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Abstract. We show that, up to term equivalence, the only mini-
mal idempotent varieties that are not congruence modular are the
variety of sets and the variety of semilattices. From this it fol-
lows that a minimal idempotent variety that is not congruence
distributive is term equivalent to the variety of sets, the variety of
semilattices, or a variety of affine modules over a simple ring.

1. Introduction

A variety V is idempotent if whenever f(x1, x2, . . . , xn) is a funda-
mental operation of V, then V |= f(x, x, . . . , x) ≈ x. A variety is
minimal if it is nontrivial and has no proper nontrivial subvariety.

Example 1.1. Let V be the variety of sets. This is the variety with
no fundamental operations. V satisfies the definition of an idempotent
variety by default. It is easy to see that V is minimal.

Example 1.2. Let V be the variety of semilattices. This is the variety
defined with a single binary fundamental operation that is idempotent,
commutative, and associative. It is known that V is minimal.

Example 1.3. Let R be a ring with unit. Let V be the variety of
affine R-modules: i.e., V consists of all reducts of R–modules to the
module operations of the form r1x1 + · · ·+ rnxn where Σri = 1. V is
an idempotent variety that is congruence modular and abelian, hence
affine in the sense defined in [2]. V is minimal if and only if R is
simple. Two varieties of this type are term equivalent if and only if the
associated rings are isomorphic. Since there is a proper class of simple
rings, there is a proper class of minimal idempotent affine varieties up
to term equivalence.
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Example 1.4. Let κ be a cardinal and let Aκ be the algebra with uni-
verse κ whose set of fundamental operations is the set of all idempotent
operations on κ. Let Vκ = HSP(Aκ) be the variety generated by A.
It is not difficult to show that Vκ is a congruence distributive minimal
variety. Moreover if κ 6= λ, then Vκ and Vλ are not term equivalent
since they have a different number of inequivalent binary terms. This
shows that there is a proper class of congruence distributive minimal
idempotent varieties up to term equivalence.

The purpose of this paper is to prove that Examples 1.1–1.3 consti-
tute a complete list of the minimal idempotent varieties (up to term
equivalence) that are not congruence distributive.

The study of minimal varieties has a long history which will not be
recounted here. The reader is directed to [11] for a survey of results
proved before 1992. Important new results on locally finite minimal
varieties were obtained after that survey was written: see [5, 6, 12, 13],
especially the discussion in the introduction of [6] that explains the
relationship between these papers. The strong results for locally finite
minimal varieties, which were proved using extensions of tame congru-
ence theory, raise the question of whether anything similar is true for
nonlocally finite minimal varieties. For locally finite minimal varieties
we have a complete classification only for minimal abelian varieties,
[5, 12, 13], and for minimal idempotent varieties, [9, 10]. It is not hard
to construct pathological minimal abelian varieties (that have no locally
finite analogue), but since about 1993 some have wondered if Szendrei’s
Theorem on locally finite, minimal, idempotent, varieties could be ex-
tended to nonlocally finite varieties. Szendrei’s Theorem is the theorem
in [10] that every locally finite, minimal, idempotent, variety is term
equivalent to the variety of sets, the variety of semilattices, a variety
of affine modules over a finite simple ring, or to one of a countable
collection of congruence distributive varieties described in [9]. In 1993,
I wrote the long paper [4] that proved a partial result in this direction
for nonlocally finite varieties. Later, Szendrei and I proved in the last
section of [7] a slightly stronger partial result. The reader will find in
the current paper a very simple argument that establishes a version of
Szendrei’s Theorem for nonlocally finite varieties.

We still do not have a good description of the nonlocally finite,
minimal, idempotent, congruence distributive varieties. As an exam-
ple of how little we know, one may verify by consulting [9] that, ex-
cluding varieties generated by 2-element algebras, every locally finite,
minimal, idempotent, congruence distributive variety is congruence 3-
permutable and 3-distributive. So, it is possible that nonlocally finite,
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minimal, idempotent, congruence distributive varieties also must be
congruence 3-permutable and 3-distributive. We have neither proofs
nor counterexamples for either possibility.

2. The Proof

In Theorem 1 of [1], A. Day proves that if V is a variety and F =
FV(4), then Con (F) contains a “generic pentagon”. That is, he ex-
hibits five congruences on F and shows that if any algebra in V has a
nonmodular congruence lattice, then the congruences he specifies must
generate a pentagon in Con (F). The next lemma records the location
of the generic pentagon.

Lemma 2.1. Let F = FV(a, u, v, b) be a 4–generated free algebra in
a variety V. Let θ = CgF((a, b), (u, v)), γ = CgF((a, u), (b, v)), and
δ = (θ ∧ γ) ∨ CgF(u, v). V fails to be congruence modular if and only
if (a, b) 6∈ δ.1 When this happens, Con (F) contains the following sub-
lattice.
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(a, b) ∈ θ − δ
θ

If θ is a congruence we will use the notation a ≡θ b as an alternative
to (a, b) ∈ θ.
Lemma 2.2. Let V be a minimal idempotent variety. Let F, θ, γ and
δ be as in Lemma 2.1. Let G = SgF({a, b}).

(1) If V fails to be congruence modular, then V = HSP(G/(δ|G)).
(2) G×G ⊆ θ ∩ (γ ◦ δ ◦ γ).

Proof. If V is not congruence modular, then according to Lemma 2.1
we have (a, b) 6∈ δ. Thus, G/(δ|G) is a nontrivial algebra in V. The
minimality of V implies that G generates V, so (1) holds.

1It is clear from the definitions that in any variety one has δ ≤ θ, θ ∧ γ ≤ δ, and
θ ≤ γ ∨ δ. Thus, when (a, b) 6∈ δ it follows that δ < θ and so γ, θ, and δ generate a
pentagon in Con (F). What Day actually shows is that if Con (F) is modular, then
it has no pentagon, so (a, b) ∈ δ. From this he deduces that V satisfies a Mal’tsev
condition strong enough guarantee congruence modularity. Thus, he has indeed
proved that V fails to be congruence modular if and only if (a, b) 6∈ δ.
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Choose (r, s) ∈ G × G. Since G = SgF({a, b}) there exist (idem-
potent) binary terms r(x, y) and s(x, y) such that r = r(a, b) and
s = s(a, b) in F. We have

r = r(a, b) ≡θ r(a, a) = a = s(a, a) ≡θ s(a, b) = s,

so (r, s) ∈ θ. Since

r = r(a, b) ≡γ r(u, v) ≡δ r(u, u) = u
= s(u, u) ≡δ s(u, v) ≡γ s(a, b) = s,

we have that (r, s) ∈ γ ◦ δ ◦ γ. This proves (2). �

Lemma 2.3. Let V be a minimal idempotent variety that is not con-
gruence modular, and let t be a term in the language of V. If V |=
t(x, y, y) ≈ x, then V |= t(x, x, y) ≈ x.

Proof. Let F, θ, γ, δ and G be as in Lemma 2.2. By Lemma 2.2 (1) it
will suffice for us to prove that if V |= t(x, y, y) ≈ x, then G/(δ|G) |=
t(x, x, y) ≈ x. This last condition means simply that in F we have

∀r, s ∈ G (t(r, r, s) ≡δ r).
So, assume that V |= t(x, y, y) ≈ x. Choose r, s ∈ G, and (by

Lemma 2.2 (2)) find p, q ∈ F such that r ≡γ p ≡δ q ≡γ s. Calculating
in F,

r = t(r, p, p) ≡δ t(r, p, q) ≡γ t(r, r, s).
But t(r, r, s) ∈ G, so by Lemma 2.2 (2) we have r ≡θ t(r, r, s). Thus,

t(r, r, s) ≡θ r ≡δ t(r, p, q).
Since δ ≤ θ we have (t(r, r, s), t(r, p, q)) ∈ θ∧γ ≤ δ. This improves our
earlier calculation to

r = t(r, p, p) ≡δ t(r, p, q) ≡δ t(r, r, s).
Since we have shown that t(r, r, s) ≡δ r for any r, s ∈ G the proof is
complete. �

Lemma 2.4. Let V be a minimal idempotent variety that is not con-
gruence modular. If V |= t(x, x, y) ≈ x and V |= t(x, y, x) ≈ x, then
V |= t(x, y, y) ≈ x.

Proof. As in the last proof, it is enough to show that if V |= t(x, x, y) ≈
x and V |= t(x, y, x) ≈ x, then in F we have

∀r, s ∈ G (t(r, s, s) ≡δ r).
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Choose r, s ∈ G and find p, q ∈ F such that r ≡γ p ≡δ q ≡γ s.
The equation t(x, x, y) ≈ x, which holds throughout V, provides the
equalities in

t(r, s, r) ≡θ t(r, r, r) = r = t(r, r, p) ≡θ t(r, s, p),
while the fact that r ≡γ p implies that t(r, s, r) ≡γ t(r, s, p). Thus,
(t(r, s, r), t(r, s, p)) ∈ θ ∧ γ ≤ δ. Similarly we have

t(r, s, q) ≡θ t(r, r, q) = r = t(r, r, s) ≡θ t(r, s, s),
while the fact that q ≡γ s implies that t(r, s, q) ≡γ t(r, s, s). Thus,
t(r, s, q) ≡δ t(r, s, s). Putting the two conclusions together yields

t(r, s, r) ≡δ t(r, s, p) ≡δ t(r, s, q) ≡δ t(r, s, s).
This conclusion and the equation t(x, y, x) ≈ x jointly imply that
t(r, s, s) ≡δ r for any r, s ∈ G. The proof is finished. �
Lemma 2.5. An idempotent variety V has no subvariety that is term
equivalent to the variety of sets or to the variety of semilattices if and
only if there is an n > 1, an n–ary term f of V, and for every nonempty
subset K ⊆ N = {1, . . . , n}, there is an equation f(xi1 , . . . , xin) =
f(yi1, . . . , yin) satisfied in V where

(1) all xij , yij ∈ {x, y};
(2) {xij | j ∈ K} = {x}; and
(3) {yij | j ∈ K} = {y} or {x, y}.

Proof. This result is essentially Lemma 9.5 (1)⇔(3) of [3] in a different
language. We explain why this is so.

Lemma 9.5 (1) of [3] is the condition that there is no clone homo-
morphism

ϕ : Clo (V) −→ Clo (S)

from the clone of V to the clone of the variety S of semilattices. If
we factor a potential homomorphism ϕ through its image, and use
the fact that the only subclones of S are the full clone and the clone
of projections, then we see that Lemma 9.5 (1) of [3] is exactly the
condition that V has no clone homomorphism onto the clone of the
variety of sets or the variety of semilattices. Equivalently, V has no
subvariety term equivalent to the variety of sets or semilattices.

Lemma 9.5 (3) of [3] asserts that V has an n-ary term f such that
for every nonempty subset K ⊆ N = {1, . . . , n}, there is an equa-
tion f(xi1, . . . , xin) = f(yi1, . . . , yin) satisfied in V where {xij | j ∈
K} 6= {yij | j ∈ K} and the xij and yij are variables. It is not ex-
plicitly stated that {xij | j ∈ K} = {x} and {yij | j ∈ K} = {y} or
{x, y}, but it is easy to see that this can be arranged. In the equation
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f(xi1, . . . , xin) = f(yi1, . . . , yin), in order to have {xij | j ∈ K} 6=
{yij | j ∈ K}, there must be a variable that occurs in exactly one
of these two sets. Substitute y for one such variable and substitute x
for all other variables. This produces an equation involving only the
variables x and y that is a consequence of the original equation and
still implies that {xij | j ∈ K} 6= {yij | j ∈ K}. Thus, there is no loss
of generality in assuming that all variables come from the set {x, y}.
Moreover, one of these sets, which we may assume to be {xij | j ∈ K},
must be {x} while the other set must contain y. This shows that this
lemma is merely a restatement of Lemma 9.5 (1)⇔(3). �
Theorem 2.6. A minimal idempotent variety is term equivalent to the
variety of sets, the variety semilattices, or is congruence modular.

Proof. Let V be a minimal idempotent variety that is not congruence
modular. We will assume that V is not term equivalent to the variety
of sets or the variety of semilattices and derive a contradiction.

Since we are assuming that V is minimal and not term equivalent
to the variety of sets or the variety of semilattices, we must have an
operation f(x1, . . . , xn) satisfying equations of the type described in
Lemma 2.5. If U ⊆ N = {1, . . . , n}, then we will write fU to denote the
binary term that results from substituting x into f for xi when i ∈ U
and substituting y for xi when i 6∈ U . For example, fN = f(x, x, . . . , x)
while f∅ = f(y, y, . . . , y). In this notation, the conditions listed in
Lemma 2.5 express that for any nonempty K ⊆ N there exist V ⊇ K
and W 6⊇ K such that V |= fV ≈ fW .

Let F = {U ⊆ N | V |= fU ≈ x}.
Claim 2.7. N ∈ F. ∅ 6∈ F.

The statement that N ∈ F is just the statement that V |= fN =
f(x, x, . . . , x) ≈ x, that is a consequence of idempotence. But we
cannot have V |= f∅ = f(y, y, . . . , y) ≈ x, since with idempotence this
would entail V |= y ≈ x. The assumption that V is a minimal variety
excludes this.

Claim 2.8. If U ∈ F and V ⊇ U , then V ∈ F.

Assume that the claim is false and fix U ∈ F and V ⊇ U such
that V 6∈ F. Let t(x, y, z) be the term obtained from f(x1, . . . , xn) by
substituting x for each xi, i ∈ U , substituting y for each xi, i ∈ V − U ,
and substituting z for each xi, i 6∈ V . Since U ∈ F we have V |=
t(x, y, y) = fU ≈ x, while V 6∈ F implies that V 6|= t(x, x, y) = fV ≈ x.
This contradicts Lemma 2.3, since V is a minimal idempotent variety
that is not congruence modular. The claim is proved.
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Claim 2.9. If U,W ∈ F and U ∪W = N , then U ∩W ∈ F.

Let t(x, y, z) be the term obtained from f by substituting x for xi
when i ∈ U∩W , substituting y for xi when i ∈ U−W , and substituting
z for xi when i ∈ W −U . The assumption that U ∪W = N guarantees
that all variables are described by these cases. Since U,W ∈ F we have
V |= t(x, x, y) ≈ t(x, y, x) ≈ x. According to Lemma 2.4 this implies
that V |= fU∩W = t(x, y, y) ≈ x, so U ∩W ∈ F.

Now we complete the proof. Claims 2.7, 2.8 and 2.9 imply that F is
nontrivial proper principal filter in the lattice of subsets of N . Thus,
there is a set K with ∅ 6= K 6= N such that F = {U | U ⊇ K}. As
noted before Claim 2.7, Lemma 2.5 guarantees that there is a V ⊇ K
and a W 6⊇ K such that V |= fV ≈ fW . Comparing the definition of
F to our conclusion that F = {U | U ⊇ K} we find that we have a
contradiction:

V |= fV ≈ x, V 6|= fW ≈ x and also V |= fV ≈ fW .

�
Corollary 2.10. A minimal idempotent variety is term equivalent to
the variety of sets, the variety semilattices, a variety of affine modules
over a simple ring, or is congruence distributive.

Proof. Assume that V is minimal, idempotent, and congruence modu-
lar. If V is not congruence distributive, then according to Exercise 8.1
of [2] some A ∈ V has congruences α and β such that

δ := [α, β] < α ∧ β =: γ.

Since the commutator is monotone in each variable, [γ, γ] ≤ [α, β] = δ.
Thus, γ/δ is a (nonzero) abelian congruence of A/δ. Since V is idem-
potent, any nontrivial class of γ/δ is a subuniverse that supports a
nontrivial abelian subalgebra of A/δ. Therefore, if V is not congruence
distributive, then it contains (and so is generated by) an abelian alge-
bra. Thus, V is affine. It follows from the structure theorem for affine
algebras (Proposition 2.6 of [8]) that an idempotent affine variety is
term equivalent to a variety of affine modules. �
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