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Abstract. Let A be a finite algebra that generates a congruence
modular variety. We show that the free spectrum of V(A) fails
to have a doubly exponentially lower bound if and only if A has
a finitely generated clone and A is a direct product of nilpotent
algebras of prime power cardinality.

1. Introduction

Let A be a finite algebra, and let V(A) be the variety it generates.
If FV(A)(k) is the k-generated free algebra in V(A), then the function

SpecA(k) := |FV(A)(k)|

is called the free spectrum of V(A) (or the free spectrum of A).
We will compare functions with the relation ¹, which is defined by

the rule that f ¹ g if f(k) ≤ g(k) for all sufficiently large k. In words
we say that “g is an upper bound for f” or “f is a lower bound for g”.
We use g º f to mean the same thing. We will write SpecA(k) ¹ 2

2ck

or SpecA(k) º 2
2ck

to mean that there exists some c > 0 such that

the functions SpecA(k) and 2
2ck

are ¹-comparable. Since the number

of k-ary operations on a set of size |A| is at most |A||A|
k

, and since
elements of FV(A)(k) may be identified with k-ary (term) operations of

A, it is always the case that SpecA(k) ¹ 2
2ck

when A is finite. We will

write SpecA(k)¿ 22
ck

and say that “SpecA(k) does not have a doubly

exponential lower bound” to mean that 22ck

6¹ SpecA(k).
In this paper we prove that if A generates a congruence modular

variety, then SpecA(k)¿ 22
ck

if and only if A has a finitely generated
clone and A is a direct product of nilpotent algebras of prime power
cardinality.
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The results of this paper are related to results of Vaughan-Lee [10],
Freese and McKenzie [3], and Berman and Blok [1]. To understand the
relationship, fix A to be a finite algebra of finite type that generates a
congruence modular variety. By modifying the arguments in [10] it is
shown in Chapter 14 of [3] that if A nilpotent, then A is finitely based
provided that it factors as a direct product of algebras of prime power
cardinality. The proof revolves around establishing a bound on the rank
of ‘commutator terms’, and the hypothesis that A factors into a direct
product of prime power algebras is used in a nontrivial way to establish
the bound. Later, in [1], it is shown that if there is a finite bound on the

rank of commutator terms, then SpecA(k)¿ 22
ck

. What we show here
is that for A (as above) the following are equivalent: (i) A factors as a
direct product of nilpotent algebras of prime power cardinality, (ii) A

has a finite bound on the rank of commutator terms, (iii) SpecA(k) does
not have a doubly exponential lower bound. The key idea behind the
proof is to connect these properties with a fourth equivalent property:
(iv) A is nilpotent and its twin monoid is a nilpotent group.

2. The Twin Monoid

Let A be an algebra, and f(x) and g(x) be unary polynomials of A.
We call f and g twins if for some n there is an (n+1)-ary term operation
t(x,y) =: ty(x) of A and tuples a,b ∈ An such that f(x) = ta(x) and
g(x) = tb(x).

Lemma 2.1. The twin relation τ = {(f, g) | f and g are twins} is a

tolerance relation of the monoid 〈Pol 1(A); ◦, id〉.

Proof. Recall that a tolerance relation is a reflexive, symmetric, com-
patible binary relation. It is clear that the relation τ defined in the
lemma is a reflexive, symmetric, binary relation. To see that it is com-
patible with composition, assume that (f, g), (f ′, g′) ∈ τ . Then we can
find terms t and t′ and tuples a,b, a′ and b′ such that f(x) = ta(x)
and g(x) = tb(x) while f

′(x) = t′a′(x) and g′(x) = t′b′(x). Therefore the
term ty(t

′
y′(x)) and the tuples aa′ and bb′ witness that composition

f(f ′(x)) = ta(t
′
a′(x)) is a twin of g(g′(x)) = tb(t

′
b′(x)). ¤

For any tolerance relation τ on any monoid M, the set of elements
τ -related to 1 ∈ M is a submonoid of M. We call the submonoid of
Pol 1(A) that consists of twins of the identity the twin monoid. It will
be denoted Tw (A).

Lemma 2.2. Let A be a finite algebra. There is a single term sy(x)
such that each element of Tw (A) can be represented as sa(x) for some
a.
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Proof. Suppose that f and f ′ are twins of the identity. Then there are
terms ty(x) and t′y′(x) and tuples a,b, a′ and b′ such that id(x) = ta(x),
f(x) = tb(x), id(x) = t′a′(x), and f ′(x) = t′b′(x). Now let Tyy′(x) =
ty(t

′
y′(x)). Then for the tuple aa′ we have Taa′(x) = id(id(x)) = id(x),

while for the tuples ba′ and ab′ we have Tba′(x) = f(id(x)) = f(x)
and Tab′(x) = id(f ′(x)) = f ′(x). Therefore Tyy′(x) is a term that for
different choices of the parameters represents id(x), f(x) and f ′(x).
The argument we have just given to construct a single term that

witnesses membership in Tw (A) for any two given polynomials f, f ′ ∈
Tw (A) extends to show that any finite subset of Tw (A) can be repre-
sented by a single term. Since our hypothesis that A is a finite algebra
implies that Tw (A) is finite, there exists a single term sy(x) and a tu-
ple e such that se(x) = id(x) while the polynomials of the form sa(x)
represent all elements of Tw (A). ¤

Applications of the twin monoid to free spectra are based on the
following result.

Theorem 2.3. Let A be a finite algebra and let M = Tw (A). For

some fixed n it is the case that SpecM(k) ¹ SpecA(nk + 1). In partic-

ular, if SpecA(k)¿ 22
ck

, then we also have SpecM(k)¿ 22
ck

.

Proof. Suppose, for example, that the elements xy2, yx2 ∈ FV(M)(x, y)
are distinct. Then there exist sa, sb ∈M such that the homomorphism
from FV(M)(x, y) to M induced by

〈x, y〉 7→ 〈sa, sb〉

fails to identify xy2 and yx2. This says precisely that there is an element
u ∈ A such that the functions sa◦s

2
b and sb◦s

2
a disagree at u. It follows

that the homomorphism from FV(A)(x,y, z) to A induced by

〈x,y, z〉 7→ 〈a,b, u〉

fails to identify the elements sx(sy(sy(z))) and sy(sx(sx(z))).
More generally, this type of reasoning shows that if n is the length

of the tuple y that appears in sy(x) then the assignment

ω(y1, . . . , yk) 7→ ω(sy1
, . . . , syk

)

is an injective function from FV(M)(k) to FV(A)(nk + 1) for each k.
For the last statement of the theorem, we prove the contrapositive.

Assume that SpecM(k) º 2
2ck

. Then SpecM(k) ≥ 2
2ck

for some fixed
c > 0 and all large k. From the first part of the theorem we have
SpecA(nk + 1) ≥ 2

2ck

for all large k. Since SpecA(k) is an increasing

function, this is enough to guarantee that SpecA(k) ≥ 2
2c′k

for c′ =
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c/2n and all large k. Thus SpecA(k) º 22
ck

, which concludes the
proof. ¤

Theorem 2.3 indicates that a detailed understanding of free spectra
of monoids would be useful for more general free spectra questions. We
know very little about free spectra of monoids, but it is not hard to
verify the following two facts.

(1) Any nontrivial monoid M has SpecM(k) º 2
k.

(2) IfM is a finite monoid, then SpecM(k)¿ 2ck log(k) iff SpecM(k) ¹
2ck iff M is commutative.

One can find in [6] a complete characterization of those finite algebras
A for which SpecA(k)¿ 2ck. By (1) and Theorem 2.3, it is necessary
that each such A have a trivial twin monoid. The result in [6] is that
SpecA(k)¿ 2ck if and only if A has a finitely generated clone and all
local twin monoids are trivial. (See [6] for the meaning of this.)
In addition to the easy results about free spectra of monoids that we

have just listed, the following less obvious result has been known for a
long time.

Theorem 2.4. ([2], [9]) Let G be a finite group. If SpecG(k) ¿ 22
ck

,

then G is nilpotent.

Fortunately for us, Theorem 2.4 contains everything we will have
to know about the free spectra of twin monoids for the results of this
paper. This is a consequence of the next theorem and Theorem 12.5 of
[4] (which proves that if A is a finite algebra in a congruence modular

variety and SpecA(k)¿ 22
ck

, then A is nilpotent).

Theorem 2.5. If A is a finite nilpotent algebra in a congruence mod-

ular variety, then Tw (A) is a group.

Proof. The assumption that A generates a congruence modular variety
implies that 1 6∈ typ {A}, according to Theorem 8.5 of [4]. Therefore,
Lemma 4.2 and Theorem 4.3 of [5] prove that idempotent twin poly-
nomials have ranges of the same cardinality. So, if se(x) = id(x) and
sa(x) = f(x) ∈ Tw (A), then any idempotent iterate f k of f is a twin
of the idempotent polynomial idk = id. Idempotent twins have ranges
of the same cardinality, so f k is a surjective mapping from A to A.
This forces f to be a permutation of A. ¤

Corollary 2.6. If A is a finite algebra in a congruence modular variety

and SpecA(k)¿ 22
ck

, then A is a nilpotent algebra whose twin monoid

is a nilpotent group.
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This corollary makes it clear that in this paper we will be dealing
primarily with nilpotent algebras that generate congruence modular
varieties. The following fact, which is Exercise 7.6 of [3], will be used
throughout the rest of the paper.

Theorem 2.7. A congruence modular variety generated by a nilpotent

algebra is congruence permutable.

The following result helps to understand twin monoids of algebras
in congruence permutable varieties.
If K is a class of algebras, let Tw (K) denote {Tw (K) | K ∈ K}.

Theorem 2.8. If K is a class of algebras that generates a congruence

permutable variety, then Tw (HSP(K)) ⊆ HSP(Tw (K)).

Proof. We prove the theorem through a sequence of claims.

Claim 2.9. Let d(x, y, z) be a Mal’tsev term for V(K). If B ∈ V(K)
and e and f are twin polynomials of B, then there is a polynomial

P ∈ Tw (B) such that Pe = d(e, e2, fe).

Since e and f are twins there is a term ty(x) and tuples a and b such
that e(x) = ta(x) and f(x) = tb(x). Define Tyz(x) = d(x, ty(x), tz(x))
where z is a tuple of new variables. Note that Taa(x) = id(x) and
Tab(x) = d(x, e(x), f(x)), so d(x, e(x), f(x)) is a twin of the identity.
It is this polynomial that we take for P . Clearly Pe = d(e, e2, fe), as
desired.

Claim 2.10. If C,D ∈ V(K), then a surjective homomorphism h : C→
D induces a surjective homomorphism ĥ : Tw (C)→ Tw (D).

The map ĥ is the restriction to Tw (C) of the map from Pol 1(C)
to Pol 1(D) that assigns to a polynomial t(x, a) of C the polynomial
t(x, h(a)) of D. If ta(x) = id(x) on C and tb(x) ∈ Tw (C), then
clearly th(a)(x) = id(x) on D and th(b)(x) ∈ Tw (D). Thus h induces
a function from Tw (C) to Tw (D). It is easy to see that this function
preserves composition. The nonobvious part of Claim 2.10 is that this
homomorphism is surjective if h is.
Choose g ∈ Tw (D), and assume that ty(x) is a term for which

tc(x) = id(x) and td(x) = g(x) for certain tuples c,d in D. Let a and
b be preimages under h for c and d respectively. Let e(x) = ta(x)

and f(x) = tb(x). By construction we have ĥ(e) = id and ĥ(f) = g.
Claim 2.9 guarantees that there is a P ∈ Tw (C) such that Pe =

d(e, e2, fe). Note that, since ĥ(e) = id, we have

ĥ(P ) = ĥ(P )ĥ(e) = ĥ(Pe) = ĥ(d(e, e2, fe)) = d(id, id2, g id) = g.

Thus P ∈ Tw (C) is an element that ĥ maps to g.
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Claim 2.11. If E,F ∈ V(K), and E is a subalgebra of F, then Tw (E)
is a homomorphic image of a submonoid of Tw (F).

To prove this, choose g ∈ Tw (E). There is a term ty(x) and tuples
c,d from E such that tc(x) = id(x) on E and td(x) = g(x). Since
E ⊆ F , both e(x) = tc(x) and f(x) = td(x) are polynomials of F, and
they satisfy e|E = id and f |E = g respectively. Let P ∈ Tw (F) be such
that Pe = d(e, e2, fe). In particular, P |E = Pe|E = d(e, e2, fe)|E =
f |E = g. Thus every element g ∈ Tw (E) is the restriction to E of some
P ∈ Tw (F). Let H be the monoid consisting of all P ∈ Tw (F) whose
restriction to E agrees with some g ∈ Tw (E). H is a submonoid of
Tw (F) and restriction to E determines a homomorphism from H onto
Tw (E). This establishes Claim 2.11.

Claim 2.12. Assume that
∏
i∈I Gi ∈ V. Then Tw (

∏
i∈I Gi) is embed-

dable in
∏
i∈I Tw (Gi).

By Claim 2.10, the canonical projections πj :
∏
i∈I Gi → Gj induce

homomorphisms
π̂j : Tw (

∏

i∈I

Gi)→ Tw (Gj).

These homomorphisms determine a natural homomorphism
∏

π̂i : Tw (
∏

i∈I

Gi)→
∏

i∈I

Tw (Gi).

Since the kernel of π̂j consists of those pairs of elements in Tw (
∏
i∈I Gi)

that agree modulo πj, it follows that the kernel of
∏

π̂i consists of those
pairs of elements in Tw (

∏
i∈I Gi) that agree modulo

∧
πi = 0. Thus, a

pair is in ker(
∏

π̂i) only if it is a pair of equal polynomials. Hence
∏

π̂i
is an embedding.

Through Claims 2.10, 2.11 and 2.12, we have shown that if K gen-
erates a congruence permutable variety, then

• Tw (H(K)) ⊆ H(Tw (K)),
• Tw (S(K)) ⊆ HS(Tw (K)), and
• Tw (P(K)) ⊆ SP(Tw (K)).

Therefore

Tw (HSP(K)) ⊆ H(HS(SP(Tw (K)))) = HSP(Tw (K)).

¤

We do not know how general the inclusion

Tw (HSP(K)) ⊆ HSP(Tw (K))

is. It does hold in some situations where K does not generate a con-
gruence permutable variety. For example, if K is any class of bounded
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lattices (meaning that there are equationally definable constants 0 and
1 denoting the bottom and top elements), then the inclusion

Tw (HSP(K)) ⊆ HSP(Tw (K))

holds. This is because if a lattice L has a top and a bottom element,
then the twin monoid coincides with the monoid of all unary polynomi-
als. (To see this, note that Tw (L) ⊆ Pol 1(L) trivially. The reverse in-
clusion holds because if p(x) ∈ Pol 1(L) then p(x) = (p(x)∧1)∨(x∧0) is
a twin of (p(x)∧0)∨(x∧1) = id(x).) Claims 2.10, 2.11 and 2.12 of The-
orem 2.8 hold in any variety whose algebras satisfy Tw (A) = Pol 1(A),
so the theorem itself holds. (The reason this statement is true is that
the proofs of Claims 2.10 and 2.11 involve a pair (e, f) of twins that are
modified to a pair (e, Pe) = (d(e, e2, e2), d(e, e2, fe)) of twins where P
is a twin of the identity. Thus, the pair of twins (id, P ) can substitute
for (e, f) in any situation where e “acts like the identity”. Roughly,
this has the effect of modifying f , which may not be a twin of the iden-
tity, to a polynomial P that is a twin of the identity. But in a variety
where all unary polynomials are twins of the identity, there is no need
to make this modification.)
Contrary to the situation for bounded lattices, the theorem does not

hold for the variety of all unbounded lattices. (Unbounded means not
necessarily bounded.) The reason for this is that if F is an infinitely
generated free lattice, then it can be shown via Whitman’s solution
to the word problem for lattices that Tw (F) consists of the identity
function alone. Therefore, if K = {F}, then HSP(Tw (K)) is the vari-
ety of trivial monoids. Now, since HSP(K) is the class of all lattices,
to show that Tw (HSP(K)) 6⊆ HSP(Tw (K)) it suffices to exhibit one
lattice whose twin monoid is not the trivial monoid. This is easy:
any nontrivial lattice with a top and a bottom element will do, since
Tw (L) = Pol 1(L) in this situation.

3. Prime Power Factorization

We prove our main results in this section. Before getting to them we
have to introduce one more concept.
Let A be a finite algebra that generates a congruence modular va-

riety, and assume that δ < θ are congruences on A. We will say that
the congruence quotient 〈δ, θ〉 has characteristic p, where p is a prime,
if the size of each θ/δ-class in A/δ is a power of p.
Now suppose that δ ≺ θ and that [θ, θ] ≤ δ. (These expressions

mean that 〈δ, θ〉 is an abelian prime quotient of Con (A).) Then θ/δ
is a minimal abelian congruence of A/δ. There is a natural way, de-
scribed in Chapter 9 of [3], of constructing a finite simple module on
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the product of the θ/δ-classes. Since every finite simple module has
prime power cardinality it follows that all θ/δ-classes have size that
is a power of some fixed prime p. This shows that any abelian prime
quotient has characteristic p for some prime p.
In this section we deal with finite nilpotent algebras in congruence

modular varieties. It is shown in Corollary 7.5 of [3] that congruences
on such algebras are uniform, which means that all blocks have the
same size. For congruence uniform algebras the notion of index makes
sense for any pair of congruences δ < θ: the index [θ : δ] is the number
of δ-classes in any θ-class. In the congruence uniform situation, 〈δ, θ〉
has characteristic p precisely when [θ : δ] is a power of p.
In a congruence uniform algebra, if we have a chain of congruence

coverings

δ = α0 ≺ α1 ≺ · · · ≺ αn = θ,

then

[θ : δ] = [αn : αn−1] · · · [α1 : α0].

Therefore 〈δ, θ〉 has characteristic p if and only if each prime quotient
in the chain has characteristic p. In particular, these remarks imply
the following theorem.

Theorem 3.1. A finite nilpotent algebra in a congruence modular va-

riety has cardinality that is a power of the prime p if and only if all its

prime quotients have characteristic p.

We will use tame congruence theory (see [4]) as a tool for detecting
the characteristic of a prime quotient.

Lemma 3.2. Let A be a finite nilpotent algebra that generates a con-

gruence modular variety. If δ ≺ θ in Con (A) and the characteristic of

〈δ, θ〉 is p, then the cardinality of any 〈δ, θ〉-minimal set is a power of

p.

Proof. Let’s first argue that no generality is lost by assuming that
δ = 0. The assumptions on A imply that typ (δ, θ) = 2, and there-
fore any minimal set U ∈ MinA(δ, θ) has p–power cardinality for some
prime p. (These claims can be pieced together from Theorems 4.31,
7.2, 8.5, and 13.9 of [4].) Since A|U is nilpotent and generates a con-
gruence modular variety, it is an algebra to which Theorem 3.1 applies:
all of its prime quotients have characteristic p. In particular, since
δ|U < 1U the index [1U : δ|U ] is a power of p, which means that the
quotient algebra A|U/δ|U has cardinality which is a power of p. The
universe of A|U/δ|U is U/δ|U , which is a 〈0, θ/δ〉-minimal set of A/δ.
Therefore the cardinality of the 〈0, θ/δ〉-minimal set U/δ|U is a power
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of same prime p that we started with. (These claims follow from Theo-
rem 2.8 (2), Lemma 2.16 (2) and Lemma 4.36 of [4].) Finally, since the
characteristic of 〈δ, θ〉 equals the characteristic of 〈0, θ/δ〉 by definition,
we may replace A by A/δ and 〈δ, θ〉 by 〈0, θ/δ〉, change notation, and
assume henceforth that δ = 0.
If N is a 〈0, θ〉-trace of U ∈ MinA(0, θ), then the facts that N is a

congruence class of A|U and that A|U is congruence uniform of prime
power cardinality imply that N has prime power cardinality for the
same prime. So what we have left to show is this: if 0 ≺ θ, then the
characteristic of 〈0, θ〉 divides the cardinality of any 〈0, θ〉-trace. One
way to see this is to note that any θ-class is an E-trace with respect
to θ (meaning that it is the intersection of a θ-class with the image
of an idempotent polynomial — take id(x) for the polynomial), and
that θ is an abelian minimal congruence of an algebra in a congruence
permutable variety. These facts together with Theorem 4.5 of [8] show
that any θ-class is a multitrace of type 2. According to the structure
theorem for such objects, given in Theorem 3.10 of [7], this means that
the size of a θ-class is a power of the size of any 〈0, θ〉-trace. Therefore,
since θ-classes and 〈0, θ〉-traces each have prime power cardinality, the
primes must agree. This concludes the proof. ¤

Lemma 3.3. Let A be an algebra that generates a congruence modular

variety. Let α be a central congruence on A, and let λ be an element

of Tw (A). If V is an α-class, and λ fixes an element of V , then λ
fixes every element of V .

Proof. Assume that 0 ∈ V is fixed by λ, that se(x) = id(x), and
sa(x) = λ(x). If (0, b) ∈ α, then since α is a central congruence we can
change the underlined entries from 0 to b in

se(0) = 0 = sa(0)

and preserve the equality of the left and right sides. This yields

se(b) = sa(b),

so λ(b) = sa(b) = se(b) = b. ¤

Let h : A → A/α be the natural homomorphism. We will use
the notation α̂ to denote the kernel of the induced homomorphism
ĥ : Tw (A) → Tw (A/α) that we described in the proof of Claim 2.10
of Theorem 2.8. To be explicit, (κ, λ) ∈ α̂ provided κ(x) ≡α λ(x) for
all x ∈ A.

Lemma 3.4. Let A be a finite nilpotent algebra that generates a con-

gruence modular variety. Assume that
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(1) δ ≺ θ in Con (A),
(2) λ ∈ Tw (A) has prime power order, and
(3) (id, λ) ∈ θ̂ − δ̂.

Then the order of λ is a power of the characteristic of 〈δ, θ〉.

Proof. Factoring modulo δ does not affect the hypotheses or conclusion,
so there is no loss of generality in assuming that δ = 0.
Let p be the prime that is the characteristic of 〈0, θ〉 and let q be

the prime for which λq
k

= id for some k. The assumptions imply that
λ maps every θ-class into itself, λ permutes each θ-class, and λ is not
the identity on some θ-class. Let V be a θ-class on which λ is not the
identity. V is a union of λ-orbits, each of which has size qr for some
r. The size of V is a power of p, so if q 6= p then λ must have a fixed
point on V . But now Lemma 3.3 implies that λ is the identity on V ,
contrary to the choice of V . It must be that q = p. ¤

Lemma 3.5. Let A be a finite nilpotent algebra that generates a con-

gruence modular variety. If θ is a minimal congruence on A, then θ̂ is

a nontrivial abelian congruence of Tw (A). If θ is minimal and 〈0, θ〉
has characteristic p, then so does 〈0, θ̂〉.

Proof. Let d(x, y, z) be a Mal’tsev term forA. To see that θ̂ > 0, choose
(u, v) ∈ θ−0. Then f(x) = d(x, u, v) is a twin of d(x, u, u) = id(x) and
f(x) = d(x, u, v) ≡θ d(x, u, u) = id(x) for all x ∈ A. This shows that

(id, f) ∈ θ̂. Thus, to prove that θ̂ is nontrivial it is enough to observe
that f 6= id (since f(u) = v 6= u).

Now we show that θ̂ is abelian. Since a group congruence is abelian
if and only if the elements congruent to the identity element com-
mute with each other, we must prove that if e, f ∈ Tw (A) satisfy
(id, e), (id, f) ∈ θ̂, then ef = fe. Note first that since (id, e), (id, f) ∈ θ̂
we have e(x) ≡θ x and f(x) ≡θ x for all x ∈ A, so both e and f map
every θ-class into itself. Therefore, to prove that they commute it will
suffice to prove that they commute on any θ-class.
Select a θ-class V and pick 0 ∈ V . Set 1 = e(0) ≡θ 0. Since e(x) is

a twin of id(x), and d(x, 1, 0) is a twin of d(x, 0, 0) = id(x), it follows
from Lemma 2.1 that e′(x) = d(e(x), 1, 0) ∈ Tw (A). Moreover, e′(0) =
d(1, 1, 0) = 0, so according to Lemma 3.3 we must have e′(x) = x on
V . Hence d(x, 1, 0) is the inverse of e(x) on V . Similarly, if we define
2 = f(0) ≡θ 0, then we get that d(x, 2, 0) is the inverse of f(x) on V .
To prove that e and f commute on V it is enough to prove that their
inverses d(x, 1, 0) and d(x, 2, 0) commute on V . This follows trivially
from the fact, proved in Chapter 5 of [3], that on V the operation
d(x, y, z) interprets as x − y + z with respect to some abelian group
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operations on V (since θ is abelian). Thus, on V , the polynomials we
are interested in are just d(x, 1, 0) = x−1+0 and d(x, 2, 0) = x−2+0,
which are translations with respect to the abelian group structure on
V . Since translations commute, we have ef = fe on V .
Finally we must show that the characteristic of 〈0, θ̂〉 is the same as

〈0, θ〉. Let N be the normal subgroup of Tw (A) consisting of elements

that are θ̂-related to id. We need to show that N is a p-group for the
prime p that is the characteristic of 〈0, θ〉. If this is not the case, then
N contains an element λ of order q where q is a prime different from
p. Lemma 3.4 proves that this is impossible. ¤

Corollary 3.6. Let A be a finite nilpotent algebra that generates a

congruence modular variety. Tw (A) is solvable. If, moreover, A is a

direct product of algebras of prime power cardinality, then Tw (A) is
nilpotent.

Proof. Choose a sequence of congruences

0 = θ0 ≺ θ1 ≺ · · · ≺ θn = 1.

This chain induces a chain

0 = θ̂0 < θ̂1 < · · · < θ̂n = 1

of congruences on Tw (A). Moreover, since [1, θi+1] ≤ θi for each i,

Lemma 3.5 applied to A/θi shows that [θ̂i+1, θ̂i+1] ≤ θ̂i in Tw (A).
This proves that Tw (A) is solvable.
Now suppose that A = A1×· · ·×Ak where each Ai has prime power

cardinality. Then for K = {A1, . . . ,Ak} we have that A ∈ HSP(K).
Since we proved in Theorem 2.8 that Tw (HSP(K)) ⊆ HSP(Tw (K)), to
prove that Tw (A) is nilpotent it will suffice to prove that each Tw (Ai)
is nilpotent.
Fix one Ai and pick a chain of congruences as above:

0 = θ0 ≺ θ1 ≺ · · · ≺ θn = 1.

Since Ai has cardinality that is a power of some prime p, therefore each
〈θi, θi+1〉 has characteristic equal to this p. From what we have proved
already, this chain induces a chain

0 = θ̂0 < θ̂1 < · · · < θ̂n = 1

in Con (Tw (Ai)) where each 〈θ̂i, θ̂i+1〉 has characteristic equal to p.
Hence Tw (Ai) is a p-group. Since p-groups are nilpotent, the proof is
complete. ¤

We now prove a partial converse to the second claim of Corollary 3.6.
The full converse is proved in Theorem 3.12
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Theorem 3.7. Let A be a finite, subdirectly irreducible, nilpotent alge-

bra that generates a congruence modular variety. If Tw (A) is nilpotent,
then A has prime power cardinality.

Proof. Let µ denote the monolith of A and let p be the characteristic
of 〈0, µ〉. If every prime quotient of A has characteristic p, then the
cardinality of A is a power of p. Therefore, to establish the theorem,
we must prove that if A has a prime quotient of characteristic q 6= p,
then Tw (A) is not nilpotent. Assume that 〈δ, θ〉 is a prime quotient
of A with characteristic q 6= p.

Claim 3.8. Tw (A) has an element λ of order q.

Since the characteristic of 〈δ, θ〉 is q, the characteristic of 〈δ̂, θ̂〉 is
also q, as one can deduce by applying Lemma 3.5 to A/δ. Therefore q
divides the order of Tw (A). Cauchy’s Theorem implies that there is a
λ ∈ Tw (A) of order q.

Claim 3.9. If λ ∈ Tw (A) has order q, then there exist u, v, w ∈ A
and g ∈ Pol 1(A) such that

(1) λ(u) = v,
(2) (u, v) 6∈ µ,
(3) (g(u), g(v)) = (u,w) ∈ µ− 0, and

(4) ∀x 6= y ∈ A
(
(x, y) 6∈ CgA(g(x), g(y))

)
.

Choose θ minimal so that λ(x) ≡θ x. (Equivalently, θ is a congruence

minimal for the property that θ̂ contains (id, λ).) Since λ 6= id, we do
not have θ = 0. Thus there is a δ ≺ θ. By the minimality of θ, there
is an element u ∈ A that has the property that λ(u) 6≡δ u. This is the
element we take for u, and λ(u) is the element we take for v. Already
we have that (1) holds, and that (u, v) ∈ θ − δ.
The characteristic of 〈δ, θ〉 must be q 6= p. This follows from Lemma

3.4 and the facts that the order of λ is q and (id, λ) ∈ θ̂ − δ̂. In
particular, we cannot have 〈δ, θ〉 = 〈0, µ〉 since the characteristics differ.
So, if we had (u, v) ∈ µ ≤ δ, then we would contradict (u, v) 6∈ δ. We
conclude that (2) holds.
Congruence uniformity allows us to choose an element w ∈ A for

which (u,w) ∈ µ − 0. We need to locate a polynomial g for which
(3) and (4) hold. Let U be a 〈δ, θ〉-minimal set, and let h be a unary
polynomial of A for which h(A) = U and (h(u), h(v)) ∈ θ|U − δ. Such
an h exists by Theorem 2.8 (4) of [4]. As is the case for any algebra, if
a, b ∈ A, then the set of all pairs of the form (k(a), k(b)), where k runs
over all unary polynomials of A, is equal to the diagonal subalgebra
of A2 generated by (a, b). In a congruence permutable variety the
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diagonal subalgebras of A2 are precisely the congruences, so the set of
all (k(a), k(b)) is precisely CgA(a, b). Thus, in the particular case where
(a, b) = (h(u), h(v)), the fact that CgA(h(u), h(v)) ≥ µ = CgA(u,w)
implies that there is a unary polynomial k such that (kh(u), kh(v)) =
(u,w). We take g = kh. It is automatic that (3) holds.
To see that (4) holds, assume to the contrary that there exist distinct

elements x, y ∈ A such that (x, y) ∈ CgA(g(x), g(y)). Fix such x and
y and let β = CgA(g(x), g(y)) = CgA(x, y). Since x 6= y it is possible
to choose α ≺ β. Then, since (x, y) ∈ β and (g(x), g(y)) 6∈ α we
get that g(β) = kh(β) 6⊆ α. In particular, h(β) 6⊆ α. From this,
and Definition 2.5 of [4], the set h(A) = U ∈ MinA(δ, θ) contains an
〈α, β〉-minimal set. But algebras induced on minimal sets of A are
E-minimal, by Theorems 4.31, 7.2, and 8.5 of [4], and there are no
proper containments between induced E-minimal algebras. Thus U is
itself an 〈α, β〉-minimal set, and moreover by Theorem 2.8 (1) of [4] we
conclude that MinA(δ, θ) = MinA(α, β). Next, since g(β) = kh(β) 6⊆ α
and U = h(A), it follows that k(β|U) 6⊆ α. Hence, by Theorem 2.8 (3)
of [4] we have k(U) ∈ MinA(δ, θ). But we chose k so that it contains
distinct µ-related elements u and w in its range. Thus, µ|k(U) > 0, and
it follows that µ restricts nontrivially to any 〈δ, θ〉-minimal set. But
this implies that each 〈δ, θ〉-minimal set contains a 〈0, µ〉-minimal set.
As already noted, such a containment cannot be proper, so we are led
to

MinA(α, β) = MinA(δ, θ) = MinA(0, µ).

Now we have a characteristic problem: Lemma 3.2 proves that, since
the characteristics of 〈0, µ〉 and 〈δ, θ〉 differ, their minimal sets do not
have the same size. This contradiction establishes (4), and completes
the proof of Claim 3.9.

Claim 3.10. If u, v, w and g have the properties listed in Claim 3.9,

and d(x, y, z) is a Mal’tsev term for A, then Σ(x) := d(x, g(x), u) is a
permutation of A that fixes all elements of the µ-class of u, maps the
µ-class of v into itself, and moves all elements of the µ-class of v.

Suppose that Σ(a) = Σ(b). Let θ = CgA(g(a), g(b)). We have

a′ := d(a, g(a), u) = Σ(a) = Σ(b) = d(b, g(b), u) ≡θ d(b, g(a), u) =: b′.

By Corollary 7.4 of [3] the mapping d(x, g(a), u) is a polynomial per-
mutation that has a polynomial inverse. If the inverse is p(x), then

a = p(a′) ≡θ p(b′) = b.
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Hence (a, b) ∈ θ = CgA(g(a), g(b)). By property (4) of Claim 3.9 we
conclude that a = b. This shows that Σ is 1-1, and therefore is a
permutation of A.
Arbitrarily choose u′ from the µ-class of u. Then, by the properties

of g, we have that g(u′) = g(u) = u. Thus Σ(u′) = d(u′, u, u) = u′, and
so Σ fixes every element of u/µ.
Finally, choose v′ from the µ-class of v. By the properties of g we

have g(v′) = g(v) = w ≡µ u, so Σ(v′) = d(v′, w, u) ≡µ d(v, u, u) = v.
This proves that Σ maps the µ-class of v into itself. If Σ(v ′) = v′, then

d(v′, w, u) = Σ(v′) = v′ = d(v′, u, u).

Applying the 1, µ-term condition to the underlined position we get that

u = d(w,w, u) = d(w, u, u) = w.

But u 6= w, so we cannot have Σ(v′) = v′. Thus, Σ fixes no element of
v/µ.

Claim 3.11. No q-Sylow subgroup of Tw (A) is normal.

The polynomial permutation Σ−1 ◦ λ ◦ Σ has order q, since it is a
conjugate of λ and λ has order q. Moreover, λ is a twin of id, so
Σ−1 ◦ λ ◦ Σ is a twin of Σ−1 ◦ id ◦ Σ = id by Lemma 2.1. This shows
that both λ and Σ−1 ◦ λ ◦ Σ are elements of Tw (A), and both have
order q.
If a q-Sylow subgroup was normal it would be the unique q-Sylow

subgroup, and this would force it to contain all elements of Tw (A)
whose order is a power of q. In particular, it would contain both λ
and Σ−1 ◦ λ ◦ Σ, and therefore it would contain the element Γ :=
λ−1 ◦Σ−1 ◦λ ◦Σ. If so, the order of Γ would be a power of q. We show
that this is not the case.
Let’s evaluate Γ at u:

Evaluation: Justification:
Γ(u) = λ−1 ◦ Σ−1 ◦ λ ◦ Σ(u) Defn. of Γ

= λ−1 ◦ Σ−1 ◦ λ(u) Σ(u) = u
= λ−1 ◦ Σ−1(v) λ(u) = v
≡µ λ−1(v) Σ−1(v) ≡µ v
= u λ−1(v) = u

This proves two things. First, since Γ is a polynomial that maps u
back into its µ-class, therefore Γ maps the entire µ-class of u into itself.
Second, Γ moves u. For if not, then in the above derivation we would
have equality at the beginning and end. This would force equality on
the fourth line: Σ−1(v) = v. But this contradicts the part of Claim 3.10
that asserts that Σ has no fixed points µ-related to v.
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Thus Γ acts on u/µ in a way that moves u. If Γ has order that is a
power of q, then the fact that u/µ has cardinality that is a power of
p, and q 6= p, means that Γ must have a fixed point on u/µ. Now we
have a contradiction to Lemma 3.3: Γ ∈ Tw (A) has a fixed point on
u/µ, but does not fix all elements of u/µ. This proves the claim.

Claim 3.11 finishes the proof of the theorem, because all Sylow sub-
groups of a nilpotent group are normal. ¤

Two varieties V1 and V2 in the same language are independent if
there is a binary term t(x, y) for which

V1 |= t(x, y) = x and V2 |= t(x, y) = y.

When this is so, then V1 intersects V2 trivially, and any algebra in
the join V1 ∨ V2 factors as a direct product of an algebra in V1 and
an algebra in V2; moreover, all homomorphisms between algebras in
V1 ∨V2 respect these direct factorizations. We write V1×V2 to denote
the join of V1 and V2 when they are independent.
It is not difficult to prove that if V1 and V2 are subvarieties of a

congruence permutable variety and V1 ∩ V2 is trivial, then V1 and V2

are independent. We will use this fact in the proof of the next theorem.
(We only use the fact in the situation when V1 and V2 are subvarieties
of a nilpotent congruence permutable variety. In this situation the fact
is a special case of Theorem 11.3 of [3]. However, nilpotence is not a
necessary hypothesis.)

Theorem 3.12. Let A be a finite nilpotent algebra that generates a

congruence modular variety. A factors into a direct product of algebras

of prime power cardinality if and only if Tw (A) is nilpotent.

Proof. We proved in Corollary 3.6 that ifA factors into a direct product
of algebras of prime power cardinality, then Tw (A) is nilpotent. Here
we prove the reverse direction, so assume that Tw (A) is nilpotent.
For each prime p, let Kp denote the class of subdirectly irreducible

homomorphic images of A whose monolith has characteristic p. Let Vp
denote the subvariety of V(A) generated by Kp.

Claim 3.13. For each prime p, each finite algebra in Vp has order that
is a power of p.

To show this, first note that by Claim 2.10 of Theorem 2.8 the twin
group of each member of Kp is a homomorphic image of Tw (A), which
we assumed to be a nilpotent group. Therefore the twin groups of mem-
bers of Kp are nilpotent. Since Kp consists of subdirectly irreducible
algebras whose monolith has characteristic p, it is a consequence of
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Theorem 3.7 that all members of Kp have cardinality that is a power of
p. For each S ∈ Kp we can apply Lemma 3.5 repeatedly to successive
quotients to obtain that the twin group Tw (S) is a p-group for the
same p. As proved in Theorem 2.8, Tw (HSP(Kp)) ⊆ HSP(Tw (Kp)),
therefore any finite algebra in the variety Vp has a twin group that is
a p-group for this p. Now it cannot be that some finite C ∈ Vp has
cardinality divisible by a prime q 6= p, for if this happened then q would
appear as the characteristic of some prime quotient of C, and thus it
would appear as the characteristic of some congruence quotient of the
p-group Tw (C). This proves the claim.

Claim 3.13 implies that if p and q are distinct primes, then no non-
trivial algebra in Vp has cardinality equal to the cardinality of an al-
gebra in Vq. Thus Vp and Vq intersect trivially. As observed directly
before the statement of the theorem, this means that Vp∨Vq = Vp×Vq.
Moreover, if r is a prime different from both p and q, then since the
order of a finite algebra in Vr is a power of r and the order of a finite
algebra in Vp×Vq is a product of p’s and q’s, we get that Vr intersects
trivially with Vp × Vq. Thus

(Vp ∨ Vq) ∨ Vr = (Vp × Vq) ∨ Vr = (Vp × Vq)× Vr.

Generalizing this, if p1, . . . , pk is the sequence of primes p for which Kp

is nonempty, then the variety generated by the union of the Kpi
’s is

Vp1 × · · · × Vpk
.

In particular, since A is a subdirect product of algebras in
⋃k
i=1Kpi

,
we get that A is in this variety. Hence A is a product of algebras of
prime power cardinality. ¤

A commutator term for an algebra A is a term ω(x1, . . . , xr, z) such
that

A |= ω(x1, . . . ,
i-th

z , . . . , xr, z) = z

for each i. We call a commutator term ω(x1, . . . , xr, z) nontrivial if

A 6|= ω(x1, . . . , xr, z) = z.

The rank of a nontrivial commutator term is the number r that appears
in these equations.

Theorem 3.14. Let A be a finite nilpotent algebra of finite type that

generates a congruence modular variety. The following conditions are

equivalent.

(1) SpecA(k)¿ 22
ck

.

(2) Tw (A) is nilpotent.
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(3) A factors as a direct product of algebras of prime power cardi-

nality.

(4) A has a finite bound on the rank of nontrivial commutator

terms.

(5) SpecA(k)¿ 2p(k) for some polynomial p(k).

Proof. Corollary 2.6 proves that (1) ⇒ (2). Theorem 3.12 proves that
(2)⇒ (3). Theorem 14.9 of [3] proves that (3)⇒ (4). (The implication
(3) ⇒ (4) is the only place where we need to assume that A has
finite type.) The implication (4) ⇒ (5) is established in the proof of
Theorem 1 of [1]. The implication (5)⇒ (1) is trivial. ¤

In fact, it is easy to characterize those algebras in congruence mod-
ular varieties that have small free spectrum without assuming finite
type, as we did in Theorem 3.14.

Corollary 3.15. Let A be a finite algebra for which typ {V(A)} ∩

{1,5} = ∅. Then SpecA(k)¿ 22
ck

if and only if

(1) A has a finitely generated clone, and

(2) A factors as a direct product of nilpotent algebras of prime

power cardinality.

Proof. First assume that (1) and (2) hold. Given (1), there is no loss
of generality assuming that A has finite type. By (2), A is nilpotent;
therefore V(A) is locally solvable, a concept introduced in [4]. Since
are assuming that 1 6∈ typ {V(A)} we conclude from Theorem 7.11 of
[4] and the fact that V(A) is locally solvable that V(A) is congruence
permutable. Hence Theorem 3.14 (3)⇒(1) shows that SpecA(k) ¿

22
ck

.
Now assume that typ {V(A)}∩{1,5} = ∅ and SpecA(k)¿ 22

ck

. By
Theorem 12.5 of [4], A is a finite nilpotent algebra that generates a
congruence permutable variety. The proof of Theorem 1 of [1] shows

that in this situation SpecA(k) ¿ 22
ck

if and only if there is a finite
bound on the rank of nontrivial commutator terms, even if the type

of A is infinite. But Lemma 14.6 of [3] proves that if there is a fi-
nite bound on the rank of nontrivial commutator terms, then the clone
of A is finitely generated. (What is shown there is that the clone of
A is generated by a fixed Mal’tsev term from the clone, a collection
of unary terms representing all unary terms, and a collection of com-
mutator terms representing all nontrivial commutator terms.) Thus

typ {V(A)} ∩ {1,5} = ∅ and SpecA(k) ¿ 22
ck

imply that (1) holds.
Now, given (1) and that A is nilpotent we can derive (2) from Theo-
rem 3.14 (1)⇒ (3). ¤
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