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Congruence lower semimodularity and 2-finiteness 
imply congruence modularity 

KEITH A.  KEARNES 

Abstract. We show that any congruence lower semimodular variety whose 2-generatecl free algebra is 
finite must be congruence modular. 

1. Introduction 

What led us to discover the result in the title was our investigation of upper 
semimodularity as a congruence condition. Upper semimodularity seems to arise 
naturally as a congruence condition and examples of congruence upper semimodular 
varieties abound. However, it is very difficult to understand what makes a variety 
congruence upper semimodular. Perhaps it was a moment of exasperation or of 
perversity that made us wonder why we knew no examples of non-modular varieties 
that were congruence lower semimodular. Lower semimodularity does play a role in 
algebra, it is known that the subgroup lattice of  a finite nilpotent group is lower 
semimodular (but not generally upper semimodular). However, the role of lower 
semimodularity does not seem to be that of an interesting congruence condition, as 
we shall see. 

We rely a great deal on the techniques and results of tame congruence theory. 
The reader can find all he needs in [6]. Our notation for universal algebra is fairly 
standard and follows [1]. 

2. Congruence modularity 

Probably the best-known characterization of congruence modularity for a variety 
is the one in Alan Day's Master's thesis. He shows that a variety is congruence 
modular if and only if it satisfies a certain Marcev condition in four variables. The 
following theorem is essentially a statement of that result in a slightly expanded form. 

Presented by Walter Taylor. 
Received January 9, 1989 and in final form September 26, 1989. 



2 KEITH A. KEARNES ALGEBRA UNIV. 

T H E O R E M  2.1. The following conditions are equivalent f o r  a variety ~ : 

(a) f /  is congruence modular. 

(b) There is an n and 4-ary terms mo(w, x,  y,  z) . . . . .  mn(w, x,  y,  z) such that 

f/~satisfies : 

(i) m0(w, x, y,  z) ~ w, m, (w,  x,  y,  z) ~ z 

(ii) mi(w, y,  y, w) ,~ w, i <<. n 

(iii) mi(w, w, y,  y) ~ m~+ l(w, w, y, y), for  even i < n 

(iv) m i ( w , y , y , z )  ~ m i + l ( w , y , y , z ) , f o r  odd i <n .  

(C) 3/F4 : HSP(F~(4) )  is congruence modular. 

(d) Con F~(4)  is modular. 

The proof that (a) is equivalent to (b) can be found in [3]. Conditions (c) and 
(d) follow easily from the proof. 

It was a long time before a significant improvement of Day's result was found. 
It was by an application of  modular commutator theory that H.-P. Gumm was able 
to show that it is not necessary to work with F~(4)  or with 4-variable terms to 
verify that a variety is congruence modular. A slightly expanded statement of  
Gumm's result (for varieties) follows. The proof  that (a) is equivalent to (b) can be 
found in [5]. 

T H E O R E M  2.2. The following conditions are equivalent f o r  a variety ~ : 

(a) f~ is congruence modular. 

(b) There is an n and 3-ary terms p(x,  y,  z) and qo(x, y,  z) . . . . .  qn(x, y,  z) such 

that fF satisfies: 

(i) qo(X, y,  z) ,~ x 
(ii) qi (x, y, z) ~ x, i ~< n 

(iii) qi(x, y,  y)  ~ qi+ l(x,  y, y), for  even i < n 

(iv) qi(x,  X, y) ,,~ qi+ 1( X, X, y), for  odd i < n 

(v) qn(x, y, y) ~ p ( x ,  y, y) 
(vi) p(x,  x,  y) ~ y. 

~3  = HSP(F~(3) )  is congruence modular. [] (c) 

It is not true that the conditions of the last theorem are equivalent to the 
condition that Con F~(3)  is modular. For example, in the variety of  sets F~(3)  has 
three elements and Con F~(3)  is just the lattice of  equivalence relations on this 
3-element set. Thus Con F~(3)  is the 5-element simple (modular) lattice. However, 
the variety of  sets is not congruence modular; every set of  more than three elements 
has a non-modular congruence lattice. 

After these two results it is natural to ask if the number "3" as it appears in 
condition (b) and (c) of Gumm's theorem are optimal. The answer is "yes" for (b) 
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and "no"  for (c). We provide an example to show that if congruence modularity 
implies a nontrivial Mal'cev condition, then some of the terms in the Mal'cev 
condition must have at least three variables. 

EXAMPLE. The purpose of this example is to show that if a fairly general sort 
of congruence condition implies a nontrivial Mal'cev condition for varieties or 
quasivarieties, then some of the terms in the Mal'cev condition require three 
variables. The reader who is not familiar with Mal'cev conditions is referred to [7]. 

We will consider a certain collection of reflexive, compatible binary relations on 
an algebra A in a quasivariety ~ to be an algebra which we will call R(A). For this 
example, the carrier of R(A) will be the collection of reflexive, compatible binary 
relations on A that can be obtained from the congruences on A by relational 
composition and intersection. The nullary basic operations of this algebra are the 
operations 0 and 1 which denote the smallest and largest reflexive, compatible 
binary relations on A. The unary operations are O, which takes a relation to the 
least congruence relation that contains it, and O~r, the operation which takes a 
relation ~ to the least congruence relation 0 containing ~ and satisfying A/0 e ~ .  
The binary basic operations on R(A) are v ,  where 0t v fl is defined to be O(~t w/3), 
also ^ ,  which is our symbol for the intersection of relations, and finally the 
operation of relational composition o. 

Now, we will write ~ ~r tp to mean that for every A e aft we have Con A ~ ~o. 
Here r is a formula whose only nonlogical symbols are among the operation 
symbols 0, 1, O, O ~ ,  v ,  A, and o. Our observation is that if tp is a universally 
quantified formula such that J l  ~co, tp for some nontrivial quasivariety o~f, then 

~con ~0 for every arithmetical variety. (A variety is arithmetical if it is both 
congruence distributive and congruence permutable.) To show this it is enough to 
choose an arbitrary arithmetical variety ~ ,  an arbitrary algebra X in ~ and show 
that Con X ~oo tp. Notice that Con X is distributive and satisfies the universal 
formulae O~(ct) ~ O(0t) ~ 0t and 0~ v fl ~ ct o ft. Since Con X is distributive we can 
find a 0,l-preserving embedding of Con X into a boolean lattice B. B has a unique 
expansion to a boolean algebra which can also denote B. Let B* be boolean space 
which is the dual of this boolean algebra. Since ~ is nontrivial, it contains an 
algebra A of more than one element and Con A ~ q~. Let A[B*] be the boolean 
power of A that is determined by B*. That is, A[B*] is the algebra of continuous 
functions from B* to the discrete algebra A. A[B*] is a subdirect power of A so it 
is a member of :~ff. For each clopen subject J ~ B* we write t/j for the kernel of the 
projection onto the coordinates in J. The collection of all such r/j's form a boolean 
sublattice of Con A[B*] isomorphic to B which contains the least and largest 
congruences on A[B*]. The embedding of Con X into B followed by the isomor- 
phism from B to the sublattice of Con A[B*] consisting of the ~/g's allows us to 
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identify Con X with a 0,l-sublattice of Con A[B*]. Further, O~r(FIg)= O ( t b ) =  tlj 

since all the r/g are projection congruences. Also, ~/g v r/j, = r/j o t/j,. It follows that 
the collection of r/g'S that correspond to elements of Con X form a subalgebra of 
Con A[B*] (in the sense of the last paragraph) that is isomorphic to Con X 
(considered as an algebra). Since Con A[B*] ~ tp and tp is universal, Con X also 
satifies ~p. X and ~ were arbitrary, so every arithmetical variety satisfies tp. 

Suppose that a certain congruence condition is expressible by a universally 
quantified formula tp whose only nonlogical symbols are among 0, 1, O, Oa,, v ,  
^ ,  and o and that this congruence condition is satisfied by a nontrivial quasivariety. 
Suppose also that this congruence condition implies a nontrivial Mal'cev condition. 
(A Mal'cev condition is trivial if it holds in every variety.) We wish to show that 
some of the terms in this Mal'cev condition must have at least three variables. For 
this we will use Pixley's characterization of arithmetical varieties: a variety ~ is 
arithmetical if and only if ~ has a term m (x , y , z )  satisfying 
re(x, x, y) = m(y,  x, y) = m(y,  x, x) = y. Now let ~ denote the variety of all alge- 
bras whose only basic operation is a ternary operation m which satisfies the 
equations just listed. W is an arithmetical variety. Since cp is universally quantified 
and satisfied by a nontrivial quasivariety it is satisfied by ~V. This congruence 
condition implies a nontrivial Mal'cev condition for ~ .  Since the Mal'cev condi- 
tion is nontrivial it must involve a term different from a trivial projection operation. 
Now, it is an easy matter to check that in the variety ~ that we have defined the 
only terms that are not equal in ~V to a projection operation have at least three 
variables. This verifies our claim that any universally quantified congruence condi- 
tion that is satisfied by some nontrivial quasivariety and contains only operations 
among 0, 1, O, O~r, v ,  A, and o cannot imply a nontrivial Marcev condition in 
which all terms depend on only two variables. 

It is possible to improve condition (c) of Theorem 2.2. This is essentially the 
content of the next result. 

THEOREM 2.3. The following conditions are equivalent for a variety ~V : 

(a) ~ is congruence modular. 

(b) ~'2 = HSP(F~(2))  is congruence modular. 
(c) The subalgebra S of F~-(u,v) x F~-(u,v) that is generated by 

{(u, u), (u, v), (v, u), (v, v)} is congruence modular. 

Proof. Clearly (a) implies (b) which in turn implies (c). We only need to show 
that (c) implies (a). What we will actually do is show that (c) implies Theorem 2. l(b). 

Consider the homomorphism 20 :Fr  x ,y ,  z) ~ F r  v) : w, x ~ u, and 
y, z ~ v and the homomorphism 2j : F~(w, x, y, z) ~ F ~ ( u ,  v) : w, z ~-~ u, and 
x, y ~ v. These yield a homomorphism 20 x ~ : F~(w, x, y, z) ~F~.(u,  v) x 
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F r  The image of 20x21 
is precisely S. The kernel of 20 • ~.1 is the intersection of the kernels of the '~i 
which is O((w, x), (y,  z)) ^ 6)((w, z), (x, y)) = iS. Let 7 = O((w, x), (y, z)), fl = 
O((w, z), (x, y)) and let ct = 6 ^ O(x, y). Since S ~ F~(w, x, y, z)/5 is congruence 
modular, the interval in Con Fr x ,y ,  z) above 6 is modular. This interval 

includes ~,fl and 7, so f l = f l A ( 0 t V T ) = a V ( f l ^ 7 ) = C C  This shows that 
(w, z) e ct = 6 v O(x, y). Hence for some n there are elements Po = w, p~ . . . . .  p, = z 
of F~(w, x ,y ,  z) such that (P~,Pt+ i ) ~  6 for / even  and (Pi, Pi+ ~)~ O(x, y) for i 
odd. Let mo(W, x, y, z) . . . . .  m,(w, x, y, z) be terms representing po(w, x, y, z) . . . . .  
p,(w, x, y, z). Since all the p~ are congruent modulo 0 = O((w, z), (x, y)), we get that 
w = mo(w, x, y, z)Om~(w, x, y, z)Omi(w, y, y, w). Since 0 is trivial when restricted to 
the subalgebra of F r  generated by w and y it follows that 
mi(w, y, y, w) = w in Ff (w,  x, y, z). It follows that mi(w , y, y, W) ,.~ W is an equation 
of ~ .  The other equations of 2.1(b) can be verified with similar arguments. [] 

It is not a corollary to this theorem, but it is not too hard to show that ~ is 
congruence distributive if and only if V2 of part (b) is congruence distributive if 
and only if S of part (c) is congruence distributive. Also, ~ is congruence 
permutable if and only if ~2  is if and only if the subalgebra of S generated by 
(u, u), (u, v) and (v, v) is congruence permutable. 

Of course it is impossible to replace Fr  by Fr in condition (b) of the last 
theorem, since there are non-modular varieties in which every basic operation is 
idempotent (for example, the variety of sets or the variety of semilattices). In such 
a variety ~ = HSP(F~-(1)) is a trivial (hence congruence modular) variety even 
though ~ is not. 

The equivalence of 2.3(a) and 2.3(b) is what interests us. It implies that if the 
free algebra on two generators in ~ is finite, then ~ is congruence modular if and 
only if a certain finitely generated subvariety is. Now that we can focus on a finitely 
generated variety we may bring the techniques of tame congruence theory to bear. 

3. Congruence semimodularity 

DEFINITION 3.1. A lattice L is upper semimodular if whenever x, y and z are 
elements of L and x<~y and x v z ~ y v z  we have x v z - < y v z .  L is lower 
semimodular if the dual condition holds. That is, L is lower semimodular if whenever 
x, y a n d z a r e e l e m e n t s o f L a n d y ~ ( x a n d x ^ z : ~ y A z w e h a v e y A z - ( x A z .  

Both upper and lower semimodularity are implied by modularity. Conversely, in 
the presence of certain finiteness conditions, the conjunction of upper and lower 
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semimodularity implies modularity. See Theorem 3.6 of [2] for a proof of this under 
fairly weak finiteness hypotheses. The next theorem is well known and much weaker 
than the result proved in [2]. 

THEOREM 3.2. I f  a lattice of  finite height is both upper semimodular and lower 
semimodular, then it is modular. [] 

From this we immediately get: 

COROLLARY 3.3. I f  F~(4) is finite and :V is congruence upper semimodular 
and congruence lower semimodular, then ~U is congruence modular. 

Proof. This follows from the last theorem and Theorem 2.1(d). [] 

What is somewhat surprising is that the last corollary remains true if we delete 
the hypothesis that "U is congruence upper semimodular, but is false if we instead 
delete the hypothesis that ~ is congruence lower semimodular. 

THEOREM 3.4. Let ~, [3 and 7 be congruences on a finite algebra A that satisfy 

v T = f l v T ,  C ~ A T = f l A T a n d ~ < f l .  
(a) I f  A is congruence upper semimodular, then typ{cc, r} __ {1, 5}. 
(b) I f  A is congruence lower semimodular, then typ{~, r} = {1}. 

Proof. First, let us assume that A is congruence upper semimodular and that 
typ{ct, r} ~ {1, 5}. Let 0 = ~ v 7 = f l v  7 and let 6 = �9 A ~ = fl A 7. We may assume 
that the interval I[6, 0] is a minimal interval (with respect to inclusion) in Con A 
that supports our assumptions and the hypotheses of this lemma. 

By our assumption that type{0t, #} ~ {1, 5}, we may find ~' and #' in Con A 
such that ct < ct' ~( fl' < fl and typ(ct', fl') r {1, 5}. Changing notation so that ct = ct' 
and # = fl' we may assume that ~ ~( #. 

We have the following sublattice in Con A: 

o 

6 
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It follows from our assumption of upper semimodularity that since 
= 6 v ~ # 7 v 0t = 0 and ct -g 0 we must have 6 -g ~,. Hence, there is a congruence 

7' such that 6 ~( 7' < 7. By semimodulari ty, / /~(7 '  v / / .  
We will use our minimality assumption on 116, 0] and upper semimodularity to 

show that 7' v / / =  0. First, if 7 ^ (7' v / / )  = 7' we have a sublattice of Con A 
consisting of the congruences 61 = 7', ~1 = ~ v 7',//1 = / / v  7', 71 = 7 and 01 = 0 as 
the reader can easily check. Also, by upper semimodularity, ~1 "<//1- Since the 
intervals I[0q,//1] and I[~t, fl] are perspective covering quotients, it follows from 
Lemma 6.2 of [6] that typ(cq,//1) = typ(~,//) ~ {1, 5}. We conclude that I[61, 01] is 
a proper subinterval of I[6, 0] that satisfies all of our earlier assumptions. Of 
course, this is a contradiction. Hence, we cannot have ~ ^ (7' v / / )  = ~,'. Now, let 
6 2 = 6,  0( 2 = ~, //2 = //, ~2 = 7 A ( T t V  / /)  and 02 = (y 'v / / ) .  These elements form a 

sublattice of Con A which (one may easily check) satisfies all of our earlier 
assumptions and this sublattice is contained in a subinterval of I[6, 0]. This forces 
0 = 02; that is, 0 = 7' v / / .  

The condition that 0 = 7 ' v / /  and the conditions that 0 = 0c v 7 = / / v  7 and 
6 = a ^ y = / / ^  y imply that Con A has the following sublattice: 

0 

~, ^ (~,' v ~)  

,5 

In this sublattice ct < / / ,  fl-< 0, ~ ~( ( 7 ' v  0t) and (7 ' v  ~)~( O. The coverings are 
guaranteed by upper semimodularity. 

By perspectivity, typ(7' v ~t, 0) = typ(0t,//) r {1, 5}. This contradicts Lemma 6.3 
of [6]. Our conclusion is that (a) holds. 

For part (b) notice that our arguments can be dualized completely except for 
our invocation of Lemma 6.3 of [6]. At this point of the argument we have a 
lattice which is the dual of the lattice in our last diagram. Now, Lemma 6.4 of [6] 
can serve in place of Lemma 6.3. This completes part (b). [] 
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COROLLARY 3.5. Let A be a finite algebra. 
(a) I f  Con A is upper semimodular and typ{A} c~ {1, 5} = ~b, then Con A is 

modular. 
(b) I f  Con A is lower semimodular and typ{A} ~ {1} = $, then Con A is modular. 

Proof. Part (a) of the theorem shows that if Con A is upper semimodular and 

typ{A} n {1, 5} = ~b, then whenever ~ v ~ = f l v  ~, ~ A )' = fl ^ ~, and ~ ~< fl we have 
=/L That is, Con A has no sublattice isomorphic to the 5-element non-modular 

lattice Ns. It is well known that this is equivalent to the condition that Con A is 
modular. This verifies part (a) of  the corollary. Similarly, part (b) of  the theorem 

implies part (b) of the corollary. [] 

The authors of [6] point out that if a locally finite variety ~ is congruence 

n-permutable for some n, or if there is a nontrivial lattice identity satisfied by all the 
congruence lattices of algebras in ~/~, then typ{~}  c~ {1, 5} = ~b. In such a variety, 
the congruence lattice of a finite algebra is upper semimodular iff it is lower 

semimodular iff it is modular. 

LEMMA 3.6. The image of a complete homomorphism from a complete upper 
semimodular lattice is upper semimodular. Any convex sublattice of an upper semi- 
modular lattice is upper semimodular. Any subdirect product of upper semimodular 
lattices is upper semimodular. 

By duality this lemma holds if we change "upper"  to "lower" throughout. 

Proof Suppose that 2 : L  ~ K is a complete lattice homomorphism from the 
complete lattice L onto the lattice K and that L is upper semimodular. Assume that 
K fails to be upper semimodular. Then we can find w, x, y, z e K such that x < y 
and x v z < w < y v z. Choose a, b, c, d e L such that b is the least element of  L 
satisfying 2(b) = y, a is the greatest element of L satisfying 2(a) = x and a ~ b and 
such that 2(c) = z, 2(d) = w. The reader can easily verify that the following is a 

diagram of a sublattice of L: 

a v b v c  

(a v b  v c )  ^ ( a r c  v d )  

a r c  
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Since L is upper semimodular and a v (a v c) -g b v (a v c) we must have a -/( b. 

Hence, there is an element e such that a < e  < b. By our choice of a and b, 
2(a) < 2(e) < ;t(b) or x < ;t(e) < y. This contradicts x ~(y. 

For  the second statement of  this lemma, notice that any failure of  upper 
semimodularity in a convex sublattice of  a lattice is a failure in the whole lattice. 

For  the last statement, suppose that J is not an upper semimodular lattice. Then 
J has elements p, q, r and s such that p -( q and p v r < s < q v r. That  is, J has a 
sublattice: 

q v r  

p 

p v r  

where p < q. The image of  this pentagon under any surjective homomorphism tp 
prevents the image of  J from being upper semimodular unless we have at least 
~0(s) = tp(p v r). Hence, s and p v r cannot be separated by homomorphisms onto 
upper semimodular lattices. It follows that J cannot be represented as a subdirect 

product of  upper semimodular lattices. Since J was an arbitrarily chosen lattice 
failing upper semimodularity, every subdirect product of upper semimodular lat- 
tices is upper semimodular. [] 

The result of Corollary 3.5 raises the question of whether type 1 can occur in a 
locally finite congruence lower semimodular variety. The next result shows that the 
answer is no. 

T H E O R E M  3.7. Let ~/~ be locally finite and congruence lower semimodular. Then 
typ{~e ~ } n {1, 5} = qS. 

Proof. It will suffice to prove that 1 ~ typ{~g'}. Then F~-(4) is a finite algebra for 
which the hypotheses of  Corollary 3.5 hold, so Con F,~(4) is modular. By Theorem 
2.1, ~ is congruence modular. This is enough to conclude that 5 r typ{3e} as 
Theorem 8.5 of [6] proves that t yp{~}  ~_ {2, 3, 4} for any locally finite, congruence 
modular variety. (On the other hand, it is possible to mimic the rest of our proof  
for type 5 instead of type 1 and show directly that 5 r typ{~e'}.) 
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Now, suppose that 1 e typ{~}.  Then there is a finite algebra A e ~/ with a 
minimal congruence fl such that typ(0, fl) = 1. Let U be a (0, fl)-minimal set and 
let N be a trace of U. The normally-indexed algebra that A induces on N, AIs 
(defined in 6.12 of [6]), is polynomially equivalent to a G-set. By Theorem 6.17 of 
[6], for every C e ~(AIN)  there is an A ' e  ~/, a congruence fl 'E Con A' and a 
complete homomorphism from I[0, fl'] onto Con C. Since ~ is congruence lower 
semimodular we can use (the dual of) Lemma 3.6 to conclude that every C in 
~(AIN) is congruence lower semimodular. 

Now, choose C in ~/(AIN) so that it is polynomially equivalent to the G-set 
with four 1-element orbits. Con C is isomorphic to H4, the lattice of partitions of 
a 4-element set. However, this lattice is not lower semimodular. For example, if 
the universe of C is C = { w , x , y , z }  and we denote certain congruences 
~ = O(y, z), rc, = O((w, x), (y, z)) and n~ = 0((w, y), (x, z)), then 

zr~(1 and 0 = ~  A n ~ < g ~ < l  A g , = g ,  

which is a failure of lower semimodularity. This contradiction shows that 
1 C typ{~}.  As we have already shown, this conclusion suffices to prove the 
theorem. [] 

We can now prove our main result. 

THEOREM 3.8. I f  ~ is congruence lower semimodular and F,~(2) is finite, 
then ~ is congruence modular. 

Proof. By Theorem 2.3, C is congruence modular if and only if C2 = 
HSP(F,~(2)) is. Now, ~2 is a locally finite variety which is congruence lower 
semimodular (since it is a subvariety of C).  By Theorem 3.7, 
typ{C2} n {1, 5} = q~. Now, Corollary 3.5 shows that ~2  is congruence modular. 
This completes the proof. C] 

We cannot hope to replace "lower" by "upper" in Theorem 3.8. The variety q/ 
of sets is congruence upper semimodular, non-modular and type{q/} = {1}. The 
variety :~ of semilattices is congruence upper semimodular, non-modular and 
typ{6:} = {5}. The best we can hope for is the next result. Its proof is similar to 
the proof of Theorem 3.8. 

THEOREM 3.9. I f  ~ is congruence upper semimodular, F,~(2) is finite and 
typ{HSP(F~(2))} n {1, 5} = 4~, then ~ is congruence modular. [] 
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COROLLARY 3.10. I f  ~ is a variety such that F~(2) is finite, then the 
following conditions are equivalent: 

(a) ~v is congruence upper semimodular and congruence join-semidistributive. 
(b) ~ is congruence lower semimodular and congruence join-semidistributive. 
(c) ~ is congruence lower semimodular and congruence meet-semidistributive. 
(d) ~v" is congruence distributive. 

Proof. Condition (d) clearly implies all the other conditions. We need to show 
that the other conditions imply (d). By Theorem 3.8, the conditions in (b) imply 
that ~ is congruence modular and congruence join-semidistributive. But any 
modular, join-semidistributive lattice is distributive. Hence, ~ is congruence dis- 
tributive and (b) implies (d). A similar argument shows that (c) implies (d). 

We will be finished if we show that (a) implies (d). By Theorem 9.11 of [6], the 
fact that "/r 2 = HSP(Fr is congruence join-semidistributive forces 
typ{~2}c~{l, 2,5} =~b. We can use Theorem 3.9 to conclude that ~ is at least 
congruence modular and, since ~/ is join-semidistributive, we even get that U is 
congruence distributive. [] 

It is not true that the conditions in Corollary 3.10 are equivalent to the 
condition that ~ is both congruence upper semimodular and congruence meet- 
semidistributive. The variety of semilattices is an example of a locally finite variety 
that is both congruence upper semimodular and congruence meet-semidistributive, 
but it fails to be congruence distributive. 
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