) �MA(0, g), f(c)" f(d) and
{f(c), f(d)}¤N. If N={f(c), f(d)}, then certainly we must be in one of the
following cases:

Case I. f(c)=c, or
Case II. f(d)=c.

If we are in neither case, then N contains the three distinct elements c, f(c) and f(d).
If this happens, then the monoid of unary polynomials of A�N contains a group of
permutations acting transitively on N. Composing one of these with f if necessary
one can construct a polynomial f % for which f %(A)= f(A), f %(c)=c" f %(d) and
{f %(c), f %(d)}¤N. Replacing f with f % if necessary, we may assume that f has been
chosen so that we are in either Case I or Case II.

If f(c)=c, then define a= f(d) �N−{c}. Since a �A−B, we may express f as
f(x)= tA(x, a) where t(x, y) is a term. By assumption, no �0, g�-trace contains two
distinct elements of B, so no polynomial image of a �0, g�-trace contains two
distinct elements of B. Because tA(c, N) contains the elements tA(c, a)=c �B and
tA(c, c) �B, we must have

tA(c, a)=c= tA(c, c).
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Since g is abelian this implies that

a= tA(d, a)= tA(d, c) �B,

which is false. This takes care of Case I. Next, assume that f can be chosen so that
f(d)=c. Now define a by a= f(c) ("f(d)=c). Since NSB={c}, we again have
that a �A−B. Hence we may express f(x)= tA(x, a) again. Arguing as before,
tA(d, N) contains at most one element of B and that element must be c= tA(d, a)
and also tA(d, c). Hence

tA(d, a)= tA(d, c),

which forces the contradiction

a= tA(c, a)= tA(c, c) �B.

We cannot be in Case I or Case II and so, as these are the only cases, there must
be a �0, g�-trace containing two elements of B.

Let N be a �0, g�-trace containing the distinct elements u %, 6% �B. Let e %(x) be
an idempotent polynomial of A for which N¤e %(A) �MA(0, g). Choose (a %, b %) �
((A−B)×B)Sg. We may express e % as sA(x, a %), since a % �A−B, and furthermore
we may do so with a term s where A � s(s(x, y), y)=s(x, y). Since

sA(u %, a %)=u %"6%=sA(6%, a %)

and (u %, 6%), (a %, b %) � g, we get that

sA(u %, b %)"sA(6%, b %).

Hence sA(g, b %)¤/ 0A which implies that sA(A, b %) contains a �0, g�-minimal set.
The fact that g is abelian implies that every prime quotient of A is g-coherent.

(This follows from an application of Theorem 4.20, Lemma 4.13 and Lemma 4.2 of
[3].) From this and Theorem 4.3 of [3] we get that, whenever A � s(s(x, y), y)=
s(x, y) and (a %, b %) � g, we can conclude that the polynomials sA(x, a %) and sA(x, b %)
have ranges of the same size. But sA(A, a %)=e %(A) �MA(0, g) and sA(A, b %) contains
a �0, g�-minimal set. Since all �0, g�-minimal sets have the same size, we conclude
that sA(A, b %) �MA(0, g). Set U=sA(A, b %). U is a �0, g�-minimal set which is the
range of the idempotent term operation, sA(x, b %). As argued in the previous
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paragraph, u=sA(u %, b %)"sA(6%, b %)=6 are distinct, g-related elements of USB.
Let M denote the trace of U which contains these elements and let e(x)=sA(x, b %).
Our first goal will be to show that M¤B. Then we shall argue that all other traces
in U belong to B as well. This will establish the first assertion of the lemma. From
this point on, the proof of this lemma closely parallels McKenzie’s arguments from
Section 4 of [9].

Case 1. typ(0, g)=1.
Proof for Case 1. Suppose that M¤/ B. Choose a �M−B. Since 0)g, A�M is

simple. There is a polynomial g � Pol1A�M such that, say, eg(u)=a"eg(6). If
eg(x)=rA(x, a), then we have rA(x, y) � Pol2A�M, so rA(x, y) depends on only one
variable on M. Since rA(u, a)"rA(6, a), rA(x, y) depends on only its first variable.
Hence

a=rA(u, a)=rA(u, u) �B,

a contradiction, so M¤B.
Now let M % be any other trace in U. Choose some element a % �M %−B if

possible. Since Bg=A we can choose an element b % �B with (a %, b %) � g. By applying
e if necessary, we may assume that b % �U, so in fact b % �M %. All traces are
polynomially isomorphic, so we can find a polynomial ep(x) such that ep(M)=M %.
If we write ep(x) as qA(x, a %), then we can conclude that qA(M, M %)=M %. The
operation qA(x, y) restricted to M×M % depends on only one variable, which
certainly must be the first, so

M %=qA(M, a %)=qA(M, b %)¤B.

This shows that all traces of U belong to B, so the body of U is contained in B.
Case 2. typ(0, g)=2.
Proof for Case 2. Suppose that M¤/ B. As in Case 1, we begin by choosing

a �M−B. Let d(x, y, z) be a pseudo-Mal’cev polynomial of U. We may write
ed(x, y, z)=hA(x, y, z, a) for some term h. From the properties of a pseudo-Mal’-
cev operation, the polynomials hA(x, u, u, a) and hA(u, x, u, a) are permutations of
U. Since g is abelian and u, a �M, the term operation k(x, y)=h(x, y, u, u) has the
property that kA(x, u) and kA(u, x) are permutations of M. It follows that kA(x, y)
is a quasigroup operation on M. The argument of Lemma 4.6 of [2] explains how
to construct a term from k which interprets as a Mal’cev operation on M. The
argument of Lemma 4.20 of [2] explains how to alter this term to one which
interprets as a pseudo-Mal’cev operation on U. Hence we may assume that
d(x, y, z) is a term operation of A.
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The algebra A�M is polynomially equivalent to a 1-dimensional vector space. We
plan to show that the vector space operations of A�M are the restrictions to M of
term operations. We already know that the Mal’cev operation x−y+z of A�M is
given by the restriction to M of dA(x, y, z) and that at least two constants are given
by term operations since �MSB �]2. It will be enough to show that all the scalar
multipliers are given by term operations. Following the argument in [9] we use a
counting argument. Assume that the unary polynomials of A�M which are permuta-
tions fixing some chosen element 0 �MSB are given by {g1(x), . . . , gn (x)}. We can
write each egi (x) as tA

i (x, a) for terms ti. The set {tA
1 (x, 0), . . . , tA

n (x, 0)} is a set of
unary term operations which are 1-1 on M. Since U is closed under each tA

i (x, 0)
and tA

i (u, a) g tA
i (u, 0), it follows that M is closed under each tA

i (x, 0) and that these
term operations are permutations of M. We write x−y for the term operation
dA(x, y, 0). Let Gi (x)= ti (x, 0)− ti (0, 0). Each GA

i (x) is a unary term operation
which fixes 0 and is a permutation of M ; hence

{GA
1 (x), . . . , GA

n (x)}¤{g1(x), . . . , gn (x)}.

To show that all unary multipliers are given by term operations it suffices to show
that

GA
i =GA

j [ gi=gj.

For this we must prove that

tA
i (x, 0)− tA

i (0, 0)= tA
j (x, 0)− tA

j (0, 0)

on M only if tA
i (x, a)= tA

j (x, a) on M. We rewrite the previous displayed line as

tA
i (x, 0)− tA

j (x, 0)= tA
i (0, 0)− tA

j (0, 0).

Now we use the fact that g is abelian to change some 0’s to a ’s:

tA
i (x, a)− tA

j (x, a)= tA
i (0, a)− tA

j (0, a)=0−0=0.

Hence tA
i (x, a)= tA

j (x, a), as we hoped. It follows that all the vector space
operations of A�M are the restrictions to M of term operations.

The set MSB is a subuniverse of the 1-dimensional vector space structure on M
and this set contains at least two elements. It follows that MSB=M or, equiva-
lently, M¤B.
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Now let M % be any other trace in U. Choose some element a % �M %−B if
possible. As in Case 1, we can find some b % �M %SB. Choose some element c �M
and consider the unary term operation dA(b %, c, x). This term operation is a
permutation of U, by the properties of a pseudo-Mal’cev operation, and it maps M
onto M %. This is impossible if M¤B and M %¤/ B, since B is closed under unary
term operations. We conclude that the body of U is contained in B.

To finish the proof of the lemma we need to prove that if V �MA(0, g) and
V=h(A) for some term operation h satisfying h(g)¤/ 0A, then the body of V is
contained in B. By Theorem 2.8 of [2] there is a polynomial operation q(x) such
that hq �U : U�V is a bijection. Choose any pair (a, b) � ((A−B)×B)Sg and write
q(x)= tA(x, a) for some term t. The polynomial htA(x, a) satisfies htA(g �U, a)¤/ 0A,
so htA(g �U, b)¤/ 0A, since g is abelian. Hence htA(x, b) maps U onto a minimal set.
But htA(U, b) is contained in the minimal set V=h(A). It follows that htA(x, b)
maps U onto V. Since it is a bijection, htA(x, b) maps the body of U onto the body
of V. But htA(x, b) is a term operation, so it maps B into B. We conclude that

body of V=htA(body of U, b)¤B.

This completes the proof. 

Proof of Theorem 2.1. Assume that A is a finite algebra, B is a maximal
subuniverse of A and g is a minimal abelian congruence in Con A. Assume also that
g �B\0 and that B g=A. We will derive a contradiction from these assumptions.

Since B g=A, there exists a pair (a, b) � ((A−B)×B)Sg. Each g-block is
connected by traces, so we can even choose a and b so that they come from some
�0, g�-trace, N. Let R={a}gSB. Choose W �MA(0, g) with N¤W and choose an
idempotent unary polynomial e(x) such that e(A)=W. We may express e as
e(x)=sA(x, a) where A � s(s(x, y), y)=s(x, y). Since sA(x, a)=x on W, we have
sA(a, a)=a and sA(b, a)=b. As we argued in the proof of Lemma 2.2, the fact that
g is abelian implies that for any c �R it is the case that Uc�sA(A, c) is a
�0, g�-minimal set. The g, g-term condition implies that, since sA(g �W, a)¤/ 0A

holds, it is the case that sA(g �W, c)¢0A, too. It follows that sA(x, c) is a polynomial
isomorphism of W onto Uc. Thus,

sA(body of W, c)=body of Uc.

Since Uc is the image of the idempotent term operation sA(x, c), Lemma 2.2 ensures
that the body of Uc is contained in B. For any c �R we get that

sA(a, c) � sA(body of W, c)=body of Uc¤B.
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Furthermore, sA(a, c) g sA(a, a)=a. Hence sA(a, R)¤R. There exists a k\0 such
that, for t(x, y)=sk

(1)(x, y) (�s(x, s(x, s(x, . . . , s(x, y)) . . . ))), we have A �
t(x, t(x, y))= t(x, y). Of course, the fact that sA(a, R)¤R implies that tA(a, R)¤
R. We also have tA(a, a)=a and tA(b, a) �R. Applying the g, g-term condition to

tA(b, a)= tA(b, tA(b, a))

we get that

a= tA(a, a)= tA(a, tA(b, a)) � tA(a, R)¤R.

But R¤B and a QB. This contradiction finishes the proof. 

3. Quasi-Hamiltonian algebras

In his section, we look at quasi-Hamiltonian algebras and quasi-Hamiltonian
varieties (defined to be the varieties consisting of quasi-Hamiltonian algebras). In
order to say when a variety consists of quasi-Hamiltonian algebras, we need to
describe the exact equational property of a (locally finite) variety which is associ-
ated with being quasi-Hamiltonian. For this, we introduce the following definition.

DEFINITION 3.1. Let A be an algebra. Polynomials f(x), g(x) � Pol1A are said
to be twins if there is a term t(x, y) ) and a) , b( �An such that f(x)= tA(x, a) ) and
g(x)= tA(x, b( ).

Concerning the notation of the previous definition, we often write tA
a) (x) and

tA
b( (x) in place of tA(x, a) ) and tA(x, b( ) in order to emphasize that these polynomials

are thought of as functions of x.
If A is a finite set of size m and t : A�A is a function, then e(x)� tm!(x) is an

idempotent function on A. Hence, if ty) (x)= t(x, y) ) is an (n+1)-ary term of the
algebra A, where �A �=m, then eA

y) (x)� (tA
y) )m!(x) is idempotent as a function of x

for each fixed choice of values for y) . That is,

A � ey) (ey) (x))=ey) (x).

In this case, for any a) �An, the unary polynomial eA
a) (x) is idempotent. Conversely,

if f(x)=sA(x, b( )=sA
b( (x) is an idempotent polynomial for some term s and some
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tuple b( �Al, then by replacing sy) (x) with ry) (x)� (sy) )m!(x) we get that f(x)=rA
b( (x)

where

A � ry) (ry) (x))=ry) (x).

It follows that if tA
a) (x) and tA

b( (x) are arbitrary idempotent twin polynomials of A,
then replacing ty) (x) with an iterate if necessary, we may assume that

A � ty) (ty) (x))= ty) (x).

In this section, we shall be interested in the property:

Idempotent twins have ranges of the same size. (‡)

For a finite algebra A, (‡) is an equational property. For, assume that �A �=m and
that t(x, y) ) is an arbitrary term. Let ey) (x)= (ty) )m!(x). If a) , b( �An, then eA

a) (x) and
eA

b( (x) are a typical pair of idempotent twins. The equation

(eA
a) $ eA

b( $ eA
a) )m!(x)=eA

a) (x)

must hold if the idempotent twins (eA
a) $ eA

b( $ eA
a) )m!(x) and (eA

a) $ eA
a) $ eA

a) )m!(x)=
eA

a) (x) have ranges of equal size. Conversely, if this equation holds, then �eA
a) (A)�5

�eA
b( (A)�; therefore a similar equation with a) and b( interchanged will imply that eA

a)

and eA
b( have ranges of the same size. Since a) , b( �An were chosen arbitrarily, (‡)

implies that A must satisfy all equations of the form

((ty) )m! $ (tz) )m! $ (ty) )m!)m!(x)= (ty) )m!(x).

Conversely, the satisfaction of all such equations implies that A satisfies (‡).
Saying that the finite algebras in a locally finite variety V satisfies (‡) is also

equational. The correct property is that for every (n+1)-ary term t(x, y) ) there
should exist a positive integer K such that ((ty) )K $ (ty) )K)(x)= (ty) )K(x) and

((ty) )K $ (tz) )K $ (ty) )K)K(x)= (ty) )K(x)

are equations of V. The choice K= �FV(x, y1, . . . , yn, z1, . . . , zn )�! works in a
locally finite variety satisfying (‡).

In this section, we examine the following four properties and prove the
implications (i) [ (ii) [ (iii) [ (iv).
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(i) Every subalgebra of A2 is quasi-Hamiltonian.
(ii) A satisfies (‡).

(iii) A satisfies (†).
(iv) A is quasi-Hamiltonian.

Our arguments depend on the following lemma, which gives a handy reformulation
of the definition of ‘‘quasi-Hamiltonian’’.

LEMMA 3.2. A is quasi-Hamiltonian if and only if whene6er C is a subuni6erse
of A, s �C and r �A−C is such that C@{r} generates A, then (r, s) QCgA(C×C).

Proof. Assume that A is quasi-Hamiltonian, that C is a subuniverse of A, that
s �C and r �A−C. By Zorn’s Lemma, there is a subuniverse D¤A which contains
C but does not contain r and is maximal for not containing r. Since C@{r}
generates A, any such D is a maximal subuniverse of A. A is quasi-Hamiltonian, so
D is a congruence block of some congruence u. We have C¤D and r QD, so we get
that C×C¤u and (r, s) Q u. It follows that (r, s) QCgA(C×C).

Now assume that A is not quasi-Hamiltonian. Let C be any maximal subuni-
verse of A which is not a congruence block. Choose any r �A−C and any s �C.
Since C is a maximal, C@{r} generates A. Let u=CgA(C×C). The set Cu is a
subuniverse of A which contains C and is a u-block. Since C is not a congruence
block, but is a maximal subuniverse, we get that Cu=A. It follows that u=1A and
so (r, s) � u=CgA(C×C). 

LEMMA 3.3. Let A be a finite algebra. If e6ery subalgebra of A2 is quasi-Hamil-
tonian, then A satisfies (‡).

Proof. We first establish the following claim concerning A under the assumption
that subalgebras of A2 are quasi-Hamiltonian.

Claim. Choose ai, bi, u, 6 �A and q(x, y) ) � Poln+1 A. If q(u, b( )=u and
q(6, b( )=6, then (u, 6) �CgA(q(u, a) ), q(6, a) )).

Proof of Claim. Assume otherwise that (u, 6) Q a where a�CgA(q(u, a) ), q(6, a) )).
Let B be the subalgebra of A2 generated by the set

{(u, 6)}@{(x, x) � x �A}.

The set C={(x, y) �B � (x, y) � a} is a subuniverse of B. We have r� (u, 6) �B−C
since (u, 6) � a. B is generated by C@{r}. Set s= (q(u, a) ), q(6, a) )) (�C). B has a
polynomial q/ (x, y) ), equal to q(x, y) ) acting coordinatewise, and with this polyno-
mial we have
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r= (u, 6)=q/ ((u, 6), (bi, bi )) CgB(C×C)q/ ((u, 6), (ai, ai ))=s,

since �(ai, ai ), (bi, bi )� �CgB(C×C). But this contradicts the conclusion of Lemma
3.2: we should have (r, s) QCgB(C×C). This establishes the Claim.

Now assume that A has idempotent twins eA
a) (x) and eA

b( (x) such that �eA
a) (A)�B

�eA
b( (A)�. Then (eA

b( $ eA
a) )�A�!(x) and (eA

b( $ eA
b( )�A�!(x)=eA

b( (x) are idempotent twins with

�(eA
b( $ eA

a) )�A�!(A)�5 �eA
a) (A)�B �eA

b( (A)�.

Furthermore, we now have (eA
b( $ eA

a) )�A�!(A)¤eA
b( (A). Therefore, if there are idempo-

tent twins with ranges of different sizes, then there are such twins where the range
of one is properly contained in the range of the other. Changing notation back, we
may assume that eA

a) (A)¦eA
b( (A). Choose 6 � eA

b( (A)−eA
a) (A) and set u=eA

a) (6). We
have eA(u, b( )=u, eA(6, b( )=6, so we can apply the Claim to deduce that

(u, 6) � a�CgA(eA(u, a) ), eA(6, a) )).

But eA(u, a) )=u=eA(6, a) ), which implies that a=0A and so u=6. This is impossi-
ble, since u � eA

a) (A) and 6 Q eA
a) (A). This contradiction finishes the proof. 

LEMMA 3.4. Assume that A satisfies (‡). Then A satisfies (†).

Proof. Assume that (†) fails. This means that A has a prime quotient �d, u�
such that C(1, N2; d) fails for some �d, u�-trace N. From this we will construct a
pair of idempotent twins of A which have ranges of different sizes. We argue by
cases depending on typ(d, u).

Let U be a �d, u�-minimal set containing N. Since C(1, N2; d) fails, we can find
a polynomial p � Poln+1A and elements a, b �A, u) , 6) �Nn such that

p(a, u) ) d p(a, 6) )

while

p(b, u) ) u−d p(b, 6) ).

There is no loss of generality in assuming that p(A, An)¤U.
Case 1. typ(d, u)=1.
Proof for Case 1. We claim that the polynomial p(x, y) ) witnessing the fact that

C(1, N2; d) fails can be chosen to be binary. To see that this is so,
assume that p(x, y) ) has minimal arity for a witness to ¬C(1, N2; d) and that arity
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is n+1 with n\1. Write pa (y) ) for the n-ary polynomial p(a, y) ) and similarly write
pb (y) ) for p(b, y) ). Since typ(d, u)=1, u is strongly abelian over d.
We also have pa (u0, u1, . . . , un−1) d pa (60, 61, . . . , 6n−1), so from the strong
term condition we get that pa (u0, 61, . . . , 6n−1) d pa (60, 61, . . . , 6n−1). Further,
pb (u0, 61, . . . , 6n−1) u pb (60, 61, . . . , 6n−1). If these last two elements are not d-re-
lated, then we can choose p %(x, y)=p(x, y, 61, . . . , 6n ). Then

p %(a, u0) d p %(a, 60),

but

p %(b, u0) u−d p %(b, 60).

This p % is a binary witness to ¬C(1, N2; d). Therefore, assume that

pb (u0, 61, . . . , 6n−1) d pb (60, 61, . . . , 6n−1).

In this case,

p(a, u0, u1, . . . , un−1) d p(a, 60, 61, . . . , 6n−1) d p(a, u0, 61, . . . , 6n−1)

and

p(b, u0, u1, . . . , un−1) u−d p(b, 60, 61, . . . , 6n−1) d p(b, u0, 61, . . . , 6n−1).

Let p¦(x, y1, . . . , yn−1)=p(x, u0, y1, . . . , yn−1). The previous two displayed equa-
tions prove that p¦ is a polynomial which witnesses the fact that C(1, N2; d) fails
and p¦ has arity smaller than the arity of p. Since this reduction can be accom-
plished whenever the arity of p is more than 2, we can assume that p is a binary
polynomial.

We are at the point where we know that there is a polynomial p(x, y) � Pol2A and
elements a, b �A, u, 6 �N such that

p(a, u) d p(a, 6)

while

p(b, u) u−d p(b, 6)

and p(A, A)¤U. These equations imply that pa (u �U )¤d while pb (u �U )¤/ d.
The latter condition forces pb (y) to be a permutation of U. We can iterate p(x, y)
in its second variable until we obtain a binary polynomial q(x, y) for which
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q(x, q(x, y))=q(x, y) holds. We have qa (u �U )¤d while qb (y)=y on U. Since
q(x, y) is in the clone of operations generated by p(x, y) ), and p(A, An)¤U, we get
that q(A, A)¤U. Hence

� q(x, q(x, y))=q(x, y) and
� q(a, A)¦q(b, A)=U.

The first item implies that q(a, x) and q(b, x) are idempotent twins of A, while the
second shows that they have ranges of different sizes. This is a failure of (‡), so the
argument for Case 1 is complete.

Case 2. typ(d, u)=2.
Proof for Case 2. Choose an arbitrary pair (u, 6) �N2−d. Since A�N is Mal’cev,

and the congruence 1A�N is generated by d@ (u, 6) and contains the pairs (ui, 6i ), it
is possible to find ri (x) � Pol1A�N such that ri (u) d ui and ri (6) d 6i for all i. Define
p %(x, y)=p(x, r1(y), . . . , rn (y)). We have

p %(a, u) d p(a, u) ) d p(a, 6) ) d p %(a, 6)

while

p %(b, u) d p(b, u) ) u−d p(b, 6) ) d p %(b, 6).

Thus, p %(a, u �U )¤d while p %(b, u �U )¤/ d. It follows that p %(a, x) is not a permuta-
tion of U although p %(b, x) is. Now arguments like those at the end of Case 1 show
how to construct q(x, y) such that

� q(x, q(x, y))=q(x, y) and
� q(a, A)¦q(b, A)=U.

This is a failure of (‡), so we are done with Case 2.
Case 3. typ(d, u) � {3, 4, 5}.
Proof for Case 3. Choose (0, 1) � u �U−d, and a pseudo-meet polynomial x�y

for U. On U, we have 1�x=x=x�1, x� (x�y)=x�y and x�x=x. For
a=0, b=1 and q(x, y)=x�y we get (assuming q(A, A)¤U, which we may) that

� q(x, q(x, y))=q(x, y) and
� q(a, A)¦q(b, A)=U.

This finishes the argument for Case 3. The lemma is proved. 

LEMMA 3.5. Let A be a finite algebra. If A satisfies (†), then A is quasi-Hamil-
tonian.

Proof. Assume that there is some finite algebra A where C(1, N2; d) holds
whenever d)u in Con A and N is a �d, u�-trace, but A is not quasi-Hamiltonian.
Choose such an A of minimum cardinality. Since condition (†) is inherited by
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homomorphic images, our minimality assumption implies that every proper homo-
morphic image of A is quasi-Hamiltonian. Let B be a maximal subuniverse of A
which is not a congruence block and let g be a minimal congruence. Neither our
hypothesis nor our conclusion will be affected if we expand A by adding new
constant operations to denote the elements of B, so we assume that every member
of B is the interpretation of a constant term.

Case 1. B is a union of g-blocks.
Proof for Case 1. In this case B/g is a maximal (proper) subuniverse of A/g. By

our minimality hypothesis, there is a congruence d/g �Con A/g which has B/g as a
congruence block. But this forces B to be a d-block in A; contrary to what we have
assumed. Hence Case 1 canot occur.

Case 2. B is not a union of g-blocks.
Proof for Case 2. C(1, N2; 0) holds where N is a �0, g�-trace, so we have

C(N2, N2; 0). This implies that �0, g� is of type 1 or 2. By Theorem 2.1, we cannot
have g �B\0B if B is not a union of g-blocks, so g �B=0B. Since B is not a union of
g-blocks, B g=A. Hence for any u �A−B there is a 6 �B such that (u, 6) � g. The
g-block containing {u, 6} is connected by traces, so we can find a �0, g�-trace M
which has an element b �MSB and an element a �MS (A−B). Fix such a choice
of M, a and b.

CgA(B×B)=1A, so there must exist c, d �B and a unary polynomial p(x) such
that p(c) �B while p(d) �A−B. We may express p as p(x)= tA(x, a) for some term
t. Now tA(c, a)=p(c) �B and tA(c, a) is g-related to tA(c, b) �B. Since g �B=0B, we
conclude that

tA(c, a)= tA(c, b).

Since C(1, M2; 0) holds and a, b �M, we get that

tA(d, a)= tA(d, b) �B.

But this is false, since tA(d, a)=p(d) �A−B. This contradiction finishes the proof
of the theorem. 

Lemmas 3.3, 3.4 and 3.5 have the following consequence.

COROLLARY 3.6. Let A be a finite algebra. If A2 is quasi-Hamiltonian, then A
satisfies (†) (and (‡)). Con6ersely, if A satisfies (†) (or (‡)), then A is quasi-Hamilto-
nian. 
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As we have pointed out, for finite algebras the property (‡) is equivalent to an
equational statement. Therefore, it is easy to say when a finite algebra generates a
quasi-Hamiltonian variety. But first, we prove that the quasi-Hamiltonian property
is local.

LEMMA 3.7. A locally finite 6ariety is quasi-Hamiltonian if and only if each
finite member is.

Proof. Let V be a locally finite variety whose finite members are quasi-Hamil-
tonian. For the purposes of obtaining a contradiction, assume that B is an alge-
bra in V that is not quasi-Hamiltonian. According to Lemma 3.2, B has a
subuniverse C and elements s �C and r �B−C where C@{r} generates B and
(r, s) �CgB(C×C). From Mal’cev’s congruence generation theorem, it is clear that
B has a finitely generated subalgebra B% containing r and s such that, for C %=
B %SC, it is the case that (r, s) �CgB%(C %×C %). Of course, we do not know whether
B% is generated by C %@{r}. But since C@{r} generates B, there is a finite subset
U¤C such that every member of the finite set B % is contained in the subuniverse
of B generated by U@{r}. Let B¦ be the subalgebra of B generated by U@{r} and
let C¦=B¦SC. Since C %¤C¦ and B%5B¦, we have (r, s) �CgB¦(C¦×C¦). But now
we have that U¤C¦ and B¦ is generated by U@{r}, so B¦ is generated by C¦@{r}.
All conditions of Lemma 3.2 hold for the finitely generated algebra B¦ and they
imply that this algebra is not quasi-Hamiltonian. This is impossible, since V is a
locally finite variety whose finite members are quasi-Hamiltonian. 

COROLLARY 3.8. For a finite algebra A, the following conditions are equi6a-
lent.

(i) E6ery subalgebra of A2 satisfies (†).
(ii) E6ery subalgebra of A2 is quasi-Hamiltonian.

(iii) A satisfies (‡).
(iv) The 6ariety generated by A is quasi-Hamiltonian.
(v) The finite members of the 6ariety generated by A satisfy (‡).

(vi) The finite members of the 6ariety generated by A satisfy (†).

Proof. Lemma 3.5 proves that (i) [ (ii). Lemma 3.3 proves that (ii) [ (iii).
For finite algebras, (iii) is equivalent to a statement about equations, so (iii) implies
that every finite member of V(A) satisfies (‡), hence by Lemmas 3.4 and 3.5 we get
that every finite member of V(A) is quasi-Hamiltonian. Lemma 3.7 then finishes
the argument for (iii) [ (iv). Lemmas 3.3 and 3.4 prove that (iv) [ (v) and
(v) [ (vi), respectively. The implication (vi) [ (i) is trivial. 
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Corollary 3.8 shows how one can prove that a given finite algebra generates a
quasi-Hamiltonian variety: one simply calculates whether or not all subalgebras of
A2 satisfy (†). However, since the condition (†) is new, the following theorem, which
describes a sufficient condition for V(A) to be quasi-Hamiltonian, may be more
interesting.

THEOREM 3.9. Let A be a finite algebra. If A is left nilpotent, then V(A) is
quasi-Hamiltonian.

Proof. By Corollary 3.8 (iii) U (iv), it will suffice to prove that idempotent
twins of A have ranges of the same size. As we argued in Lemma 3.4, it is enough
to show that there do not exist idempotent twins eA

a) (x) and eA
b( (x) such that

eA
a) (A)¦eA

b( (A). Assume otherwise that such twins exist. Choose 6 � eA
b( (A)−eA

a) (A)
and let u=eA

a) (6). Define u=CgA(u, 6). Since

eA(u, a) )=u=eA(6, a) ),

we get that

u=eA(u, b( ) [1, u ] eA(6, b( )=6.

Therefore, (u, 6) � [1, u ]5u=CgA(u, 6). We must have [1, u ]=u. But in a left
nilpotent algebra this implies that u=0A. This forces u=6, which is impossible
since u � eA

a) (A) and 6 Q eA
a) (A). This proof is finished. 

For a single finite algebra A, the condition (‡) (which requires idempotent twins
to have ranges of the same size) is a necessary and sufficient condition for A to
generate a quasi-Hamiltonian variety. Theorem 3.9 proves that the left nilpotence
of A is a sufficient condition for V(A) to be quasi-Hamiltonian, but left nilpotence
is not necessary. To see this, note that there are finite left nilpotent algebras which
do not generate locally left nilpotent varieties. (Example 4 of [3] describes such an
algebra.) Hence there exist finite algebras A such that A is not left nilpotent and yet
V(A) is quasi-Hamiltonian; simply take A to be a finite non-nilpotent member of
a variety generated by a finite left nilpotent algebra B. V(B) is quasi-Hamiltonian,
so V(A) is too. Thus, it is not true that locally finite quasi-Hamiltonian varieties
are locally left nilpotent, and so the sufficient condition of Theorem 3.9 is not
necessary.

The condition (†) is a necessary condition for V(A) to be quasi-Hamiltonian,
and (†) suffices to force the single algebra A to be quasi-Hamiltonian. However,
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having (†) hold in A is not sufficient for V(A) to be a quasi-Hamiltonian. Here are
operation tables for a finite algebra A which satisfies (†), but does not satisfy (‡)
(and therefore does not generate a quasi-Hamiltonian variety). This example has
universe {0, 1, 2, 3, 4, 5}, a binary basic operation � and two unary basic operations
f and g.

� 0 1 2 3 4 5

0 0 1 2 1 0 5
1 0 1 2 1 0 5 0 1 2 3 4 5

2 0 1 2 1 0 5 f 0 1 2 4 3 5
3 0 1 2 1 0 5 g 2 4 3 4 2 5
4 0 1 2 1 0 5
5 0 1 2 3 4 5

This algebra fails (‡) since 0 � x and 5 � x are idempotent twins with different size
ranges. However, this algebra satisfies (†). There is a unique proper nontrivial
congruence a which partitions the algebra as 01234/5. Furthermore, typ(0, a)=
typ(a, 1)=1. In particular, C(1, 1; a) holds, which implies that C(1, N2, a) holds
when N is a �a, 1�-trace. The set M={0, 1, 2} is a �0, a�-trace and it can
be calculated that C(1, M2; 0) holds. It follows that A satisfies (†), although it
fails (†).
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