
MINIMAL SETS IN FINITE RINGS
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Abstract. We describe how to calculate the 〈α, β〉-minimal sets in any finite ring.

1. Introduction

In the mid-1980’s, David Hobby and Ralph McKenzie introduced a general local-
ization theory for algebras, called tame congruence theory. The theory has proven
to be an effective tool for analyzing the structure of finite algebras and locally finite
varieties. A preliminary version of the theory appears in [13], the handbook of the
theory is [4], and later expositions of the theory can be found in [1, 2, 5, 8, 9, 10].

One of the strengths of tame congruence theory is that its concepts are language-
independent. But this feature raises a question about how the theory might make
connections with classical algebra. Since the theory studies finite algebras via the
structure and distribution of their minimal sets, this question might be phrased more
specifically as: “How do you calculate the minimal sets in a finite group, ring, module,
semigroup, etc?” One of the problems posed by Hobby and McKenzie is:

Problem 15 of [4]. Investigate 〈0, α〉-minimal sets for abelian minimal congruences
α of finite groups. Do the same for finite rings.

In this paper we solve the second half of Problem 15 by describing all minimal sets
in finite rings1 up to polynomial isomorphism. As part of the solution we find it
necessary to describe the minimal sets in finite modules and bimodules. The main
results are Theorems 2.9, 3.5, 4.1, and Corollary 4.2.

The part of Problem 15 concerning finite groups seems harder than the part about
rings, and it is still open. A partial result in this direction was proved in 1996 by
K. Kearnes, E. W. Kiss and C. Szabo: if G is a finite group, then any p-Sylow
subgroup of G is a “neighborhood”. (See the next section for this definition. See [8]
for a proof of this statement about groups.) This result solves the part of Problem 15
that concerns nilpotent groups.
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Since the part of Problem 15 that concerns groups is still mostly open, it goes
without saying that the corresponding problems for semigroups and loops have not
been solved. However, the E-minimal semigroups and loops have been characterized
in [16, 7] respectively. Identifying the E-minimal algebras in a given variety is a spe-
cial but important subcase of the problem of describing all minimal sets in members
of the variety. The classification of E-minimal (nonunital) rings is an unpublished
result of S. Seif.

2. Preliminaries

The following definition is a slight specialization of a concept from [8].

Definition 2.1. Let A = 〈A;F 〉 be an algebra. A neighborhood of A is a subset of A
of the form U = ε(A) where ε is a nonconstant idempotent unary polynomial of A.
Neighborhoods U and V are polynomially isomorphic if there exist unary polynomials
f and g of A such that f |U : U → V and g|V : V → U are inverse bijections. The
polynomials f and g are called polynomial isomorphisms.

Note that if A is a finite algebra, U, V ⊆ A are neighborhoods, and there exist
unary polynomials f and g of A such that f |U : U → V and g|V : V → U are
injective, then U and V must be polynomially isomorphic. The reason for this is
that the finiteness of U and V imply that f |U and g|V are bijections. To exhibit a
pair of inverse bijections, choose n > 0 so that (f ◦ g)n(x) = x on V . Then f |U
and g ◦ (f ◦ g)2n−1|V are restrictions of unary polynomials and are inverse bijections
between U and V .

Let A be an algebra, ε be an idempotent polynomial, and U = ε(A) be the image
of ε. Suppose that f and g are unary polynomials of A such that g ◦ f(x) = x on
U . Then f ◦ ε ◦ g is an idempotent polynomial of A. Moreover, if V = f ◦ ε ◦ g(A),
then f |U : U → V and g|V : V → U are inverse polynomial bijections, so V is a
neighborhood polynomially isomorphic to U .

Later in this paper we will focus on algebras that have an underlying additive group
structure (rings, modules and bimodules). Since the group of additive translations
(i.e., the polynomials of the form π(x) = x+a) acts transitively on any such algebra,
the observation of the previous paragraph implies that each neighborhood of a ring,
module, or bimodule is polynomially isomorphic to a neighborhood of zero.

Neighborhoods support algebras that locally approximate the polynomial structure
of A. These algebras are called “induced algebras”.

Definition 2.2. If A is an algebra and U ⊆ A is a neighborhood, then the (nonin-
dexed) algebra that A induces on U is

A|U = 〈U ; Pol(A)|U〉.
(Here Pol(A)|U means the clone on U consisting of the restrictions to U of all poly-
nomial operations of A that can be restricted to U .)
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It is not hard to show that if U and V are polynomially isomorphic neighborhoods,
then A|U and A|V are isomorphic nonindexed algebras. (See pages 28 and 29 of [4].)

Lemma 2.3. Let A be a finite algebra, let U ⊆ A be a neighborhood, and let V ⊆ U
be a subset. Then

(1) V is a neighborhood of A iff it is a neighborhood of A|U .
(2) If the equivalent conditions in (1) hold, then A|V = (A|U)|V .

Proof. For (1), if ε is an idempotent unary polynomial of A whose image is V , then
ε|U is an idempotent unary polynomial of A|U whose range is V . Conversely, if ε is
an idempotent polynomial of A whose image is U , and ϕ is a polynomial of A that
can be restricted to U for which ϕ|U is an idempotent polynomial of A|U with image
V , then ϕ ◦ ε is an idempotent polynomial of A whose image is V .

Part (2) follows from Exercise 2.5 (2) of [4]. �

The next result explains the connection between neighborhoods and 〈α, β〉-minimal
sets for finite algebras with a Maltsev polynomial.

Lemma 2.4. Let A be a finite algebra with a Maltsev polynomial. A subset U ⊆ A is
an 〈α, β〉-minimal set for some prime quotient 〈α, β〉 of A if and only if U is minimal
under inclusion among neighborhoods of A. If U is minimal under inclusion among
neighborhoods, then U is 〈α, β〉-minimal for any α ≺ β for which α|U 6= β|U .

Proof. For the forward direction of the first statement, Lemma 4.17 and Theo-
rems 4.31 and 8.5 of [4] imply that if A has a Maltsev polynomial and U is an
〈α, β〉-minimal set, then the only unary idempotent polynomials of A|U are con-
stants and the identity function. It follows that there is no nonconstant idempotent
unary polynomial of A whose image is a proper subset of U . Thus, U is a minimal
neighborhood.

Conversely, suppose that U is a minimal neighborhood of A. Let ε be an idempo-
tent unary polynomial for which ε(A) = U . Since |U | > 1, there exist congruences
α ≺ β such that α|U 6= β|U . For any such congruences ε(β|U) 6⊆ α, so by Theo-
rem 2.8 (3) of [4] the set ε(U) = U contains an 〈α, β〉-minimal set. This minimal
set must be U itself, since U is a minimal neighborhood. This proves the backward
direction of the first statement, and the second statement of the lemma. �

Based on the observation of this lemma, our procedure for determining 〈α, β〉-
minimal sets of abelian type of a finite ring R will be the following: we will construct
some neighborhoods of R, and then test whether the corresponding induced algebras
have proper subneighborhoods. If so, then we continue the procedure by constructing
subneighborhoods until a minimal one is located. As the next lemma proves, it is
much easier to determine minimal sets of nonabelian type (when A has a Maltsev
polynomial).
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Lemma 2.5. Let A be a finite algebra with a Maltsev polynomial. If 〈α, β〉 is a
nonabelian prime quotient, then there is a least congruence θ satisfying θ ≤ β and
θ 6≤ α. The 〈α, β〉-minimal sets are precisely the sets of the form U = {0, 1} where
(0, 1) ∈ θ − α.

Proof. If 〈α, β〉 is a nonabelian prime quotient, and A has a Maltsev polynomial, then
typ(α, β) = 3 by Theorem 5.7 and Exercise 8.8 (1) of [4]. By Lemma 5.15 (2) of [4]
there is a smallest congruence θ ≤ β such that θ 6≤ α. Necessarily θ is join-irreducible
with lower cover θ∗ = θ∩α, and 〈θ∗, θ〉 is perspective with 〈α, β〉. By Exercise 2.19 (3)
of [4] the two quotients have the same minimal sets. By Lemma 4.17 and Theorem 8.5
of [4], any such minimal set is a two-element set {0, 1} where (0, 1) ∈ θ− θ∗ = θ− α.
This proves that every 〈α, β〉-minimal set has the form claimed.

Now suppose that {0, 1} is one 〈α, β〉-minimal set, and that {u, v} is another two-
element set with (u, v) ∈ θ − α. By showing that {u, v} is a neighborhood we will
establish that it is an 〈α, β〉-minimal set, according to Lemma 2.4. Since θ is join-
irreducible and (0, 1), (u, v) ∈ θ − θ∗ the pairs (0, 1) and (u, v) generate the same
congruence. By Theorem 4.70.ii of [14] there exist unary polynomials f and g such
that f({0, 1}) = {u, v} and g({u, v}) = {0, 1}; in other words, {0, 1} and {u, v} are
polynomially isomorphic. As observed after Definition 2.1, any set V polynomially
isomorphic to a neighborhood U is again a neighborhood. This shows that our set
{u, v} is a minimal neighborhood polynomially isomorphic to {0, 1}, and consequently
{u, v} satisfies the criterion that defines 〈α, β〉-minimal sets. �

Soon we will use this lemma to describe how to locate a representative collection
of minimal sets of nonabelian type in a finite ring.

From this point forward we will restrict our attention to rings, modules and bimod-
ules. Congruences on such algebras are determined by ideals, submodules, and subbi-
modules respectively. If P and Q are the ideals (or submodules or subbimodules) that
correspond to the congruences α and β, then we will use P and Q in place of α and β
in most situations (example: we use “〈P,Q〉-minimal” in place of “〈α, β〉-minimal”).
If we need to refer to the congruence associated to the ideal/submodule/subbimodule
P , we will denote it θP .

Recall that the Jacobson radical of a ring R is defined to be the intersection of
maximal left ideals of R. The following result summarizes the results we need about
the Jacobson radical of a finite ring.

Theorem 2.6. Let R be a finite ring with Jacobson radical J .

(1) R/J is a direct product of (nonabelian) simple rings.
(2) J is the intersection of the maximal ideals of R.
(3) J is the largest nilpotent ideal of R, and also the largest nil ideal.
(4) J is the largest ideal I for which 1 + I consists of units.
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(5) The prime quotient 〈I,K〉 is nonabelian iff it is perspective with 〈I+J,K+J〉.
It is abelian iff it is perspective with 〈I ∩ J,K ∩ J〉.

Proof. Part (1) follows from the Wedderburn-Artin Theorem together with the obser-
vation that any nontrivial unital ring is nonabelian (since the multiplication operation
witnesses that 〈0, 1〉 is a 2-snag — see Theorem 7.2 of [4]).

Part (2) is a translation of (1) into the language of ideals.
Part (3) follows from Lemma 4.11 and Theorem 4.12 of [11].
Part (4) follows from Corollary 4.5 of [11].
For part (5), let 〈I,K〉 be any prime quotient of R. Since the ideal lattice of R is

modular, one of the quotients 〈I+J,K+J〉 or 〈I∩J,K∩J〉 is trivial and the other is
a prime quotient that is perspective with 〈I,K〉. Perspectivity preserves abelianness
and nonabelianness. Thus (4) follows from the fact that all prime quotients of the
form 〈I ∩ J,K ∩ J〉 are abelian (since J is nilpotent), and all prime quotients of the
form 〈I + J,K + J〉 are nonabelian (since R/J is finite product of nonabelian simple
algebras). �

We will make frequent use of idempotents in finite rings. The next definition and
the succeeding result summarize the properties that we need.

Definition 2.7. Let R be a ring. An element e ∈ R is idempotent if e2 = e.
Idempotents e, f ∈ R are orthogonal if ef = fe = 0. A nonzero idempotent e ∈ R is
primitive if it whenever e = f + g where f and g are orthogonal idempotents, then
f = 0 or g = 0. If e, f ∈ R, then e ≤ f if ef = fe = e. A nonzero idempotent f
is minimal if whenever e is a nonzero idempotent satisfying e ≤ f , then e = f . An
idempotent e ∈ R is local if eRe is a local ring (i.e., a ring whose nonunits form an
ideal). If e, f ∈ R are nonzero idempotents, then e is isomorphic to f (written e ' f)
if Re ∼= Rf as left R-modules.

The relation ≤ defined above by e ≤ f iff ef = fe = e is a partial order on the set
of the idempotents of R. It is trivial that this relation is reflexive and antisymmetric.
To see that this relation is transitive, suppose that e, f, g ∈ R are idempotent and
e ≤ f ≤ g. Then eg = (ef)g = e(fg) = ef = e and similarly ge = e, so e ≤ g. An
idempotent is “minimal” if it is a minimal element of this partial order.

Theorem 2.8. Let R be a finite ring with radical J .

(1) The following are equivalent for an idempotent e ∈ R:
(i) e is primitive.

(ii) e is minimal.
(iii) e is local.

(2) An ideal I ⊆ R contains a primitive idempotent iff I 6⊆ J .
(3) If e ∈ R is a primitive idempotent, then the ideal (e) generated by e is join-

irreducible with lower cover equal to (e) ∩ J .
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(4) The following are equivalent for idempotents e, f ∈ R:
(i) e ' f .

(ii) e and f generate the same ideal.
(iii) There exist p, q, r, s ∈ R such that e = pfq and f = res.
(iv) There exist c, d ∈ R such that e = cd and f = dc.
If e and f are primitive, then these conditions are equivalent to:
(v) eRf 6⊆ J .

(vi) There exists a maximal ideal M such that e 6∈M and f 6∈M .
(5) A nonzero idempotent e ∈ R may be represented as e = e1 + · · ·+ek where the

ei are pairwise orthogonal primitive idempotents. In any such representations
ej ≤ e for all j.

(6) If 1 = e1 + · · · + ek is a representation of 1 as a sum of pairwise orthogonal
primitive idempotents, and f is a primitive idempotent, then ej ' f for some
j.

(7) If I is a nilpotent ideal of R, and ē = ē1 + · · ·+ ēk is a representation of an
idempotent ē ∈ R/I as a sum of pairwise orthogonal primitive idempotents
in R/I, then there exist idempotents e, e1, . . . , ek ∈ R such that ē = e/I, ēi =
ei/I, and e = e1 + · · · + ek is a representation of e as a sum of pairwise
orthogonal primitive idempotents in R.

(8) If I is a nilpotent ideal in R, and e, f ∈ R are idempotents, then e/I is
primitive in R/I iff e is primitive in R. Moreover e/I ' f/I in R/I iff
e ' f in R.

Proof. Item (1) follows from Theorems 21.8 of [11] and VII.8 of [12].
If I contains a primitive idempotent e, then e ∈ I − J since J contains no nonzero

idempotents. Conversely, using the facts that (a) J is the largest nilpotent ideal, (b)
a nonnilpotent ideal of a finite ring contains a nonzero idempotent (Theorem VII.5
of [12]), and (c) if e ≤ f are comparable idempotents, then (e) ⊆ (f), it follows that
if I 6⊆ J , then I contains a minimal (hence primitive) idempotent. This proves (2).

If I = (e) is generated by a primitive idempotent e, then I 6⊆ J . Choose any ideal
I ′ ⊂ I. If I ′ 6⊆ J , then there exists a primitive idempotent f ∈ I ′ (⊆ I = (e)) by
(iii). But if e and f are primitive idempotents and f ∈ (e), then (f) = (e) according
to Exercise VII.9 of [12]. This can’t happen if I ′ is strictly contained in I, so we
conclude that for any ideal I ′ ( I properly contained in I we have I ′ ⊆ J . Hence I
is join-irreducible with lower cover I ∩ J . This proves (3)

For part (4), the conditions (i), (ii) and (iv) are shown to be equivalent in The-
orem 21.20 of [11] and Exercise VII.9 of [12]. But (iv)⇒(iii) since we can take
(p, q, r, s) = (c, d, d, c), and (iii)⇒(ii) since e = pfq ∈ (f) and f = res ∈ (e). The
equivalence of these conditions with condition (v) when e and f are primitive is part
of Exercise VII.9 of [12]. To prove the equivalence of condition (vi) with these prop-
erties, assume that e and f are primitive idempotents. Since e 6∈ J there is a maximal
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ideal M not containing e. If we assume that e ' f , then we get that (f) = (e) 6⊆M ,
so f 6∈M . This proves that (i)⇒(vi). Conversely, assume that there exists a maximal
ideal M not containing e or f . Then R = (e) +M = (f) +M , so

R = ((e) +M)((f) +M) = (e)(f) +M.

Now (e)(f) ⊆ (e); if the containment is proper, then according to part (3) we have
that (e)(f) ⊆ J ⊆ M . But this implies that R = (e)(f) + M ⊆ M , which is false.
Hence (e)(f) = (e). The same argument shows that (e)(f) = (f), so (e) = (f), which
implies that e ' f . This proves that (vi)⇒(i).

Now, to prove (5), let e ∈ R be a nonzero idempotent. If e is primitive, then
there is nothing to show, so assume otherwise. According to part (1), there exists an
idempotent f 6= e such that f ≤ e. The element g = e − f is an idempotent (since
g2 = (e − f)2 = e2 − ef − fe + f 2 = e − f − f + f = g) for which g ≤ e (since
ge = (e− f)e = e2− fe = e− f = g = eg) and e = f + g is a representation of e as a
sum of orthogonal idempotents (since fg = f(e− f) = fe− f 2 = f − f = 0 = gf).
Proceeding by induction, assume that we have found pairwise orthogonal idempotents
fi for which

e = f1 + · · ·+ fm

and all fi ≤ e. Assume that one of these, say fm, is not minimal. Then choose
h 6= fm satisfying h ≤ fm ≤ e. For k = fm − h we also get that k is idempotent and
k ≤ fm ≤ e. Since hk = h(fm − h) = h− h2 = 0 = kh, the idempotents h and k are
orthogonal with each other. To see that they are orthogonal with all fj, j 6= m, note
that

fj = efj = ((
m−1∑

i=1

fi) + h+ k)fj = (
m−1∑

i=1

fi)fj + hfj + kfj = fj + hfj + kfj,

so hfj + kfj = 0. Multiplying on the left by h yields hfj = h(hfj + kfj) = 0.
Similarly fjh = fjk = kfj = 0. Thus, we can lengthen any representation of e as a
sum of orthogonal idempotents if any one of the idempotents is not minimal. This
process cannot go on indefinitely, since there are finitely many idempotents and the
idempotents in any orthogonal representation must be distinct. This shows that a
representation of e as a sum of pairwise orthogonal primitive idempotents exists. The
orthogonality of the ei’s and the idempotence of each ej implies that eej = eje = ej
for each j, so ej ≤ e as claimed. This proves (5).

For part (6), assume that 1 = e1 + · · · + ek is a representation of 1 as a sum of
pairwise orthogonal primitive idempotents, and that f is a primitive idempotent.
The representation 1 = f + (1 − f) is a representation of 1 as a sum of orthogonal
idempotents with f primitive. Using the procedure described in the proof of part (5)
we can refine this to a representation 1 = f1 + f2 + · · ·+ fm of 1 as a sum of pairwise
orthogonal primitive idempotents with f1 = f . By Theorem VII.13 of [12], k = m
and there is a unit u ∈ R and a permutation π ∈ Sk such that ueiu

−1 = fπ(i) for all
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i. Thus, there is a unit u and an ej such that ueju
−1 = f1 = f and u−1fu = ej. By

the equivalence of (4)(i) and (4)(iii) we get that ej ' f .
Part (7) follows from Proposition 21.25 of [11].
Part (8) follows from Theorems 21.21 and 21.22 of [11]. �
Note that the arguments for parts (5) and (6) show that if there is a representation

of 1 as sum of k primitive idempotents that are pairwise orthogonal, then any rep-
resentation of 1 as a sum of orthogonal idempotents uses ≤ k idempotents, and that
a representation uses k idempotents only when all idempotents in the representation
are primitive.

Now we can describe the minimal sets of nonabelian type in a finite ring.

Theorem 2.9. Let R be a finite ring. If I ≺ K are ideals of R and e is a primitive
idempotent in K−I, then {0, e} is a 〈I,K〉-minimal set of nonabelian type. If e and f
are primitive idempotents, then U = {0, e} is polynomially isomorphic to V = {0, f}
iff e ' f . If 1 = e1 + · · ·+ ek is a representation of 1 as a sum of pairwise orthogonal
primitive idempotents, then the sets Ui = {0, ei}, 1 ≤ i ≤ k, represent all minimal
sets of nonabelian type up to polynomial isomorphism.

Proof. It follows from Lemma 2.5 and Theorem 2.8 (3) that {0, e} is a 〈(e) ∩ J, (e)〉-
minimal set. Since (0, e) ∈ θK − θI , it is also a 〈I,K〉-minimal set according to
Lemmas 2.4 and 2.5 The type is nonabelian since multiplication in R is a polynomial
operation witnessing that 〈0, e〉 is a 2-snag. This proves the first statement.

If g : U → V is a polynomial isomorphism, then composing g with the polynomial
h(x) = f − x if necessary we may assume that g(0) = 0 and g(e) = f . This
implies that f ∈ (e), and similar reasoning shows that e ∈ (f), hence e ' f by
Theorem 2.8 (4). Conversely, if e ' f , then (in the notation of Theorem 2.8 (4)(iii))
the functions h(x) = pxq and k(x) = rxs are polynomial isomorphisms between U
and V . This proves the second statement.

Suppose that I ≺ K are ideals and that 〈I,K〉 is a nonabelian prime quotient. By
the remarks at the end of Chapter 1 of [3], the fact that 〈I,K〉 is nonabelian means
that K2 6⊆ I. Thus, the minimal ideal K/I of R/I satisfies

(K/I)2 = (K2 + I)/I = K/I = (K/I)n for all n.

Hence K/I is not contained in the radical of R/I, according to Theorem 2.6 (3).
Part (3) of Theorem 2.6 therefore implies that K/I is not nil, so there is an element
r ∈ K such that r/I is not nilpotent in R/I. This implies that no power rk belongs
to I. Since R is finite there is a k such that e = rk is an idempotent, and for this
idempotent we have arranged that e ∈ K − I. By Theorem 2.8 (5) it is possible to
represent e as a sum e = f1 + · · ·+ fm or pairwise orthogonal primitive idempotents
all ≤ e. Each fi belongs to K, since fi = fie ∈ fiK ⊆ K, but not all belong to I
since e 6∈ I. If fj 6∈ I, then the first statement of this theorem shows that V = {0, fj}
is a 〈I,K〉-minimal set. According to Theorem 2.8 (6), fj ' ei for some i, and by
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the second statement of this theorem that means that V is polynomially isomorphic
to Ui. This proves the final statement. �

The previous theorem does not produce an idempotent polynomial whose image is
U = {0, e}, where e ∈ R is a primitive idempotent, but it is not hard to construct
one. If k is an integer for which R |= xk = x2k, then the polynomial ε(x) = (exe)k

has range equal to the set of idempotents in eRe. By Theorem 2.8 (1) this ring is a
local ring with identity e, so this set of idempotents is U = {0, e}. Since ε(x) = x on
U , it is the desired polynomial.

We conclude this section by recording the definitions of “module” and “bimodule”.

Definition 2.10. A left R-module is an algebra

M = 〈M ; +,−, 0, {λr(x) | r ∈ R}〉
where 〈M ; +,−, 0〉 is an abelian group, each λr(x) is an abelian group endomorphism,
and the assignment r 7→ λr is a ring homomorphism from R to the ring End(M). If
r ∈ R and m ∈ M , then we will write rm to mean λr(m). A right S-module is an
algebra M = 〈M ; +,−, 0, {ρs(x) | s ∈ S}〉 where 〈M ; +,−, 0〉 is an abelian group,
each ρs(x) is an abelian group endomorphism, and the assignment s 7→ ρs is a ring
homomorphism from the opposite ring Sop to the ring End(M). We write ms to
mean ρs(m).

Since M is a right S-module if and only if it is a left module over the opposite ring,
Sop, the task of computing minimal sets in modules reduces to computing minimal
sets in left modules. Therefore, when we do not specify left or right we will mean left
modules.

Definition 2.11. An (R,S)-bimodule is an algebra

M = 〈M ; +,−, 0, {λr(x) | r ∈ R} ∪ {ρs(x) | s ∈ S}〉
such that 〈M ; +,−, 0, {λr(x) | r ∈ R}〉 is a left R-module, 〈M ; +,−, 0, {ρs(x) | s ∈
S}〉 is a right S-module, and the equation

(rx)s = r(xs)

holds for all r ∈ R, s ∈ S, x ∈M .

Thus, a bimodule is an abelian group together with specified homomorphisms
L : R → End(M) and R : Sop → End(M) such that L(r) ◦ R(s) = R(s) ◦ L(r) for
all r ∈ R and s ∈ S.

3. Reduction to the Radical

In this section we reduce the problem of determining the minimal sets of abelian
type of a finite ring R to the problem of determining the minimal sets of R|J , where
J is the Jacobson radical of R.
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Theorem 3.1. The Jacobson radical of a finite ring is a neighborhood.

Proof. Let R be a finite ring with radical J . Fix an integer k > 0 such that R satisfies
the equation xk = x2k. For each subset S ⊆ R×R define a unary polynomial

PS(x) =


1 +

∑

(a,b)∈S
axb



k

.

The theorem is a consequence of the following claim.

Claim 3.2. Any polynomial of the form ε(x) = x

( ∏

S⊆R×R
PS(x)

)
, where the product

is over all subsets S ⊆ R×R in some fixed order, is an idempotent unary polynomial
of R whose image is J .

We need to show that ε(R) ⊆ J and that ε(x) = x on J . To show the latter,

assume that s ∈ J . Then for any S ⊆ R × R the element
(∑

(a,b)∈S asb
)
∈ J , so

any element of the form (1 +
∑
asb) is a unit in R according to Theorem 2.6 (4).

The element PS(s) = (1 +
∑
asb)k is an idempotent unit, since R |= xk = x2k, so

PS(s) = 1 for any S ⊆ R× R and any s ∈ J . Thus ε(s) = s (
∏

1) = s when s ∈ J .
To show that ε(R) ⊆ J , choose an arbitrary r ∈ R. By Theorem 2.6 (2), J is the

intersection of the maximal ideals of R. Thus it will suffice to show that ε(r) ∈ M
where M is an arbitrarily chosen maximal ideal. For this we can work in the quotient
ring R = R/M , which is simple. In this ring we must show that for an arbitrary
r̄ ∈ R it is the case that

ε̄(r̄) = r̄

( ∏

S⊆R×R
PS(r̄)

)
= 0̄.

If r̄ = 0̄, then the leading r̄ in this expression gives the desired conclusion. If r̄ 6= 0̄,
then the ideal generated by r̄ is R, therefore

−1̄ =
∑

(a,b)∈S
ār̄b̄

for some S ⊆ R × R. This shows that PS(r̄) = 0̄ for this choice of S, so ε̄(r̄) = 0̄.
Hence ε(r) ∈ M for each r ∈ R and each maximal ideal M , which proves that
ε(R) ⊆ J . The claim is proved. �

Corollary 3.3. Let R be a finite ring with Jacobson radical J . If I ≺ K are ideals of
R, and U is an 〈I,K〉-minimal set of abelian type, then U is polynomially isomorphic
to a minimal set contained in J .
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Proof. By Theorem 2.6 (5), the prime quotient 〈I,K〉 is perspective with 〈I∩J,K∩J〉,
so the two quotients have the same minimal sets according to Exercise 2.19 (3) of
[4]. Thus we lose no generality if we assume that I ≺ K ≤ J . Now let ε be an
idempotent unary polynomial of R such that ε(R) = J . Since I,K ⊆ J we have
ε(K) = K 6⊆ I = ε(I). By Theorem 2.8 (6) of [4], this implies that the set ε(R) = J
contains an 〈I,K〉-minimal set V . But all 〈I,K〉-minimal sets are polynomially
isomorphic, so V is a minimal set in J that is polynomially isomorphic to U . �

This corollary shows that if 〈I,K〉 is an abelian prime quotient of the finite ring
R, then there is an 〈I,K〉-minimal set U ⊆ J . By Lemmas 2.3 and 2.4, the minimal
sets of R contained in J are exactly the minimal sets of R|J . Indeed, the minimal
set U is characterized up to polynomial isomorphism by the fact that it is a minimal
neighborhood of the algebra R|J for which θI |U 6= θK |U . Thus, our job now is to
determine the minimal sets of R|J .

The polynomials of R|J are the precisely the restrictions to J of polynomials
ϕ(x1, . . . , xn) of R satisfying ϕ(J, . . . , J) ⊆ J . Since 0 ∈ J this condition implies
that ϕ(0, . . . , 0) ∈ J . Conversely, since J is an ideal, any polynomial of R for which
ϕ(0, . . . , 0) ∈ J also satisfies ϕ(Jn) ⊆ J . Hence the polynomials of R|J are precisely
(the restrictions of) the polynomials of R that satisfy ϕ(0, . . . , 0) ∈ J . As usual for
rings, we call a polynomial a monomial if it is a product of constants and variables,
and note that any polynomial of the ring R is a sum of monomials. A typical mono-
mial has the form µ(x) = r0xr1x · · ·xrm for some m ≥ 0 (which will be referred
to as the degree of the monomial). For any polynomial ϕ, ϕ(0, . . . , 0) is the sum of
monomials of degree 0, which may be replaced with a single monomial of degree 0
that we call the constant term of ϕ. Thus the polynomials of R|J are the restrictions
of the polynomials of R whose constant term belongs to J .

The following operations are polynomials operations of R|J : constants from J ,
λr(x) = rx for each r ∈ R, ρs(x) = xs for each s ∈ R, addition +(x, y) = x + y, and
multiplication ·(x, y) = xy. These operations generate all other polynomials of R|J
since

(1) a monomial µ(x) = r0xi1r1xi2 · · ·ximrm can be generated by composing λr0(x)
with the product ρr1(xi1) · ρr2(xi2) · · ·ρrm(xim), and

(2) sums of monomials can be generated with +.

Thus R|J is polynomially equivalent to the (R,R)-bimodule

〈J ; +,−, 0, {λr(x) | r ∈ R} ∪ {ρs(x) | s ∈ R}〉

endowed with an associative, bilinear multiplication. Following R. Pierce we call any
(R,R)-bimodule endowed with an associative, bilinear multiplication a multiplica-
tive (R,R)-bimodule (Definition 11.7 of [15]). Since J is a nilpotent ideal of R, the
multiplication operation of R|J satisfies the condition that there exists an integer
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n such that all n-fold products are zero. If the multiplication of some multiplica-
tive (R,R)-bimodule satisfies this condition we will call it a nilpotent multiplicative
(R,R)-bimodule.

The remarks above establish the following theorem.

Theorem 3.4. Let R be a finite ring with Jacobson radical J . The algebra R|J is
polynomially equivalent to a nilpotent multiplicative (R,R)-bimodule.

Our next goal is to prove that we need to consider only the linear structure on
J when computing neighborhoods. Namely, we will show that if J◦ is a nilpotent
multiplicative (R,R)-bimodule, and J is the (R,R)-bimodule reduct of J◦, then
every neighborhood of J is a neighborhood of J◦ (since J is a reduct of J◦), and
conversely any neighborhhood U of J◦ is polynomially isomorphic in J◦ to a set
V that is simultaneously a neighborhood of J and of J◦. Thus, up to polynomial
isomorphism in J◦ the neighborhoods in J and J◦ are the same. The rest of this
section will be devoted to proving this statement in the following form:

Theorem 3.5. Let R be a finite ring, and let J◦ be a nilpotent multiplicative (R,R)-
bimodule. Every neighborhood of J◦ is polynomially isomorphic to a neighborhood of
the underlying bimodule.

The additive and multiplicative structure of J◦ are those of a nilpotent (nonunital)
ring. The ring-theoretic ideals of J◦ that are (R,R)-subbimodules will be called
ideals. The congruences of J◦ are determined by its ideals in the usual way. Ideals
are closed under the ring-theoretic product because the multiplication is bilinear.
The ideal Jk consists of elements of J that are sums of k-fold products of elements of
J . Since there is an n > 1 such that all n-fold products in J are zero, we must have

J ⊃ J2 ⊃ · · · ⊃ Jn = {0}.
We will say that a unary polynomial ν of J◦ is nilpotent if a ≡ b (mod Jm) implies
that ν(a) ≡ ν(b) (mod Jm+1) for each m.

Lemma 3.6. Assume that R is a finite ring and J◦ is a nilpotent multiplicative
(R,R)-bimodule. If ϕ is a unary polynomial of J◦ that fixes 0, then ϕ = λ+ ν where
λ is a unary (R,R)-bimodule polynomial that fixes 0 and ν is a nilpotent polynomial
that fixes 0.

Proof. As is true for rings, the associativity and bilinearity of multiplication implies
that any unary polynomial ϕ is expressible as a sum

∑s
i=1 µi of monomials, where

a typical monomial of degree m has the form µ(x) = r0xr1x · · ·xrm. Fix such an
expression for ϕ. Since ϕ(0) = 0, we may assume that all monomials in this expression
have degree at least 1. Let λ equal the sum of the monomials of degree 1, and let ν
equal the sum of the monomials of degree > 1. Both fix 0. Since λ has the form

λ(x) = a1xb1 + · · ·+ atxbt



MINIMAL SETS IN FINITE RINGS 13

for some t, it is a bimodule polynomial. To show that ν is nilpotent it suffices to
check that monomials of degree > 1 are nilpotent, since it is clear from the definition
that sums of nilpotent polynomials are nilpotent.

To see that µ(x) = r0xr1x · · ·xrm, m > 1, is nilpotent, assume that a ≡ b
(mod Jk). Then a − b = c ∈ Jk, so µ(a) − µ(b) = µ(b + c) − µ(b). The expres-
sion µ(b + c) = r0(b + c)r1(b + c) · · · (b + c)rm can be expanded into the sum of all
terms of the form r0z1r1z2 · · · zmrm with (z1, . . . , zm) ∈ {b, c}m. Exactly one term in
this string equals µ(b) = r0br1b · · · brm, and since m > 1 all other terms have at least
one occurrence of c (∈ Jk) and at least one other occurrence of either b or c (∈ J).
Thus each term in the sum for µ(b + c) except the term equal to µ(b) is in J k+1.
Hence µ(b+ c)− µ(b) ∈ Jk+1, proving that ν(x) is nilpotent. �
Lemma 3.7. Assume that R is a ring and J◦ is a finite nilpotent multiplicative
(R,R)-bimodule. If ε is an idempotent unary polynomial of J◦ that fixes 0, then
ε = λ + ν where λ is an idempotent unary (R,R)-bimodule polynomial that fixes 0
and ν is a nilpotent polynomial that fixes 0.

Proof. Let L be the set of all unary polynomials λ of J◦ such that

(i) λ is an (R,R)-bimodule polynomial that fixes 0, and
(ii) there exists a nilpotent unary polynomial ν of J◦ that fixes 0 such that ε =

λ+ ν.

According to Lemma 3.6, L is not empty.

Claim 3.8. L is closed under composition.

If λ, λ′ ∈ L, then there exist nilpotent polynomials ν and ν ′ such that ε = λ+ ν =
λ′ + ν ′. Thus,

ε = ε ◦ ε = (λ+ ν) ◦ (λ′ + ν ′)
= λ ◦ (λ′ + ν ′) + ν ◦ (λ′ + ν ′)
= λ ◦ λ′ + λ ◦ ν ′ + ν ◦ (λ′ + ν ′)
= λ ◦ λ′ + (λ ◦ ν ′ + ν ◦ ε)

where the second to last line follows from the fact that λ(a + b) = λ(a) + λ(b) for
any bimodule polynomial that fixes 0. Since bimodule polynomials are closed under
composition, λ ◦ λ′ satisfies condition (i) of the definition of L. To finish the proof
of the claim we have to verify (ii), which we will do by showing that λ ◦ ν ′ + ν ◦ ε is
nilpotent.

Assume that a ≡ b (mod Jk) for some k. Then ν ′(a) ≡ ν ′(b) (mod Jk+1) since
ν ′ is nilpotent, and ε(a) ≡ ε(b) (mod Jk) since polynomials preserve congruences.
Furthermore λ(ν ′(a)) ≡ λ(ν ′(b)) (mod Jk+1) since polynomials preserve congruences,
and ν(ε(a)) ≡ ν(ε(b)) (mod Jk+1) since ν is nilpotent. This shows that λ ◦ ν ′ and
ν ◦ ε are each nilpotent, so the sum λ ◦ ν ′ + ν ◦ ε is nilpotent.

L is nonempty, finite, and closed under composition, so L contains an idempotent.
(Any nonempty finite semigroup contains an idempotent.) This finishes the proof. �
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Now we are in position to prove Theorem 3.5.

Proof. Assume that U is a neighborhood of J◦. As observed after Definition 2.1, U is
polynomially isomorphic to a neighborhood of 0, so no generality is lost in assuming
that 0 ∈ U . Any idempotent unary polynomial ε of J◦ for which ε(J) = U must
fix 0. From Lemma 3.7 we know that ε is expressible as ε = λ + ν where λ is an
idempotent unary bimodule polynomial, ν is a unary nilpotent polynomial, and both
fix 0. The set V = λ(J) is a neighborhood of J◦ and of the underlying bimodule. We
argue now that U and V are polynomially isomorphic in J◦.

Claim 3.9. The polynomial functions λ|U : U → V and ε|V : V → U are bijections.

Since U and V are finite, it is enough to show that the functions are injective.
Suppose instead that a and b are distinct elements of U such that λ(a) = λ(b). Let
p be the largest integer such that a ≡ b (mod Jp). Since a, b ∈ U = ε(U) we have

a = ε(a) = λ(a) + ν(a) = λ(b) + ν(a) ≡ λ(b) + ν(b) = ε(b) = b (mod J p+1),

contradicting the choice of p. Similarly, if c and d are distinct elements of V = λ(V )
such that ε(c) = ε(d), then we can choose q to be the largest integer such that c ≡ d
(mod Jq). As before, we have

c = λ(c) = ε(c)− ν(c) = ε(d)− ν(c) ≡ ε(d)− ν(d) = λ(d) = d (mod J q+1)

This proves the claim.

Since there are polynomial bijections between U and V , they are polynomially
isomorphic. �

4. Minimal Sets in Modules and Bimodules

We have reduced the problem of describing a representative collection of minimal
sets in a finite ring R with radical J to the problem of describing the minimal sets of
J considered as an (R,R)-bimodule. In this section we solve the reduced problem.

Theorem 4.1. Let R be a finite ring, and let M be an R-module. The following
hold.

(1) Suppose that U ⊆ M and |U | > 1. Then U is a neighborhood of zero if and
only if U = eM for some idempotent element e ∈ R.

(2) If U = eM is a neighborhood of zero, then the induced algebra M|U is poly-
nomially equivalent to eM considered as a module over the ring eRe.

(3) The neighborhood U is minimal if and only if U = eM for some primitive
idempotent e of R.

(4) Let U be a minimal neighborhood, and let e be a primitive idempotent such
that U = eM . If P ≺ Q are submodules of M, then U is a 〈P,Q〉-minimal
set if and only if eQ 6⊆ P .
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(5) Suppose that e, f ∈ R are idempotents, and that U = eM and V = fM are
neighborhoods of zero.
(i) If e ' f , then U is polynomially isomorphic to V .

(ii) If U is polynomially isomorphic to V , and either M is a faithful R-module
or both e and f are primitive, then e ' f .

Proof. Any polynomial of M may be written as

p(x1, . . . , xn) = r1x1 + · · ·+ rnxn + a

with ri ∈ R and a ∈ M . An idempotent unary polynomial of M whose image
contains 0 has this form with n = 1 and a = 0. If ε(x) = rx is an idempotent
unary polynomial, then the fact that ε(ε(x)) = ε(x) implies that r2 − r annihilates
M. If k is chosen so that rk = r2k, then for e = rk we have that e is idempotent
and ε(x) = εk(x) = ex. This shows that the idempotent unary polynomials that fix
0 have the form ε(x) = ex for some idempotent e ∈ R. Therefore the neighborhoods
of M containing zero are precisely the sets U = ε(M) = eM for which |U | > 1.

The neighborhood defined by ε(x) = ex is U = eM , and this set is an additive
subgroup of M. The polynomial operations of M that can be restricted to eM are
those polynomials p(x1, . . . , xn) = r1x1 + · · ·+ rnxn + a for which p((eM)n) ⊆ eM .
Such a polynomial agrees with

εp(ε(x1), . . . , ε(xn)) = (er1e)x1 + · · ·+ (erne)xn + ea

on eM . This is a polynomial of eM considered as an eRe-module. Conversely,
every polynomial of eM as an eRe-module has this form. Thus M|U is polynomially
equivalent to eM considered as an eRe-module.

To prove (3), assume that U = eM is a minimal neighborhood of zero. From
Theorem 2.8 (5) we know that we can express e as a sum of pairwise orthogonal
primitive idempotents: e = e1 + · · · + ek. Since eM 6= {0} there is a j such that
ejM 6= {0}. All idempotents in this orthogonal decomposition of e must be ≤ e, so
we have {0} ( ejM = eejM ⊆ eM = U. The minimality of U implies that U = ejM .
This proves the forward direction of (3). Conversely, assume that U = eM where e
is a primitive idempotent of R. Then M|U is polynomially equivalent to a module
over the local ring eRe. Since the subneighborhoods of U in M are exactly the
neighborhoods of M|U , it suffices to cite the remarks preceding Definition 13.7 of [4]
(which say that a module over a local ring is E-minimal) to conclude that U is a
minimal neighborhood of M.

For (4), assume that U = eM is a 〈P,Q〉-minimal set. Then there must exist a
pair (a, b) ∈ θQ|U − θP , and since U is an additive subgroup we also have (a− b, 0) ∈
θQ|U − θP . Hence a− b ∈ Q ∩ U − P . Thus a− b = e(a− b) ∈ eQ− P , proving the
forward direction of (4). Conversely, if eQ 6⊆ P , then for any u ∈ eQ−P we have that
(u, 0) ∈ θQ|U − θP . According to Lemma 2.4 this shows that U is 〈P,Q〉-minimal.
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For part (i) of (5), assume that U = eM, V = fM and e ' f . By Theo-
rem 2.8 (4)(iv) there exist c, d ∈ R such that e = cd and f = dc. The polyno-
mials f(x) = dx and g(x) = cx restrict to inverse bijections f |U : U → V and
g|V : V → U , proving that U and V are polynomially isomorphic. For part (ii),
assume that g|U : U → V and h|U : V → U are inverse bijections. If g(x) = rx + a
and h(x) = sx+ b, then a = g(0) ∈ V = fM (so fa = a) and b = h(0) ∈ U = eM (so
eb = b). Since b = eb ∈ eM = U , and U is an additive subgroup of M , the polynomial
h′(x) = x − b is a polynomial permutation of U . We can compose h(x) = sx + b
with eh′(x) = e(x − b) to get a polynomial eh′ ◦ h(x) = h′′(x) = esx that fixes zero
and is a bijection h′′|V : V → U . Similarly g′′(x) = frx fixes zero and is a bijec-
tion from U to V . As argued after Definition 2.1, there is an integer n for which
the polynomials g′′ and h′′ ◦ (g′′ ◦ h′′)2n−1 are inverse bijections between U and V .
Therefore we may start the argument over assuming that g(x) = erx and h(x) = fsx
are inverse bijections between U and V . Now, for any m ∈ M we have em ∈ U , so
em = g(h(em)) = erfsem. Similarly, for any m ∈ M we have fm = fserfm. If
M is a faithful R-module, then these facts imply that e = erfse and f = fserf . It
follows from the equivalence of (i) and (ii) (or (iii)) of Theorem 2.8 (4) that e ' f in
the case when M is a faithful module. In the case that e and f are primitive and not
isomorphic, then eRf ⊆ J by Theorem 2.8 (4)(v). Hence, for integers k exceeding
the nilpotence degree of J we get em = erfsem = (erfs)kem ∈ JkM = {0} for all
m ∈M . This is impossible since eM = U 6= {0}. Hence we must have e ' f when e
and f are primitive. �

If P ⊆ Q are submodules of M, then the set (P : Q)R = {r ∈ R | rQ ⊆ P} is
a 2-sided ideal in R called the annihilator of 〈P,Q〉. We drop the subscript when it
is clear which ring is involved. The ring R/(P : Q) acts faithfully on the quotient
module Q/P . If P ≺ Q, then Q/P is simple, so R/(P : Q) is a finite primitive
ring. Such rings are simple by the Jacobson Density Theorem. This shows that
(P : Q) is a maximal ideal whenever R is finite and P ≺ Q. Part (4) of the
previous theorem shows that a 〈P,Q〉-minimal set of the module M is U = eM for
some primitive idempotent e ∈ R − (P : Q). According to Theorem 2.8 (4)(vi)
and part (5) of the previous theorem, if f is any other primitive idempotent in
R − (P : Q), then e ' f and fM is also a 〈P,Q〉-minimal set. Therefore, if we fix
a representation 1 = e1 + · · · + ek of 1 as a sum of pairwise orthogonal primitive
idempotents, then each eiM is either {0} or a minimal set, and every minimal set of
M is polynomially isomorphic to a set on the list: e1M, . . . , ekM . (Here we are using
Theorem 2.8 (6), that every primitive idempotent is isomorphic to one of the ei’s,
and Theorem 4.1 (5), that isomorphic primitive idempotents determine polynomially
isomorphic neighborhoods.) Therefore, the previous theorem explains everything
one needs to know in order to determine a representative set of minimal sets in any
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module over a finite ring. We now explain how to use this theorem to determine the
minimal sets in any (R,S)-bimodule, when R and S are finite rings.

Recall from Definition 2.11 that a bimodule is an abelian group together with
specified homomorphisms L : R → End(M) and R : Sop → End(M) such that
L(r) ◦ R(s) = R(s) ◦ L(r) for all r ∈ R and s ∈ S. By the universal property of
tensor products (cf. [6], pages 143-144),2 the pair of homomorphisms (L,R) factors
uniquely through a ring homomorphism

L ⊗R : R⊗ Sop → End(M)

defined on basic tensors by L⊗R(r ⊗ s)(x) = rxs. Such a homomorphism uniquely
determines a left R⊗Sop-module structure on M. Conversely, a left R⊗Sop-module
structure on M is determined by a homomorphism H : R⊗ Sop → End(M). Com-
posing such a homomorphism H with the natural homomorphisms

T1 : R→ R⊗ Sop : r 7→ r ⊗ 1

and

T2 : Sop → R⊗ Sop : s 7→ 1⊗ s
produces homomorphisms L = H ◦ T1 : R → End(M) and R = H ◦ T2 : Sop →
End(M), whose images commute. Hence a left R⊗ Sop-module structure on M in-
duces a natural (R,S)-bimodule structure on M. By examining this correspondence,
it is not hard to prove that the algebra that is M considered as an (R,S)-bimodule is
definitionally equivalent3 to the algebra that is M considered as an R⊗ Sop-module.
Concretely, the unary module polynomial (r1 ⊗ s1 + · · ·+ rk ⊗ sk)x + t corresponds
to the unary bimodule polynomial r1xs1 + · · ·+ rkxsk + t.

Using the correspondence just described we can reduce the problem of computing
minimal sets in (R,S)-bimodules to the problem solved in Theorem 4.1.

Corollary 4.2. Let R and S be finite rings, and let M be an (R,S)-bimodule. If
P ≺ Q are subbimodules of M, then P ≺ Q in the (R ⊗ Sop)-submodule lattice. If
e ∈ R ⊗ Sop is a primitive idempotent, and e 6∈ (P : Q), then U = eM is a 〈P,Q〉-
minimal set of M (considered as a module or a bimodule). The induced algebra M|U is
polynomially equivalent to eM considered as a module over the local ring e(R⊗Sop)e.

This corollary may be slightly unsatisfying because it reduces the calculation of
minimal sets of an (R,S)-bimodule M to the calculation of primitive idempotents
of the ring R ⊗ Sop rather than to calculations in R and S individually. So, let us
spend a few paragraphs describing how to locate a representative set of primitive
idempotents of R⊗ Sop, and how to calculate the corresponding minimal sets in M.

2In this paper all tensor products are over Z.
3Algebras A and B are definitionally equivalent if they have the same universe and the same

clone of term operations.
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We start with an algebra M considered simultaneously as an (R,S)-bimodule and
an R⊗Sop-module. Our goal is to describe how to locate at least one 〈P,Q〉-minimal
set for each covering pair P ≺ Q of sub(bi)modules of M. Let 1 = e1 + · · · + em
be a representation of 1R as a sum of primitive, orthogonal idempotents in R, and
let 1 = f1 + · · · + fn be a representation of 1S as a sum of primitive, orthogonal
idempotents in S. Then

1R⊗Sop = 1R ⊗ 1Sop = (e1 + · · ·+ em)⊗ (f1 + · · ·+ fn) =
∑

i,j

ei ⊗ fj

expresses 1 as a sum of orthogonal idempotents of the form Eij = ei ⊗ fj. Usually
these idempotents are not primitive, so to find all minimal sets the decomposition
1 =

∑
Eij must be refined. This can be done one idempotent at a time. If we are

interested in 〈P,Q〉-minimal sets for a fixed prime quotient 〈P,Q〉 only, we need to
determine which of the Eij’s we need to refine.

Since P ≺ Q, we get that Q/P is simple as an R ⊗ Sop-module. Let N be an
R-submodule of M such that P ≺ N ≤ Q as R-modules. For each s ∈ S we
get that (N/P )s is trivial or is isomorphic to the R-submodule N/P of Q/P . The
sum

∑
s∈S(N/P )s is a nontrivial (R,S)-subbimodule of the simple bimodule Q/P ,

hence it equals Q/P . This shows that Q/P is a sum of isomorphic copies of the
simple R-module N/P . It follows from this that, considering M as an R-module
only, (P : Q)R = (P : N)R is a maximal ideal of R. Similarly, considering M as an
Sop-module only, (P : Q)Sop is a maximal ideal in Sop. If an idempotent Eij = ei⊗ fj
(as described in the previous paragraph) satisfies EijQ = eiQfj 6⊆ P , then it must
satisfy eiQ 6⊆ P (or ei 6∈ (P : Q)R) and Qfj 6⊆ P (or fj 6∈ (P : Q)Sop). Any other
idempotent Euv = eu ⊗ fv satisfying eu 6∈ (P : Q)R and fv 6∈ (P : Q)Sop, must be
isomorphic to Eij for the following reasons: ei and eu are primitive, (P : Q)R is a
maximal ideal of R, and ei, eu 6∈ (P : Q), so by Theorem 2.8 (4) there exist p, q, r
and s such that ei = peuq and eu = reis; similarly there exist p′, q′, r′ and s′ such
that fj = p′fvq′ and fv = r′fjs′. Hence

Eij = (p⊗ p′)Euv(q ⊗ q′) and Euv = (r ⊗ r′)Eij(s⊗ s′),
which shows that Eij ' Euv. In particular, ei ⊗ fj 6∈ (P : Q)R⊗Sop iff ei 6∈ (P : Q)R

and fj 6∈ (P : Q)Sop.
We now have that there is only one Eij ∈ R⊗Sop−(P : Q)R⊗Sop up to isomorphism.

For any such idempotent EijQ 6⊆ P , so the function ε(x) = Eijx = eixfj does not
collapse Q into P . Thus U = ε(M) = eiMfj contains a 〈P,Q〉-minimal set. The
induced algebra M|U is polynomially equivalent to a module over the ring

Eij(R⊗ Sop)Eij = (ei ⊗ fj)(R⊗ Sop)(ei ⊗ fj) = (eiRei)⊗ (fjSfj)
op.

Since U is a neighborhood and EijQ 6⊆ P we get that P |U ≺ Q|U . By Lemma 2.4, any
〈P |U , Q|U〉-minimal set V of M|U will be a 〈P,Q〉-minimal set of M. To locate such
a minimal set V we need to locate the primitive idempotents of (eiRei)⊗ (fjSfj)

op.
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Since ei and fj are primitive idempotents in R and S, Theorem 2.8 (1) proves that

the rings R̂ = eiRei and Ŝ = fjSfj are local. To summarize: for some idempotent
Eij = ei ⊗ fj, which is unique up to isomorphism, the neighborhood U = EijM =
eiMfj contains a 〈P,Q〉-minimal set V . The set V equals ε(U) where ε(x) = ex for

some primitive idempotent e ∈ R̂ ⊗ Ŝop. Here the rings R̂ and Ŝ are local. Thus,
we have reduced the general problem of finding minimal sets in modules over a finite
ring of the form R⊗ Sop to the case when R and S are local.

We now focus on the problem of computing primitive idempotents in a tensor
product of two local rings R and S. Tensor products of local rings are easier to
understand when the rings are commutative, so we explain how to reduce to that
case. Our strategy will be to choose subrings R′ ≤ R and S′ ≤ S which are small
enough that they are commutative, but large enough so that the subring R′ ⊗ S′ of
R ⊗ S contains a complete orthogonal decomposition of 1 as a sum of idempotents
that are primitive in R⊗S. For this purpose, it will be useful to recall the definition
of a Galois ring.

Definition 4.3. A Galois ring is any ring GR(pn, d) isomorphic to a ring of the
form Zpn[x]/(m(x)), where m(x) is a monic integer polynomial of degree d that is
irreducible modulo p.

By Theorem XVII.1 of [12], any finite local ring R contains a unique Galois subring
R′ which has the same residue field as R. That is, if ν : R → R/J is the natural
homomorphism, then R contains a unique Galois subring R′ such that ν|R′ : R′ →
R/J is surjective. This uniqueness, together with Lemma XV.1 of [12], implies that
the ring Zpn[x]/(m(x)) is isomorphic to Zpn[x]/(n(x)) if both m(x) and n(x) are
monic integer polynomials of degree d that are irreducible modulo p. So, (as the
notation suggests) a Galois ring GR(pn, d) is determined by its characteristic pn and
the isomorphism type of its residue field (a finite field of size pd).

Assume that the Galois subring of R that has the same residue field is GR(pi, a)
and the Galois subring of S that has the same residue field is GR(pj, b). (There is
no loss of generality in assuming that the charactistics are powers of the same prime,
since it is easy to show that the tensor product of two finite rings R and S is zero
if their characteristics are relatively prime. This situation could never arise if there
exists a nonzero (R,S)-bimodule, as we are assuming.) We claim that the subring
GR(pi, a) ⊗ GR(pj, b) of the ring R ⊗ S has the same idempotent structure as the
full ring. To see this, observe that if J is the radical of R and K is the radical of
S, then I = J ⊗ S + R ⊗K is a nilpotent ideal of R⊗ S, and the quotient modulo
this ideal is R/J ⊗ S/K. The subrings GR(pi, a) ≤ R and GR(pj, b) ≤ S have the
same residue fields R/J and S/K, so the restriction of I to GR(pi, a) ⊗ GR(pj, b)
is a nilpotent ideal whose quotient is R/J ⊗ S/K. The idempotent structure of
a ring is not changed by forming the quotient modulo a nilpotent ideal since, if
1 = e1 + · · ·+ ek is a representation of 1 as a sum of orthogonal idempotents that are
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primitive in GR(pi, a)⊗GR(pj, b), then modulo I the representation 1̄ = ē1 + · · ·+ ēk
expresses 1̄ as a sum of orthogonal idempotents that are primitive in R/J ⊗ S/K
(see Theorem 2.8 (8)). This representation can be pulled back to a representation
f = f1 + · · ·+fk in R⊗S of an idempotent f ∈ 1+I as a sum of orthogonal primitive
idempotents (see Theorem 2.8 (7)). The set 1 + I consists of units (Theorem 2.6 (3)
and (4)), so the idempotent unit f must equal 1. This shows that a representation
of 1 as a sum of orthogonal primitive idempotents in R ⊗ S uses the same number
of idempotents as a representation in the subring GR(pi, a) ⊗ GR(pj, b). By the
remarks following the proof of Theorem 2.8, it follows that idempotents primitive in
GR(pi, a)⊗GR(pj, b) are primitive in R⊗ S.

The following theorem is a useful tool for computing primitive idempotents in
GR(pi, a)⊗GR(pj, b).

Theorem 4.4. (Theorem XVI.8 of [12]) If a, b, i and j are positive integers, and p is

a prime, then GR(pi, a)⊗GR(pj, b) ∼=
(
GR(pk, c)

)d
where c = lcm(a, b), d = gcd(a, b)

and k = min(i, j).

In the proof of Theorem 2.8 (6) it is noted that any two representations of 1
as a sum of pairwise orthogonal primitive idempotents are conjugate. Therefore
in a commutative ring any complete orthogonal representation of 1 is unique; the
representation is uniquely determined by the direct factorization of the ring into
indecomposable rings. The previous theorem shows that GR(pi, a) ⊗ GR(pj, b) ∼=(
GR(pk, c)

)d
is a d-th power of a local (hence indecomposable) ring, so the number

of primitive idempotents in the complete orthogonal representation of 1 must be d.
It would not be very hard to explain how to calculate those idempotents right now,
but we prefer to introduce one more simplification first.

By Lemma XVI.7 of [12], every subring of GR(pm, n) has the form GR(pm, d) for
some divisor d of n. Moreover, there is exactly one such subring for each d dividing
n: it is π−1(H) where π : GR(pm, n)→ GR(p, n) is reduction modulo the radical, (p),
and H is the unique subfield of GR(p, n) of degree d over the prime subfield. Thus, for
d = gcd(a, b), our ring GR(pi, a) has a unique subring isomorphic to GR(pi, d), while
GR(pj, b) has a unique subring isomorphic to GR(pj, d). By symmetry, no generality
is lost by assuming that i ≤ j, so we make that assumption. Applying Theorem 4.4
to the subring GR(pi, d)⊗GR(pj, d) of GR(pi, a)⊗GR(pj, b), we find that it is also
isomorphic to a direct product of d local rings:

GR(pi, d)⊗GR(pj, d) ∼=
(
GR(pi, d)

)d
.

It follows that the unique representation of 1 as a sum of pairwise orthogonal primitive
idempotents in GR(pi, a) ⊗ GR(pj, b) consists of idempotents lying in the subring
GR(pi, d)⊗GR(pj, d).

A list of d orthogonal idempotents that sum to 1 in GR(pi, d)d is e1 = (1, 0, . . . , 0),
e2 = (0, 1, . . . , 0), . . . , ed = (0, 0, . . . , 1). Since this is the right number for a complete
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decomposition in a product of d local rings, 1 = e1 + · · ·+ ed is the unique represen-
tation of 1 as a sum of pairwise orthogonal primitive idempotents in this ring. The
isomorphism

(
GR(pi, d)

)d ∼= GR(pi, d)⊗GR(pj, d)

may be used to transfer this information about idempotents from the ring on the left
to the one on the right.

The transfer of information will be mediated by two homomorphisms ϕ and ψ. To
define the first, let m(x) be a monic integer polynomial of degree d that is irreducible
modulo p. By Hensel’s Lemma (Theorem XIII.4 of [12]), m(x) = 0 has exactly d roots
in each of GR(pi, d) and GR(pj, d), and these roots in either ring are inequivalent
modulo the radical of the ring. Let α1, . . . , αd be the roots in GR(pi, d), and let β be
a root in GR(pj, d). Let ϕ be the homomorphism

ϕ : GR(pi, d)[x]→ GR(pi, d)⊗GR(pj, d)

determined by ϕ(c) = c ⊗ 1 if c ∈ GR(pi, d) and ϕ(x) = 1 ⊗ β. The element β
generates GR(pj, d) (since the subring generated β has the same characteristic and
residue field as the full ring), therefore the image of ϕ contains each of the subrings
GR(pi, d)⊗ 1 and 1⊗GR(pj, d). It follows that ϕ maps onto GR(pi, d)⊗GR(pj, d).
The kernel of ϕ contains the ideal (m(x)), so the induced homomorphism

ϕ : GR(pi, d)[x]/(m(x))→ GR(pi, d)⊗GR(pj, d)

exists, and is surjective. But since m is monic of degree d,

|GR(pi, d)[x]/(m(x))| = |GR(pi, d)|d,

which is the cardinality of the image of ϕ. It follows that (m(x)) is the kernel of ϕ
(and therefore that ϕ is an isomorphism).

Next we define ψ. The polynomial m(x) factors completely as m(x) = (x −
α1) · · · (x − αd) over GR(pi, d). Since the roots are inequivalent modulo the radi-
cal, different factors (x − αj) and (x − αk) are relatively prime. By the Chinese
Remainder Theorem, the function

ψ : GR(pi, d)[x]→ GR(pi, d)d : f(x) 7→ (f(α1), . . . , f(αd))

is a surjective homomorphism with kernel (m(x)). We let ψ name the induced iso-
morphism: ψ : GR(pi, d)[x]/(m(x))→ GR(pi, d)d.
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We now have the following diagram:

GR(pi, d)[x]

ψ

↙
y

ϕ

↘

GR(pi, d)d
ψ← GR(pi, d)[x]/(m(x))

ϕ→ GR(pi, d)⊗GR(pj, d)

where the vertical homomorphism is the natural one. We will use the isomorphism

ϕ ◦ ψ−1
= ϕ ◦ ψ−1 to transfer the information about idempotents from the leftmost

ring to the rightmost.
For j = 1, . . . , d, let mj(x) =

∏
k 6=j(x − αk) = m(x)/(x − αj). Since no two roots

αj and αk are equivalent modulo the radical of GR(pi, d), the element mj(αj) =∏
k 6=j(αj − αk) is a product of units. Hence mj(αj) is a unit in GR(pi, d) for each j.

We claim that for j = 1, . . . , d the polynomials Ej(x) = mj(x)m−1
j (αj) ∈ GR(pi, d)[x]

satisfy ψ(Ej(x)) = ej. To prove that

ψ(Ej(x)) = ψ(mj(x)m−1
j (αj)) = ej = (0, . . . , 1︸︷︷︸

j-th

, . . . , 0)

we check coordinatewise: the j-th coordinate of ψ(mj(x)m−1
j (αj)) ismj(αj)m

−1
j (αj) =

1. The k-th coordinate for k 6= j is mj(αk)m
−1
j (αj) = 0 since mj(αk) = 0. Thus,

indeed, ψ(Ej(x)) = ψ(mj(x)m−1
j (αj)) = ej.

If we set εj = ϕ(Ej(x)) = ϕ ◦ ψ−1
(ej), then we have shown that ε1, . . . , εd are

the idempotents in GR(pi, d) ⊗ GR(pj, d) that correspond to e1, . . . , ed under the

isomorphism ϕ ◦ ψ−1
. These idempotents have been calculated explicitly from a

factorization of m(x).
To calculate the minimal sets in an (R,S)-bimodule M, when R and S are local

rings, we would first apply the procedure just described to compute the primitive
idempotents ε1, . . . , εd of R⊗ Sop. A complete list of minimal sets up to polynomial
isomorphism can be found among the sets ε1M, . . . , εdM .

Example. The purpose of this example is to illustrate all details of the calculation
of minimal sets in a finite ring.

Let E,F and G be Galois rings of the form E = GR(4, 8), F = GR(4, 12) and
G = GR(4, 4), with G a common subring of E and F. Let M be a faithful (E,F)-
bimodule. All nontrivial details of the calculation of minimal sets in a finite ring are
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illustrated by the calculation of the minimal sets in the triangular ring

R =

{[
g m
0 h

] ∣∣∣∣∣ g ∈ E, h ∈ F, m ∈M
}
.

(The ring operations are the ordinary matrix ring operations.) It is not hard to see
that

J =

{[
g m
0 h

] ∣∣∣∣∣ g ∈ 2E, h ∈ 2F, m ∈M
}

is an ideal satisfying J3 = 0. Since R/J ∼= (E/2E)× (F/2F) is a product of two finite
fields it is a semisimple ring; consequently J is the radical of R. Since 1 ∈ R/J ∼=
E/2E×F/2F is expressible as a sum of two orthogonal primitive idempotents in this
ring, any representation of 1 ∈ R as a sum of two nonzero orthogonal idempotents
involves only primitive idempotents. It must be that for

I =

[
1 0
0 1

]
, E =

[
1 0
0 0

]
, F =

[
0 0
0 1

]

the expression I = E + F is a representation of I = 1R as a sum of orthogonal
primitive idempotents. From Theorem 2.9, the sets {0, E} and {0, F} represent all
minimal sets of nonabelian type in R up to polynomial isomorphism.

From the remarks following Corollary 4.2, we know that each minimal set of abelian
type is polynomially isomorphic to a minimal set in J considered as an (R,R)-
bimodule. In fact, as we explained there, the decomposition

1R⊗Rop = I ⊗ I = E ⊗ E + E ⊗ F + F ⊗ E + F ⊗ F
allows us to limit our search to the neighborhoods EJE,EJF, FJE and FJF . Every
minimal set of abelian type is polynomially isomorphic to a minimal set of

(1) the (ERE,ERE)-bimodule EJE,
(2) the (ERE, FRF )-bimodule EJF ,
(3) the (FRF,ERE)-bimodule FJE, or
(4) the (FRF, FRF )-bimodule FJF .

Since FJE = {0}, there are no minimal sets Case (3). Cases (1) and (4) are handled
in the same way, so we discuss only Cases (1) and (2).

The ring ERE is

ERE =

{[
g 0
0 0

] ∣∣∣∣∣ g ∈ E
}
,

and projection onto the 1, 1-position is an isomorphism onto E. We leave it to the
reader to verify that the (ERE,ERE)-bimodule EJE is definitionally equivalent to
the ideal 2E considered as a (E,E)-bimodule. But since E is a commutative ring the
left action agrees with the right action, and so this algebra is definitionally equivalent
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to 2E as an E-module. Since E is local, Theorem 4.1 (1) implies that 2E is the only
minimal set contained in 2E. Thus, in Case (1) we get that EJE itself is a minimal
set. (In Case (4), FJF is a minimal set.)

Now we discuss Case (2). We leave it to the reader to verify that the (ERE, FRF )-
bimodule EJF is definitionally equivalent to M as an (E,F)-bimodule. The problem
of computing a representative list of (ring) minimal sets contained in EJF is equiv-
alent to the problem of computing the minimal sets of M considered as an (E,F)-
bimodule, and this reduces to the problem of computing the primitive idempotents
in E ⊗ Fop = E ⊗ F. As explained after Theorem 4.4, all primitive idempotents of
the tensor product of two commutative local rings lie in the tensor product of Galois
subrings with common residue field. In particular, the primitive idempotents of E⊗F
lie in G⊗G. Since G = GR(4, 4), the prime ring of G is Z4. Since m(x) = x4 +x+ 1
is irreducible modulo 4, the left copy of G in G ⊗ G may be represented as Z4[α]
where α is a root of m(x) = 0 in G. The right copy of G may be represented as Z4[β]
where β is also a root of m(x) = 0 in G.

Using MAPLE, we found that if α1 = α is a root of m(x) = 0 in G, then the other
three roots are α2 = 3α2 + 2α + 2, α3 = 2α2 + α + 3, and α4 = 3α2 + 3. Following
the discussion immediately preceding this example, we define

m1(x) = m(x)/(x− α1) = x3 + αx2 + α2x + α3 + 1
m2(x) = m(x)/(x− α2) = x3 + (3α2 + 2α+ 2)x2 + (3α+ 3)x

+(α3 + 3α2 + 3)
m3(x) = m(x)/(x− α3) = x3 + (2α2 + α+ 3)x2 + (α2 + 2α + 1)x

+(α3 + 3α2 + α + 2)
m4(x) = m(x)/(x− α4) = x3 + (3α2 + 3)x2 + (2α2 + 3α)x

+(α3 + 2α2 + 3α+ 3).

By our earlier arguments, the primitive idempotents of G[x]/(m(x)) (∼= G ⊗ G) are
the elements Ej(x) = mj(x)m−1

j (αj). This is easier to calculate than it appears,

since mj(αj) = m′(αj) where m′(x) = 4x3 + 1 = 1 is the derivative of m(x) in Z4.
Thus, Ej(x) = mj(x)m−1

j (αj) = mj(x). The primitive idempotents in G ⊗ G are
just ε1, . . . , ε4, where εi = ϕ(Ei(x)) and ϕ is the function that modifies a polynomial
Ei(x) by replacing each coefficient c with c⊗ 1 and each x with 1 ⊗ β. Thus, the 4
primitive idempotents in G⊗G are:

ε1 = 1⊗ β3 + α⊗ β2 + α2 ⊗ β + (α3 + 1)⊗ 1
ε2 = 1⊗ β3 + (3α2 + 2α + 2)⊗ β2 + (3α + 3)⊗ β + (α3 + 3α2 + 3)⊗ 1
ε3 = 1⊗ β3 + (2α2 + α + 3)⊗ β2 + (α2 + 2α+ 1)⊗ β + (α3 + 3α2 + α + 2)⊗ 1
ε4 = 1⊗ β3 + (3α2 + 3)⊗ β2 + (2α2 + 3α)⊗ β + (α3 + 2α2 + 3α+ 3)⊗ 1.

Each idempotent εi ∈ G ⊗ G ≤ E ⊗ F determines a set Ui = εiM which, since M
is a faithful (E,F)-bimodule, is not just {0}. Thus, each Ui is a minimal set of M
considered as an (E,F)-bimodule. Up to polynomial isomorphism, the neighborhoods
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U1, U2, U3 and U4 represent all minimal sets of the ring R that are contained in EJF
(Case 2).

The idempotent element ε3 = 1⊗β3 +(2α2 +α+3)⊗β2 +(α2 +2α+1)⊗β+(α3 +
3α2 +α+ 2)⊗ 1 ∈ E⊗F determines a polynomial ε(X) = ε3 ·X of the E⊗F-module
M whose image is U3. The corresponding (E,F)-bimodule polynomial whose image
is U3 is easy to write down: replace each basic tensor αi⊗ βk in the expression for ε3

with a unary polynomial

Bik(X) = Bik

([
x y
0 z

])
=

[
α 0
0 0

]i [
x y
0 z

] [
0 0
0 β

]k
=

[
0 αiyβk

0 0

]
.

Hence, ε(X) = B03(X)+2B22(X)+B12(X)+3B10(X)+B21(X)+2B11(X)+B01(X)+
B30(X)+3B20(X)+B10(X)+2B00(X) is an idempotent bimodule polynomial which
maps J onto U3. To construct a polynomial of the ring R whose image is U3, one
typically has to compose an idempotent polynomial with image J with a polynomial
of this form; however in this case ε(X) already has range in J , so ε(X) is itself an
idempotent unary ring polynomial with image U3.

Remark. It is simpler to find the the minimal sets in a ring if it is commutative.
First, the identity element of a commutative ring R has a unique representation
1 = e1 + · · · + en as a sum of orthogonal primitive idempotents. If K = (ei), and
I ≺ K, then the 〈I,K〉-minimal sets are precisely the 2-element subsets {u, v} ⊆ K
where u− v 6∈ I. All minimal sets of nonabelian type in R have this form.

By restricting the arguments of this paper to the commutative case, one can show
that a subset U ⊆ R is a minimal set of abelian type if and only if it is a coset
of an ideal of the form eiJ , where J is the radical. Such ideals are the minimal
direct factors of J . If U = eiJ , then the polynomials of the induced algebra R|U are
generated by the eiR-module polynomials and the ring multiplication. Thus, R|U is
polynomially equivalent to a module over the commutative local ring eiR endowed
with a commutative, associative, nilpotent, bilinear multiplication.
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