
RESIDUAL SMALLNESS AND WEAK CENTRALITY

KEITH A. KEARNES AND EMIL W. KISS

Abstract. We develop a method of creating skew congruences on subpowers of
finite algebras using groups of twin polynomials, and apply it to the investiga-
tion of residually small varieties generated by nilpotent algebras. We prove that a
residually small variety generated by a finite nilpotent (in particular, a solvable E-
minimal) algebra is weakly abelian. Conversely, we show in two special cases that
a weakly abelian variety is residually bounded by a finite number: when it is gen-
erated by an E-minimal, or by a finite strongly nilpotent algebra. This establishes
the RS-conjecture for E-minimal algebras.

1. Introduction

One of the main areas of investigation in the theory of general algebraic structures
is to describe the subdirectly irreducible algebras in the variety V(A) generated by a
finite algebra A. For most finite algebras A there are only two, sharply contrasting
possibilities for this class of subdirectly irreducibles. It either consists of finitely many
finite algebras only (in this case we say that V(A) is residually bounded by a finite
number), or it is a proper class, having members of unbounded cardinality (that is,
V(A) is residually large). Those finite algebras that exhibit this behavior are said to
satisfy the RS-conjecture.

It is very difficult to construct finite algebras that do not satisfy the RS-conjecture
(see [9], [11]). A celebrated result of Ralph Freese and Ralph McKenzie [2] proves
the RS-conjecture for every finite algebra A in a congruence modular variety. This
result also tells us the residual character of A. If a certain “bad” situation occurs
in A, then arbitrarily large subdirectly irreducibles are constructed in V(A). If this
“bad” situation does not occur, then a finite bound is established for these subdirectly
irreducibles. For example, if A is a group, then the “bad” situation is the existence of
a nonabelian Sylow-subgroup of A. Even in the general modular case, the presence of
a nilpotent, but nonabelian congruence on a subalgebra of A is such a “bad” situation.
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All presently known constructions of finite algebras not satisfying the RS-conjecture
involve the existence of a nonabelian prime quotient. Therefore, in the light of the
Freese-McKenzie theorem, it is natural to ask: which finite nilpotent algebras satisfy
the RS-conjecture? Is it true that if such an algebra generates a residually small
variety, then it has to be abelian in some sense?

An affirmative answer to a variant of this question has been given in [5]. In that
paper the strong abelian property (also discovered by McKenzie) is considered instead
of the “normal” version. The nilpotence concept stemming from strong abelianness
is called strong nilpotence. In [5] it is shown that strongly nilpotent algebras satisfy
the RS-conjecture. It is also shown that the variety generated by a finite strongly
nilpotent algebra is residually small if and only if every member of this variety is
“abelian”, but this is neither “normal”, nor strong abelianness, but, rather, a new
concept called rectangular abelianness, or simply rectangularity. Rectangularity is
weaker than strong abelianness, but the nilpotence concept coming from rectan-
gularity is the same as strong nilpotence. Therefore we can phrase this result more
elegantly by saying that a rectangularly nilpotent algebra generates a residually small
variety if and only if this variety is rectangularly abelian, and if so, it is residually
bounded by a finite number.

A similar phenomenon occurs when we go back to “normal” nilpotence. It is not
true that a residually small variety generated by a finite nilpotent algebra is abelian.
However, we shall prove that every member of such a variety is weakly abelian. The
weak abelian property is a fourth concept, discovered in [4], that is weaker than both
“normal” and rectangular abelianness. The relationship between these four concepts
can be summarized by the following diagram:
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Figure 1: C = normal, W = weak, R = rectangular, S = strong.

We shall prove that, similarly to the “strong” case, even weak nilpotence (coming from
weak abelianness) and residual smallness imply that the variety is weakly abelian.
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The analogy with the “strong” case breaks when we consider the converse of this
result. It is not true that weakly (or even normally) abelian, finitely generated vari-
eties are residually small. The paper [6] gives a characterization of residual smallness
for finitely generated, normally abelian varieties. However, the converse, and hence
the RS-conjecture does hold for a special class of nilpotent algebras, the so-called
E-minimal algebras. The concept of E-minimality comes from tame congruence the-
ory. The structure of E-minimal algebras has been described in [3] and in [7]. With
the exception of two-element, non-solvable algebras, E-minimal algebras are always
nilpotent.

Thus, to summarize the main results of the paper, we shall first prove in Theo-
rem 3.1 that if A is a finite algebra in a residually small variety, then every weakly
nilpotent congruence (moreover, tolerance) of A is weakly abelian. If, in particular,
A itself is nilpotent, then every member of V(A) is weakly abelian. Conversely, in
Theorem 5.4 we show that if A is an E-minimal algebra in a weakly abelian variety,
then V(A) is residually bounded by a finite number. A similar conclusion holds for
strongly nilpotent algebras, as shown by Corollary 4.6.

Here is how the paper is organized. The first main result, Theorem 3.1 is proved
in Section 3. It is based on two constructions of large subdirectly irreducible alge-
bras. One of these constructions is inherited from [5], the other one is new, but its
origins are in the proof of the Freese-McKenzie Theorem. To prove the second main
result we first have to establish some properties of weakly abelian varieties, this is
done in Section 4. The basic observation is Lemma 4.4, which has a consequence
of independent interest stated in Corollary 4.5: in a weakly abelian variety, every
strongly nilpotent tolerance of every finite algebra is rectangular. Combined with
the results of [5] this corollary implies that the weak abelian property is equivalent
to residual smallness for strongly nilpotent varieties (see Corollary 4.6). The main
application of Lemma 4.4 is Corollary 4.9. This result shows that every E-minimal
algebra in a weakly abelian variety has a congruence ρ such that the blocks of ρ can
be considered as abelian groups, and the factor modulo ρ is essentially unary. This
structure is then used in Section 5 to give a finite bound on the size of the algebra,
in case it is subdirectly irreducible (see Lemma 5.2).

We shall now give a non-technical outline of the ideas used in the paper. In
Section 3 we use the assumption that V(A) is residually small by trying to construct
large subdirectly irreducibles in V(A). In Section 4 we use the condition that V(A) is
weakly abelian by trying to construct algebras in V(A) that are not weakly abelian.
In both cases we have to construct congruences on subpowers of A.

To do so, we use one of the main ideas of tame congruence theory. Take a subset
N of an algebra A that is the range of an idempotent unary polynomial of A (or
the intersection of such a range with a congruence class of A; such subsets are called
E-traces). Consider the unary functions of N induced by the unary polynomials
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of A under which N is closed. It is easy to show that if a partition on N is preserved
by all these functions, then it can be extended to a congruence of A. Usually we
choose the set N so small that these restrictions are either permutations of N , or
are constant on N . Such subsets are called permutational. In this case, the induced
unary polynomials from a group G(N), and the invariant partitions can be described
using the structure of this group (see Lemma 2.2).

To construct congruences on a subalgebra B of Ak we consider the set N k ⊆ Ak,
and try to apply the technique described in the previous paragraph for this subset.
For the sake of simplicity let us assume that k = 2, and that B = T is a tolerance
of A. In order for this technique to work, we have to make sure that N 2 ⊆ T is still a
permutational subset of T. This is ensured by centrality. If we assume that T weakly
centralizes N 2, then this condition will be satisfied. Therefore, if A is nilpotent in
a weak sense, then even T = A2 will work, provided that N is any trace for any
minimal quotient of A (in the sense of tame congruence theory).

Even if we have the appropriate centrality, we have to be able to compute the group
of unary permutations on N 2. This is done by considering twin unary permutations
of N . Two unary polynomials are called T -twins if they come from the same term
by substituting different, but T -related parameters. If T weakly centralizes N 2,
and N is permutational, then the unary polynomials induced by T on N 2 are either
constant, or are pairs of twin unary polynomial-permutations of N . The twin relation
is determined by the set of the twins of the identity map of N , which is a normal
subgroup in G(N). This is called the T -twin group on N .

The technique just described is summarized in Lemma 2.6. However, the twin
group has another important use in the paper. In a modular variety, the blocks of
abelian congruences can be considered as abelian groups by modular commutator
theory (see [1]). These groups also come up on type 2 traces in tame congruence
theory. But nilpotent algebras can have type 1 quotients as well, when the traces
are essentially unary algebras. If the twin-group on such a trace is trivial, then the
techniques in [5] can be applied. Otherwise, the twin-group on this trace is transitive.
If the appropriate centrality is assumed, then this twin group is abelian. For example,
the weak abelian property ensures that the twin group is abelian on every subset
(Lemma 4.2). The calculations in this twin group can replace the calculations in
the abelian groups of the modular case (see Theorem 4.3). This is the basis of the
argument in Section 5.

Traces for prime quotients are important from another aspect, too: they reflect the
global properties of the algebra. For example, if an algebra fails to be weakly abelian,
then one can push this failure into such a trace. Then the previously described
technique can be applied to transform such failures to even worse failures in the
subpowers of the algebra. This explains another characteristic of this paper: almost
all arguments and lemmas speak about the behavior of certain matrices within traces.
Understanding these leads to the main results.
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Most of the results are formulated for tolerances (compatible, reflexive and sym-
metric relations), and not congruences. We believe that tolerances are the natural
objects when studying these topics. One of the reasons is that it is easier to fac-
tor tolerances than congruences, because we do not have to take transitive closures,
which are hard to control. If T is a tolerance and δ is a congruence of A, then
T/δ = {(a/δ, b/δ) : (a, b) ∈ T} is a tolerance of A/δ, but it is not necessarily a
congruence, not even if T itself is a congruence (unless δ ⊆ T ).

Even though we tried to describe the ideas informally, we cannot pretend that the
paper can be read without some knowledge of tame congruence theory. The reader
is referred to [3] and [7] for an introduction to the theory. The reader may want
to brush up on E-minimal algebras, too, using these sources. We shall use some
concepts and results of [5] as described above, so glancing at that paper might also
be a good idea.

In the paper we use the usual terminology and notation. Boldface lower case
letters usually denote vectors (sequences). For example, the notation a T b means
that a = (a1, . . . , an) and b = (b1, . . . , bn) for an appropriate n, and (ai, bi) ∈ T for
every i (1 ≤ i ≤ n).

2. Preliminaries

In this section we summarize some basic facts about centrality and the twin relation
that we shall use throughout the paper. All binary relations considered are assumed
to be reflexive and symmetric. Let L and R be such relations of an algebra A. By
an L,R-matrix we mean a matrix of the form

[

t(a, c) t(a,d)
t(b, c) t(b,d)

]

,

where t is a polynomial of A, and a, b, c, d are vectors of A such that a L b and
c R d.

Definition 2.1 ([3], [4], [5]). Let L and R be reflexive and symmetric binary relations
of an algebra A, and δ a congruence of A. We say that

(1) C(L,R; δ) holds if for every L,R-matrix, the two elements in the first row
are δ-related if and only if the two elements in the second row are δ-related;

(2) W(L,R; δ) holds if for every L,R-matrix, if three of its elements are δ-related,
then all four elements are δ-related;

(3) R(L,R; δ) holds if for every L,R-matrix, if the two elements on the main
diagonal are δ-related, then all four elements are δ-related;

(4) S(L,R; δ) holds if and only if C(L,R; δ) and R(L,R; δ) both hold.

Extending the usual terminology of [3] from C to W and S, we will express the fact
that W(L,R; δ) or S(L,R; δ) holds by saying that L weakly or strongly centralizes
R modulo δ. We will express R(L,R; δ) by saying that L rectangulates R modulo δ.
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The relation L is called rectangular if R(L,L; 0A) holds, and A is called rectangular
if 1A = A× A is rectangular. Similarly, L is weakly abelian, if W(L,L; 0A) holds.

Let R be a reflexive and symmetric binary relation of an algebra A. Two poly-
nomials f(x) and g(x) are called R-twins, if there exists a polynomial t(x,y) and
vectors u R v such that f(x) = t(x,u) and g(x) = t(x,v) holds for every x. The
polynomials occurring in the rows of L,R-matrices are R-twins, while the ones in the
columns are L-twins. The twin relation plays an important role when considering
polynomials of subdirect powers of an algebra. For example, if T is a tolerance of A2,
then the unary polynomials of T are just pairs of T -twin unary polynomials of A

acting componentwise.
Let E be a finite subset of A. Consider the set S of all unary mappings of E to E

that are restrictions of unary polynomials of A. Then S = (S, ◦) is a semigroup,
where ◦ denotes composition. The R-twin relation between unary polynomials is a
reflexive and symmetric binary relation ∼R on S, which is obviously compatible with
respect to composition. Let G be the set of permutations in S. Clearly, G = (G, ◦) is
a group, we shall denote this group by G(E). We call E permutational, if all elements
of S are either permutations of S, or are constant maps.

It is well-known, and easy to check, that every reflexive, compatible relation on
a Maltsev algebra is a congruence. Hence, the relation ∼R restricted to G(E) is a
congruence. The normal subgroup of G corresponding to this congruence is just the
set of R-twins of the identity map. This subgroup is called the R-twin group on E,
and is denoted by Tw(E,R).

In tame congruence theory the induced algebra A|E is defined to have underlying
set E, and its basic operations are the restrictions (to E) of those polynomials p
of A under which E is closed, that is, for which p(E, . . . , E) ⊆ E. Thus if E
is permutational, then the unary part of the clone of A|E is G(E). Therefore the
congruences of A|E are determined by this group. In the following lemma we describe
the way this happens.

Recall that a group is said to act regularly on a set if it is transitive, and the
stabilizer of each point is trivial. It is easy to see that an abelian group that acts
transitively is always regular. The following lemma lists some well-known facts from
the theory of permutation groups; its proof is left to the reader.

Lemma 2.2. Let A be an algebra and E a finite permutational subset of A. Then
the following hold.

(1) Every partition containing the one given by the orbits of G(E) is a congruence
of A|E.

(2) Suppose that G(E) is transitive, let b ∈ E be a fixed element, and H the
stabilizer of b. Then the following hold.
(i) The mapping g(b) 7→ gH is a one-to-one correspondence between E and

the set of left cosets modulo H (on which G(E) acts via left multiplica-
tion).
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(ii) The congruences of A|E are in one-to-one correspondence with the sub-
groups of G(N) containing H. They are given by the left coset decompo-
sitions of G(E) modulo these subgroups, using the correspondence in (i).

(iii) If N is a normal subgroup of G(E), then its orbits on E give a congruence
of A|E, which corresponds to the subgroup HN via (ii).

Suppose that E is a finite E-trace of A, that is, the intersection of the range of an
idempotent polynomial of A and a class of a congruence of A. Then by Lemma 2.4
of [3], every congruence of A|E can be extended to A. This holds, in particular, when
E = N is a trace for a minimal congruence of A. In the latter caseN is permutational,
and the induced algebra A|N is simple. Therefore we have the following corollary to
the observations above.

Corollary 2.3. Let A be a finite algebra and N a 〈0A, θ〉-trace for a minimal con-
gruence θ of A. Then G(N) is either transitive on N , or is trivial. The same holds
for Tw(N,R) for every reflexive and symmetric binary relation R.

The twin relation enables us to describe the induced algebras on certain subsets
in special subdirect powers. For a reflexive and symmetric binary relation R and a
finite or infinite cardinal κ, denote by R[κ] the κ-ary relation consisting of all tuples
(ai : i < κ) such that (ai, aj) ∈ R for every i < j < κ. Let B be the subalgebra of
Aκ generated by R[κ] and the diagonal (that is, the set of constant sequences). Then
the unary polynomials of B are sequences (fi : i < κ) of polynomials of A such that
they are simultaneous R-twins, that is, they come from the same polynomial of A,
with the substitution of pairwise R-related tuples. In particular, these polynomials
are pairwise R-twins. A very important observation is that conversely, under certain
conditions, pairwise R-twin polynomials can be obtained from a single “father”.

Lemma 2.4. Let E be a finite subset of an algebra A, and R a reflexive and sym-
metric binary relation of A. Then any system of permutations of E that are pairwise
R-twin polynomials is in fact a family of simultaneous R-twin polynomials of E.

Proof. Let G = G(E) with identity element e, and denote by K the set of all se-
quences of Gn that are simultaneous R-twins. Clearly, K is a subgroup of Gn.
Suppose that (g1, . . . , gn) is a sequence such that gi ∼R gj for every i, j. Thus,
g−1

i gj ∈ Tw(E,R). Then obviously (e, . . . , e, g−1
1 gi, e, . . . , e) ∈ K, and by multiplying

these n elements we get that (g−1
1 g1, . . . , g

−1
1 gn) ∈ K. Finally, (g1, . . . , g1) ∈ K, so

(g1, . . . , gn) ∈ K and we are done. ¤

Thus if E is a finite permutational subset of A, then this lemma can be used to
describe the induced polynomial-permutations on the finite powers of E. To make
sure that we have described all unary polynomials of Ek this way, we have to assume
that Ek is also permutational, that is, that no polynomial permutation of E can be
a twin of a constant map of E. Thus, for a subset E of A we say that G(E) is
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∼R-closed if every R-twin of any permutation of E is also a permutation of E. This
condition can be ensured by assuming an appropriate centrality relation.

Lemma 2.5. Let E be a finite permutational E-trace of an algebra A, and R a
reflexive and symmetric binary relation of A. Then W(R,E2; 0A) implies that G(E)
is ∼R-closed.

Proof. Suppose that f(x) and g(x) are R-twin unary polynomials such that f is a
permutation of E, but g is constant on E. By the finiteness of E, the inverse of f
can be obtained in the form f k for some k. Clearly, f ′ = fkf and g′ = fkg are still
R-twins, f ′ is the identity map on E, and g′ is constant on E. Denote this constant
by b and let a ∈ E, a 6= b. Then the R,N 2-matrix

[

f ′(a) f ′(b)
g′(a) g′(b)

]

=

[

a b
b b

]

gives a failure of W(R,E2; 0A), and so the statement is proved. ¤

We can now describe induced algebras on certain subsets in some subpowers. This
description is the basis of several proofs in the paper. If T is a reflexive and symmetric
binary relation on A, then by T κ we mean the binary relation on Aκ, where two
vectors are T κ-related if and only if they are T -related componentwise.

Lemma 2.6. Let A be an algebra, E a finite permutational E-trace of A, and R a
reflexive and symmetric binary relation of A such that G(E) is ∼R-closed. Let B be
the subalgebra of Aκ generated by the diagonal and R[κ], and set F = Eκ ∩ B. Then
the following hold.

(1) F is an E-trace of B, and the induced algebra B|F is permutational.
(2) We have G(F ) = (∼R)[κ]|F . That is, the unary polynomials induced on F are

the constant maps, and the sequences of pairwise R-twin unary polynomial-
permutations of E acting componentwise on F .

(3) Let T be a reflexive and binary relation on A. Then we have Tw(F, T κ|B) =
Tw(E, T )κ ∩G(F ). That is, a sequence of polynomial-permutations of E is a
T k-twin of the identity map on F if and only if every component is a T -twin
of the identity map on E.

The analogous statements hold if we replace B and F by their respective subsets of
almost constant vectors (that is, elements that are constant on a cofinite subset of κ).
In this case we get the almost constant sequences of (∼R)[κ] in (2).

Proof. Most of the statements are easy calculations, so we only make some remarks.
The assumption of G(E) being ∼R-closed is used to show that every non-constant
unary polynomial of F is a permutation. We explain how to use the finiteness of E
to prove (2). Consider a system (fi : i < κ) of elements of G(E) that are pairwise
R-twins. To show that these yield a unary polynomial of B|F we have to make
them simultaneous R-twins. Lemma 2.4 helps, because there are only finitely many
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different permutations on the finite set E. A similar argument works in (3): if all fi

are T -twins of the identity map of E, then they are simultaneous twins of the identity
map by Lemma 2.4, because there are only finitely many different ones among them.
Finally we point out that F contains the diagonal of Eκ, and therefore different
sequences of polynomial-permutations of E will have different restrictions to F . ¤

We now give a summary of the concepts of nilpotence that we shall need in this
paper. Recall that a normal subgroup of a finite group G is nilpotent if and only of
it centralizes each prime quotient of G. This concept has been extended to general
algebras, and has been investigated in its most general form in [4] and [5]. Various
forms of it turned out to be useful. In this paper we need only two of these concepts:
the weakest and the strongest. The weakest one is defined as follows.

Definition 2.7. Let A be a finite algebra and T a tolerance of A. We say that T
is barely nilpotent, if T weakly centralizes every trace for every prime quotient of A,
that is, for every 〈δ, θ〉-trace N for every prime quotient 〈δ, θ〉 of A we have that
W(T,N 2; δ) holds. An algebra A is called barely nilpotent, if the tolerance 1A is
barely nilpotent.

From the results in [4] it follows that every homomorphic image of a weakly abelian
algebra is barely nilpotent (and satisfies the stronger forms of nilpotence coming from
normal centrality as well). Since we shall prove that in a residually small variety,
every barely nilpotent tolerance is weakly abelian, we shall get that in such varieties
all concepts of nilpotence coming from ordinary or weak centrality coincide.

Strong nilpotence has been investigated in [5]. A tolerance T of a finite algebra is
strongly nilpotent if it strongly centralizes every prime quotient of the algebra from
both sides. This is equivalent to the much weaker condition that T rectangulates
the traces of all prime quotients. We shall need the following observation from that
paper, which shows that a trace weakly centralized by a tolerance T is rectangulated
by this tolerance if and only if the T -twin group on this trace is trivial.

Lemma 2.8 ([5], Lemma 2.4). Let N be a 〈δ, θ〉-trace for a prime quotient 〈δ, θ〉
of a finite algebra A, and T a tolerance of A. Then R(T,N 2; δ) is equivalent to
W(T,N 2; δ) plus the condition that Tw(N, T ) is trivial modulo δ, that is, every T -
twin permutation of the identity map of N is equal to the identity map modulo δ.

3. Residually small varieties

As explained in the Introduction, one of the main results of the paper is the following.

Theorem 3.1. Let A be a finite algebra in a residually small variety. Then every
barely nilpotent tolerance of A is weakly abelian. If A is barely nilpotent, then every
member of V(A) is weakly abelian.

The proof of this statement depends on the fact that in a residually small variety
we can understand the behavior of T, T -matrices that are contained in traces weakly
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centralized by T . Using deeper methods, a complete description of such matrices is
possible. However, to prove Theorem 3.1, the following lemma is sufficient.

Lemma 3.2. Let A be a finite algebra in a residually small variety, T a tolerance
of A, and N a 〈0A, θ〉-trace for a minimal congruence θ of A such that W(T,N 2; 0A)
holds. Then there is no T, T -matrix

[

v u
v v

]

with u 6= v, u, v ∈ N .

We first show how this lemma implies Theorem 3.1. Let T be a barely nilpotent
tolerance of A. Suppose that T is not weakly abelian, then there exists a T, T -matrix

[

v u
v v

]

,

where u 6= v. Let 〈δ, θ〉 be a prime quotient of A such that (u, v) ∈ θ−δ. By applying
an appropriate unary polynomial we may assume that u and v are contained in a
〈δ, θ〉-trace N . As T is barely nilpotent, we have W(T,N 2; δ). Replacing A by A/δ
and T by T/δ we may assume that δ = 0A. Then Lemma 3.2 gives a contradiction,
showing that T is weakly abelian.

Thus, if A itself is barely nilpotent, then it is weakly abelian. The weak abelian
property is clearly preserved by direct products and subalgebras, hence each finite
algebra B ∈ S P(A) is weakly abelian. Thus all homomorphic images of B are barely
nilpotent (by the results of [4]), so they are weakly abelian by residual smallness. ¤

The rest of this section is devoted to the proof of Lemma 3.2. The proof consists of
three steps. First we apply a result of [5] to prove the case when Tw(N, T ) is trivial.
Corollary 2.3 shows that if Tw(N, T ) is nontrivial, then it is transitive on N . In the
second step we present a new construction of subdirectly irreducibles, which settles
the case when Tw(N, T ) is abelian and transitive on N . In the third step, we apply
the result of the second step in an appropriate subpower of A to show that Tw(N, T )
is always abelian.

For the first step let us quote the following construction of large subdirectly irre-
ducibles from [5].

Lemma 3.3 ([5], Lemma 8.5). Let N be a 〈0A, θ〉-trace for a minimal congruence θ
of a finite algebra A, and T a tolerance of A such that R(T,N 2; 0A) holds. Suppose
that there exist

(1) pairwise T -related elements u, v, w ∈ N which are not all equal, and
(2) pairs (a`, b`) ∈ T for 1 ≤ ` ≤ m such that the congruence of T[3] generated

by collapsing (b`, a`, a`) with (a`, a`, b`) for every 1 ≤ ` ≤ m collapses (v, v, v)
with (u, v, w).

Then V(A) is residually large.
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This result immediately yields the case of Lemma 3.2 when the twin group on N
is trivial. Indeed, assume that the conditions of this lemma hold, and Tw(N, T ) is
trivial. By Lemma 2.8 we get R(T,N 2; 0A). Suppose that there is a T, T -matrix

[

v u
v v

]

such that u 6= v ∈ N . This matrix can be written in the form
[

t(a, c) t(a,d)
t(b, c) t(b,d)

]

,

where t is a polynomial, a T b, and c T d. Apply Lemma 3.3 so that w = v and
the elements a` and b` are the components of a and b, respectively. Define an m-ary
polynomial on T[3] by

s((x1, y1, z1), . . . , (xm, ym, zm)) = (t(x,d), t(y, c), t(z, c)) .

Then clearly

s((b1, a1, a1), . . . , (bm, am, am)) = (v, v, v) ,

and

s((a1, a1, b1), . . . , (am, am, bm)) = (u, v, v) ,

showing that (2) of Lemma 3.3 holds. Thus V(A) is residually large. This contradic-
tion proves that such a T, T -matrix cannot exist.

For the second step of our proof we need a new construction of subdirectly irre-
ducibles, whose origin is in the Freese-McKenzie theorem ([1], Theorem 10.15). We
need to formulate this result more generally, in order to be able to complete the
third step. Therefore, it is formulated for permutational E-traces rather than for
traces of minimal quotients. (We could have easily generalized the previous lemma
for permutational E-traces, too.)

Lemma 3.4. Let N be a permutational E-trace of a finite algebra A, and T a toler-
ance of A such that N is ∼T -closed, and Tw(N, T ) is abelian and transitive on N .
Suppose that there exist

(1) T -related elements u, v ∈ N which are not equal, and
(2) pairs (a`, b`) ∈ T for 1 ≤ ` ≤ m such that the congruence of T[3] generated

by collapsing (b`, a`, a`) with (a`, a`, b`) for every 1 ≤ ` ≤ m collapses (v, v, v)
with (u, v, v).

Then V(A) is residually large.

Proof. First notice that N 2 ⊆ T . Indeed, let a, b ∈ N . Then there exists a g in
H = Tw(N, T ) such that g(a) = b. Since g is a T -twin of the identity, we get that
g(a) and a are T -related. Hence N 2 ⊆ T indeed. Note also that the group H acts
regularly on N , since it is abelian and transitive.
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Let κ be an infinite cardinal, and B the algebra of all almost constant elements
in T [κ]. Let M = Nκ ∩ B. Lemma 2.6 shows that M is a permutational E-trace
of B, and describes the group G(M) to be the set of all almost constant sequences
(ffi : i < κ) where f ∈ G(E) and fi ∈ H.

Consider the subgroup K of Hκ consisting of those elements whose coordinates
are equal to the identity element e ∈ G(E) with at most finitely many exceptions,
and the product of these exceptional elements is e. The elements of K act on M
componentwise. As H is abelian and normal in G(E), from the description of G(M)
we see that K is normal in G(M). Hence its orbits form a congruence of B|M by
Lemma 2.2. SinceM is an E-trace, this congruence can be extended to a congruence ψ
of B (see Lemma 2.4 in [3]).

Let v be the element of M which is constant v, and denote by ui the element
of B whose every component is v except that the i-th component is u. Note that v

and ui are not ψ-related. Indeed, suppose that for some f = (fi : i < κ) ∈ K we
have f(v) = ui. By the regularity of H we see that fj = e with the only exception
of j = i, but fi 6= e, because u 6= v. Therefore the product of all fj’s is not the
identity element, which is a contradiction. Notice also that all elements ui are in the
same ψ-class. Indeed, there is a h ∈ H mapping v to u, and so we can take ui to
uj by the system of permutations whose components are all e except that the i-th
component is h−1 and the j-th component is h. These permutations multiply to e,
and so we moved ui to uj by an element of K.

Choose a congruence ψ0 ≥ ψ of B that is maximal among the ones separating v

and u0. Then B/ψ0 is a a subdirectly irreducible factor of B, let λ denote its
cardinality. To finish the proof it is sufficient to show that λ ≥ κ.

Denote by id` the element of B whose every component is a` except that the i-th
component is b`. We show that for each i 6= j < κ there exists an 1 ≤ ` ≤ m such
that (id`, jd`) /∈ ψ0.

Indeed, suppose that this fails for some i 6= j. Let C be the subalgebra of B

consisting of those functions that are constant on the set κ − {i, j}. For c ∈ C
let ϕ(c) = (ci, ck, cj), where k ∈ κ − {i, j} is arbitrary. Clearly, ϕ : C → T[3] is
an isomorphism. We have ϕ(id`) = (b`, a`, a`), ϕ(jd`) = (a`, a`, b`), ϕ(v) = (v, v, v),
and ϕ(ui) = (u, v, v). Let θ = ϕ(ψ0|C), this is a congruence of T[3]. It collapses
every (b`, a`, a`) with (a`, a`, b`), so condition (2) of the lemma implies that v ψ0

ui. But ui ψ u0 by our remark above, and so we have that v ψ0 u0, which is a
contradiction, proving the statement of the previous paragraph.

Now define a mapping g : κ→ (B/ψ0)
m by g(i) = (id1/ψ0, . . . ,

idm/ψ0). What we
have just proved means exactly that g is injective. Therefore κ ≤ λm = λ, proving
the statement of the lemma. ¤

Specializing the statement of this lemma exactly as in the case of Lemma 3.3 we
get the case of Lemma 3.2, when Tw(N, T ) is abelian and transitive.
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Corollary 3.5. Let A be a finite algebra in a residually small variety, T a tolerance
of A, and N a permutational E-trace of A such that N is ∼T -closed. Suppose that
Tw(N, T ) is abelian and acts transitively on N . Then there is no T, T -matrix of the
form

[

v u
v v

]

with u 6= v, u, v ∈ N .

Thus (taking Lemma 2.5 into consideration) we have completed the second step of
the proof. Hence to complete the third step it is sufficient to prove that Tw(N, T ) is
always abelian. This has first been proved using a group-theoretic lemma based on
Burnside’s theorem on normal complements, which is found in [8], Theorem 0. Later,
a much simpler proof of the same group-theoretic lemma has been given by Gyula
Lakos. Examining his proof, we came up with the following elementary argument.

Lemma 3.6. Let A be a finite algebra in a residually small variety, T a tolerance
of A, and N a permutational E-trace of A such that W(T,N 2; 0A) holds. Then
Tw(N, T ) is abelian.

Proof. The induced algebra A|N is permutational, so it is a minimal algebra, and
hence Pálfy’s Theorem applies. If its type is nonabelian, then |N | = 2, and so the
twin group must be a subgroup of the cyclic group of order two, and we are done.
(In fact, in this case the twin group must be trivial because W(T,N 2; 0A) implies
that T must not contain a nontrivial pair from N).

If the type of A|N is 2, then N has an abelian group structure. Suppose that
f(x) ∈ G(N) is a T -twin of the identity map e(x) of N . Then f(x) − e(x) and
e(x) − e(x) are also T -twin unary polynomials. The second one is constant, so by
W(T,N 2; 0A) we see that f(x) − e(x) is constant, too. Therefore f is a translation.
The group of translations is abelian, and so we are done in this case, too.

Assume now that the type of A|N is 1. The idea is to go to a power, find an
E-trace whose twin group is already abelian, and then apply the (already proved)
Corollary 3.5. Let g1, g2 ∈ H = Tw(N, T ), and h = g−1

1 g−1
2 g1g2. We have to show

that h is the identity map. Let |N | = k, and B be the subalgebra of Ak generated
by the diagonal and the set N k. As A|N is essentially unary, the N 2-twin relation
is trivial on N . Hence applying Lemma 2.6 to the relation R = N 2 we see that
Nk is a permutational E-trace of B, and G(N k) consists of all constant sequences

f̂ = (f, . . . , f), where f ∈ G(N).
The equivalence relation consisting of the orbits of G(N k) is a congruence of the

induced algebra on Nκ, and so each of these orbits is an E-trace. Let n = (n1, . . . , nk)
be a listing of the elements of N , and M the orbit containing n. Then G(M) is the set
of restrictions of the elements of G(N k) to M . However, the stabilizer of n in G(M)

is already trivial: if f̂ fixes n, then f(ni) = ni for each i, and so f is the identity map.
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Since G(M) is transitive on M , it is in fact regular. Thus the congruences of B|M
correspond to the subgroups of G(M) in the usual manner (see Lemma 2.2).

Denote by C the cyclic subgroup of G(M) generated by the permutation ĥ, and
let K be the C-orbit containing n. Since G(M) acts regularly on M , the orbits of C

form a congruence of B|M . Thus K is also an E-trace. The group G(K) consists
of the restrictions of all elements of G(M) to K under which K is closed. But

if f̂ is such, then f̂(n) = ĥm(n) for some m, and therefore f = hm. Thus K is a

permutational E-trace, and G(K) is the set of all powers of ĥ. Thus G(K)∼= C is a
cyclic group, and so the twin-group for any relation must be abelian, too.

Now consider the relation T k restricted to B. From Lemma 2.6 (3) we see that
Tw(K,T k|B) = G(K), since h ∈ H = Tw(N, T ). Therefore this twin group is
transitive as well. It is also clear that G(K) is closed under the T k-twin relation.
Thus the initial conditions of Corollary 3.5 are satisfied for K and T k. We shall set
up a T k, T k-matrix in K.

Let e denote the identity map of N . We know that g1, g2 ∈ H, so their inverses
are in H as well. Thus we have polynomials and T -related parameter sequences such
that the following equalities hold for every n ∈ N .

g1(n) = t1(n,u
1)

e(n) = t1(n,v
1)

g−1
1 (n) = s1(n,w

1)
e(n) = s1(n, z

1)

g2(n) = t2(n,u
2)

e(n) = t2(n,v
2)

g−1
2 (n) = s2(n,w

2)
e(n) = s2(n, z

2) .

We could actually assume that t1 = t2 = s1 = s2, but this would obscure the idea of
the proof. We are interested in the expression g−1

1 g−1
2 g1g2(n). This can be written as

s1(s2(t1(t2(n,u
2),u1),w2),w1) .

Therefore we see that
[

g−1
1 e−1g1e(n) g−1

1 g−1
2 g1g2(n)

e−1e−1ee(n) e−1g−1
2 eg2(n)

]

is a T, T -matrix in N for every fixed value of n. If we change the value of n within N ,
then we get N -twin polynomials of the entries of this matrix. Hence

[

ĝ−1
1 ê−1ĝ1ê(n) ĝ−1

1 ĝ−1
2 ĝ1ĝ2(n)

ê−1ê−1êê(n) ê−1ĝ−1
2 êĝ2(n)

]

is a T k, T k-matrix in B. By evaluating the compositions we see that this matrix is
equal to

[

n ĥ(n)
n n

]

.

Corollary 3.5 implies that ĥ(n) = n, so h = e, and the proof is complete. ¤
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4. Weakly abelian varieties

In this section we shall investigate weakly abelian varieties. We start by presenting
a useful way to construct T, T -matrices using twin polynomials.

Lemma 4.1. Let T be a tolerance of an algebra A, and E ⊆ A. Suppose that
[

a b
c d

]

is a T, T -matrix with a, b, c, d ∈ E, and g ∈ Tw(E, T ). Then
[

g(a) b
g(c) d

]

is a T, T -matrix, too. Similarly, we can prefix the other column, or any row with g,
or the entire matrix with any unary polynomial, and shall still get a T, T -matrix.

Proof. Suppose that
[

a b
c d

]

=

[

t(a, c) t(a,d)
t(b, c) t(b,d)

]

.

As g ∈ Tw(E, T ), we can write g(x) = s(x,u) for some polynomial s such that s(x,v)
is the identity map on E for some vector v that is T -related to u. Hence

[

g(a) b
g(c) d

]

=

[

s(t(a, c),u) s(t(a,d),v)
s(t(b, c),u) s(t(b,d),v)

]

is clearly a T, T -matrix (with respect to the composition of s and t). ¤

Our first observation is to show that in a weakly abelian variety, all twin-groups
are abelian.

Lemma 4.2. Let A be a finite algebra and T a weakly abelian tolerance of A. Then
for every subset E of A, Tw(E, T ) is an abelian group.

Proof. Let f, g ∈ Tw(E, T ) and a ∈ E. As E is finite, f−1 and g−1 are also twin
polynomials of the identity map on E. Use the previous lemma four times: we start
with the trivial T, T matrix whose all four entries are a, and apply g to the first
row, then f to the first column, then g−1 to the first row, and finally f−1 to the first
column. The resulting T, T matrix is

[

f−1g−1fg(a) g−1g(a)
f−1f(a) a

]

=

[

f−1g−1fg(a) a
a a

]

.

As T is weakly abelian, we get that f−1g−1fg(a) = a. Thus fg(a) = gf(a). ¤

The equivalence classes for Abelian congruences on an algebra in a congruence
modular variety can be considered as modules: the ring is given by the action of the
algebra on this class via unary polynomials. We shall now prove a generalization
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of this statement. We show that if the twin group for a weakly abelian tolerance is
regular on a subset, then that subset can be considered a module.

Theorem 4.3. Let E be a subset of a finite algebra A, and T a weakly abelian
tolerance of A. Suppose that the group H = Tw(E, T ) is transitive on E. Fix 0 ∈ E
arbitrarily.

(1) For every w ∈ E there is a unique element hw of H such that hw(0) = w.
Identify w with hw. This defines an abelian group on E such that 0 is the zero
element. We have hu(v) = u+ v for every u, v ∈ E.

(2) If p is a unary polynomial of A|E, then p can be written as p(x) = λ(x) + c
(x ∈ E), where c ∈ E, and λ is a unary polynomial, which is an endomor-
phism of the group on E defined in (1).

(3) Let S be the set of unary polynomials of A|E that fix 0. Then the closure of S
under addition and subtraction in the endomorphism ring of (E,+) will be a
subring R, and E becomes an R-module. Every unary polynomial of A|E is a
unary polynomial of this module. The congruences of this module and of A|E
are the same.

(4) The T, T -matrices in E are exactly the matrices
[

u v
w z

]

satisfying u+ z = w + v.

Proof. The group H = Tw(E, T ) is abelian by the previous lemma, and as it is
transitive, it is regular, proving (1).

Next we prove (4). Suppose that the matrix in its statement satisfies u+z = w+v.
Then

[

u v
w z

]

=

[

hwh
−1
w hu(0) hwh

−1
w hv(0)

hwh
−1
u hu(0) hwh

−1
u hv(0)

]

,

which is indeed a T, T -matrix. Conversely, if we have a T, T -matrix
[

u v
w z

]

,

then create the new T, T -matrix
[

hwh
−1
u (u) hwh

−1
v (v)

huh
−1
u (w) huh

−1
v (z)

]

=

[

w w
w u− v + z

]

.

From the fact the T is weakly abelian we get that u− v+ z = w. Thus (4) is proved.
Now let p be a unary polynomial on A|E, and u, v ∈ E. Then

[

phuhv(0) ph0hv(0)
phuh0(0) ph0h0(0)

]
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is a T, T -matrix by Lemma 4.1. Calculating its elements and applying (4) we get
that p(u + v) + p(0) = p(u) + p(v). Thus λ(x) = p(x) − p(0) and c = p(0) satisfy
the conditions in (2). The function λ is a unary polynomial, because it is equal to
h−p(0)p(x).

Finally we prove (3). Since the set S is closed under composition, R is indeed a
ring. If λ ∈ S, then λ(x) + c = hcλ(x) is a unary polynomial of A|E. Therefore
the only nontrivial statement left to be proved is that every congruence θ of A|E
is a module-congruence. Since the translations hw of the group structure on E are
unary polynomials of A|E, the congruence θ is a group-congruence. Thus the class
containing 0 is a subgroup, which is closed under the elements of S. Hence it is
closed under finite sums and differences of the elements of S, and therefore it is an
R-submodule. ¤

The following lemma is our main tool to understand algebras in a weakly abelian
variety.

Lemma 4.4. Let A be a finite algebra such that H S(A3) is weakly abelian, θ a
minimal congruence of A, and T a tolerance of A such that R(T, θ; 0A) holds. Then
for every T, T -matrix

[

u v
w u

]

such that u θ v we have that u = v.

Proof. Let
[

u v
w u

]

=

[

t(a, c) t(a,d)
t(b, c) t(b,d)

]

,

where t is a polynomial, a T b, c T d, and suppose that (u, v) ∈ θ − 0A. By
composing t with an appropriate unary polynomial we may assume that u and v are
different elements of a θ-trace N .

Let B be the subalgebra of A3 with underlying set T [3]. We define some vectors in
the algebra B. Let

a′ = (a, a,b)
b′ = (a, a, a)
c′ = (c, c,d)
d′ = (c,d,d) .

By this notation we mean that, say, a′ has the same length as a, and the i-th com-
ponent of a′ is (ai, ai, bi), where ai is the i-th component of a and bi is the i-th
component of b. Then

[

t(a′, c′) t(a′,d′)
t(b′, c′) t(b′,d′)

]

=

[

(u, u, u) (u, v, u)
(u, u, v) (u, v, v)

]
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is a T 3, T 3-matrix in B. We shall construct a congruence ρ of B that collapses three
elements of this matrix, but not the fourth one. This will contradict the fact that
B/ρ is weakly abelian, and will therefore finish the proof.

Let M = N 3∩B. Lemma 2.6 implies that M is a permutational E-trace of B, and
G(M) consists of triples of pairwise T -twin permutations of G(N). From R(T, θ; 0A)
we get that the three permutations in the triples are equal. Therefore G(M) =
{(f, f, f)|M : f ∈ G(N)}.

Consider the partition of M defined by the following rule. Triplets having three
different entries form singleton classes, and for every x ∈ N , triplets containing the
element x at least twice form a class. This is obviously a G(M)-invariant partition
of M , and therefore it is a congruence of B|M . Since M is an E-trace, this partition
can be extended to a congruence ρ of B. By the definition of ρ we see that the sets

{(u, u, u), (u, u, v), (u, v, u)} and {(u, v, v)}

are contained in two different ρ-classes. ¤

Corollary 4.5. In a weakly abelian variety, every strongly nilpotent tolerance of every
finite algebra is rectangular.

Proof. Let A be a finite algebra in a weakly abelian variety, and T a strongly nilpotent
tolerance of A. Suppose that T is not rectangular. Then there exists a T, T -matrix

[

u v
w u

]

such that u 6= v. Let δ be a maximal congruence of A not containing the pair (u, v),
and θ its unique cover. The fact that T is strongly nilpotent implies that R(T, θ; δ)
holds. Hence we can apply Lemma 4.4 to the algebra A/δ, the congruence θ/δ and
tolerance T/δ to get a contradiction. ¤

Corollary 4.6. A finite strongly nilpotent algebra generates a residually small variety
if and only if this variety is weakly abelian (if and only if this variety is rectangular).
If so, the variety has a finite residual bound.

Proof. It is shown in [5] that a finite strongly nilpotent algebra generates a residually
small variety iff this variety is rectangular, and if so, it has a finite residual bound.
Such varieties are of course weakly abelian. It is also shown in [5] that all finite
members of a variety generated by a finite, strongly nilpotent algebra are also strongly
nilpotent. So if such a variety is weakly abelian, then by Corollary 4.5, all finite
algebras, and hence all algebras in this variety are rectangular. ¤

Now we turn to the investigation of E-minimal algebras. Recall that a finite
algebra is called E-minimal if it is minimal with respect to all of its prime quotients.
Equivalently, a finite algebra A is E-minimal if and only if every unary polynomial p
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of A is either a permutation of A, or collapses all prime congruence quotients of A.
This latter statement means that if δ ≺ θ are congruences of A, then p(θ) ⊆ δ.

As shown in [3], every E-minimal algebra is either a two-element algebra, or its
typeset is 2, or its typeset is 1. These solvable E-minimal algebras are characterized in
[3], Theorem 13.7, and in [7], Theorem 4.4, respectively. From these characterizations,
and from the results in [4] it follows that E-minimal algebras of types 2 and 1 are
barely nilpotent. We also mention that E-minimal algebras of type 2 are Maltsev.
A Maltsev algebra is weakly abelian if and only if it is abelian, and in this case the
variety it generates has a finite residual bound. However, the arguments below work
for these types of E-minimal algebras, too, there is no need to make a distinction.

Lemma 4.7. Let A be an E-minimal algebra such that H S(A3) is weakly abelian,
and T a tolerance of A. Let ρ denote the partition given by the orbits of Tw(A, T ).
Then for every T, T -matrix

[

u v
w u

]

we have that (u, v) ∈ ρ.

Proof. Suppose that this statement fails, and choose a failure so that θ = Cg(u, v)
be as small as possible. We show that θ ∩ ρ is a congruence of A.

Indeed, let (a, b) ∈ θ ∩ ρ, and p a unary polynomial of A. Since p preserves θ,
we have to prove that p(a) and p(b) are ρ-related. As (a, b) ∈ ρ there exists a
g ∈ Tw(A, T ) such that g(a) = b. Suppose first that p is a permutation of A.
Then pgp−1 carries p(a) to p(b), and it is still a T -twin of the identity map pp−1

of A. Therefore (p(a), p(b)) ∈ ρ. Now suppose that p is not a permutation of A.
By E-minimality, p is collapsing for every prime quotient of A. Thus (p(a), p(b))
is contained in every lower cover of θ. Therefore θ = Cg(u, v) > Cg(p(a), p(b)).
Applying Lemma 4.1 to the trivial T, T -matrix with all entries equal to a we get that

[

pg(a) p(a)
pg2(a) pg(a)

]

is a T, T -matrix. The elements in the top row are pg(a) = p(b) and p(a), and we
have seen that this pair generates a smaller congruence than θ = Cg(u, v). By the
minimality assumption on θ we get that (p(a), p(b)) ∈ ρ. Hence we have proved that
θ ∩ ρ is indeed a congruence.

The pair (u, v) shows that θ ∩ ρ < θ. Let δ ≥ θ ∩ ρ be a lower cover of θ. We
show that R(T, θ; δ) holds. We have W(T, θ; δ), since H(A) is weakly abelian. Thus
by Lemma 2.8 it is sufficient to show that the T/δ-twin group on N/δ is trivial for
every 〈δ, θ〉-trace N . In other words, we have to show that if f and g are T -twin
unary polynomials of A mapping N into N , f is the identity map on N modulo δ,
and g is a permutation of N modulo δ, then they agree on N modulo δ. Since these
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unary polynomials do not collapse θ to δ, they are both permutations of A by E-
minimality. Therefore f−1g is a T -twin of the identity map of A, which still maps N
to N . Thus for every element a ∈ N , the elements f−1g(a) and a are ρ-related. They
are θ-related, too, because N 2 ⊆ θ, and from θ ∩ ρ ≤ δ we get that f−1g(a) δ a.
Hence f−1g induces the identity map on N/δ. Thus R(T, θ; δ) holds indeed.

Now Lemma 4.4 applied to A/δ, T/δ and θ/δ shows that (u, v) ∈ δ. This contra-
diction to δ < θ = Cg(u, v) proves the lemma. ¤

Corollary 4.8. Let A be an E-minimal algebra such that H S(A3) is weakly abelian,
and T a tolerance of A. Then the orbits of Tw(A, T ) form a congruence relation ρ
of A, and R(T, T ; ρ) holds.

Proof. To show that ρ is a congruence, let (a, b) ∈ ρ, and p a unary polynomial
of A. We have to prove that (p(a), p(b)) ∈ ρ. From (a, b) ∈ ρ we get that there is a
g ∈ Tw(A, T ) such that g(a) = b. Look at the T, T -matrix

[

pg(a) p(a)
pg2(a) pg(a)

]

.

Lemma 4.7 implies that (pg(a), p(a)) = (p(b), p(a)) ∈ ρ.
To prove that R(T, T ; ρ) holds suppose that

[

a b
c d

]

is a T, T -matrix such that (a, d) ∈ ρ. We have to prove that all four elements a, b, c, d
are ρ-related. Let g ∈ Tw(A, T ) be such that g(d) = a. Look at the T, T -matrix

[

a b
g(c) g(d)

]

.

Lemma 4.7 yields that (a, b) ∈ ρ. By symmetry we see that (a, c) ∈ ρ as well. ¤

Corollary 4.9. Let A be an E-minimal algebra such that V(A) is weakly abelian.
Then the orbits of Tw(A, 1A) form a congruence relation ρ of A, and A/ρ is essen-
tially unary.

To prove this corollary we take T = 1A in Corollary 4.8. Then we get that A/ρ is
rectangular (and still E-minimal). To finish the proof, we need the following result.

Theorem 4.10. A rectangular E-minimal algebra generates a weakly abelian variety
if and only if it is essentially unary.

Proof. Let A be a rectangular E-minimal algebra generating a weakly abelian variety.
Then this variety is rectangular by Corollary 4.6. In [5], Theorem 7.7 an equational
characterization of finitely generated rectangular varieties is given. This theorem is
too complicated to quote here in its general form. It implies that if A fails to be
essentially unary, then A has an at least binary term m(x, z) that depends on all of
its variables, and another term k(x, y) such that the identity k(x,m(y, z)) = m(x, z)
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holds in A. As m depends on z, there exist vectors a, c and c′ in A such that
u = m(a, c) 6= m(a, c′) = u′. Hence,

k(a,m(a, c)) = m(a, c) 6= m(a, c′) = k(a,m(a, c′)) .

Thus the unary polynomial p(y) = k(a, y) has two different fixed points u and u′.
This polynomial has an idempotent power, which still has u and u′ as fixed points.
However, in an E-minimal algebra, every idempotent unary polynomial is either
constant, or the identity map. Therefore p itself must be a permutation of A.

We show that k(x, y) does not depend on x. Suppose otherwise. Then there
exist b and d such that k(a, d) 6= k(b, d). But k(a, y) is a permutation, so we have
k(b, d) = k(a, d′) for some d′ ∈ A. Rectangularity implies that k(b, d) = k(a, d),
which is a contradiction.

Thus we have the identity k(x, y) = k(x′, y), and hence

m(x, z) = k(x,m(y, z)) = k(x′,m(y, z)) = m(x′, z) .

Thus m(x, z) does not depend on x. This contradiction finishes the proof. ¤

One can avoid referring to the characterization of rectangular varieties, and can
even localize the above theorem by an elementary, but longer argument. From Corol-
lary 4.6 we get the following.

Corollary 4.11. A strongly nilpotent E-minimal algebra generates a residually small
variety if and only if it is essentially unary.

5. A cardinality bound

This section is devoted to the proof that bounds the size of subdirectly irreducible
algebras in weakly abelian E-minimal varieties.

Lemma 5.1. Let X be a set, G an abelian group of exponent m < ∞, and 0 6=
a ∈ G. Suppose that F is a set of functions mapping X to G such that for any two
elements c 6= d of X, the element a can be expressed in the form

±(g1(c) − g1(d)) ± (g2(c) − g2(d)) ± · · · ± (gn(c) − gn(d)) ,

where each gj ∈ F . Then |X| ≤ m|F |.

Proof. By Zorn’s lemma, among the subgroups of G not containing the element a
there is a maximal one, called H. We can replace G by G/H, and the element a by
a+H, and the conditions will still hold. But the new G is now subdirectly irreducible.
It is well-known that subdirectly irreducible abelian groups are cyclic or quasi-cyclic.
As the exponent m is finite, we get that G is a cyclic group of exponent at most m.
Hence |G| ≤ m. The set of mappings in F clearly separates the points of X, that is,
for every c 6= d there exists an element f ∈ F such that f(c) 6= f(d). Therefore the
mapping c 7→ (f(c) : f ∈ F ) is injective from X to GF , showing that |X| ≤ m|F |. ¤
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Now we present our main lemma that bounds the size of subdirectly irreducibles. It
shows clearly the advantage of E-minimal algebras over general nilpotent ones. The
lemma works only if there is a “large” E-trace with a regular twin group containing
a pair from the monolith. In the general case, there exist large E-traces with regular
twin groups, but the monolith may restrict trivially to them (see [6] for details).

Lemma 5.2. Let S be a finite weakly abelian subdirectly irreducible algebra, and σ a
congruence of S such that S/σ is rectangular, and every term of S/σ depends on at
most r variables.

(1) If σ = 0S, then |S| ≤ 2M , where M = |FV(S)(r + 1)|.
(2) Suppose that E is an E-trace of S with respect to σ containing a nontrivial pair

(a, b) in the monolith of S, and that the group H = Tw(E, 1S) is transitive.
Let m be the exponent of H. Then

|S| ≤ 2M ·mM .

(3) If S is contained in a variety generated by an n-element algebra, then m ≤ n.

Proof. Let B = b/σ. Consider all r + 1-ary terms t(x,y) such that the range of t
on S intersects B. For every such term ti fix a vector ui such that ti(c,u

i) ∈ B
for a suitable c ∈ S. Here i ∈ I, where I is an at most M -element set. Define
fi(x) = ti(x,u

i), and let F be the set of all functions fi for i ∈ I. To every c ∈ S,
assign the set

I(c) = {i ∈ I : ti(c,u
i) ∈ B} .

Claim 5.3. Suppose that (c, d) ∈ S2 such that I(c) = I(d), and t(x,y) is any term
such that t(c,v) ∈ B for some v. Then there exists a vector u and an f ∈ F such
that f(x) = t(x,u) holds for every x ∈ S, and all four vertices of the 1A, 1A-matrix

[

t(c,v) t(c,u)
t(d,v) t(d,u)

]

are in B.

Proof. In the factor algebra S/σ the term t(x,y) can depend on at most r variables
in y. Write y = (z, z′) so that z is an r-tuple, and t(x,y) = t(x, z, z′) does not
depend on z′ modulo σ. Using the same split we can write v = (w,w′). Define
t′(x, z) = t(x, z, z1, . . . , z1) (where z1 is the first component of z). Then we have
t′(x,w) σ t(x,v) for every x.

We assumed that t(c,v) ∈ B. As B is a σ-class, this implies that t′(c,w) ∈ B.
Since t′ is r + 1-ary, there exists an i ∈ I such that t′ = ti. Let u = (ui, ui

1, . . . , u
i
1).

Thus fi(x) = ti(x,u
i) = t′(x,ui) = t(x,u) for every x. From the definition of ui we

get that there is a c′ ∈ S such that ti(c
′,ui) ∈ B. Thus we see that

ti(c
′,ui) = t(c′,u) σ t(c,v) ,
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since both elements are in B. The rectangularity of S/σ gives

t(c,u) σ t(c,v) .

Hence ti(c,u
i) = t(c,u) ∈ B, and so I(c) = I(d) implies that t(d,u) = ti(d,u

i) ∈ B.
Thus

t(d,u) σ t(c,v) ,

and by using the rectangularity of S/σ again we get that

t(d,u) σ t(d,v) .

This proves the claim.

Consider any two elements c 6= d such that I(c) = I(d). As S is subdirectly
irreducible, we have (a, b) ∈ Cg(c, d). Consider a Maltsev chain demonstrating this.
The claim proves that the entire Maltsev chain is in B, since it starts from the
element b ∈ B. In particular, we must have that a ∈ B. Thus, if σ = 0S, then there
is no such c 6= d, which means that the mapping I(x), which assigns a subset of I to
every element of S, is injective. Hence |S| ≤ 2|I|, and (1) is proved.

To prove (2), let E = e(A)∩ b/σ for an idempotent unary polynomial e. From the
fact that S is weakly abelian we get, using Theorem 4.3, that E can be considered
an abelian group with zero element b, such that the 1A, 1A-matrices within E are
exactly the matrices where the sum of the two diagonals is the same. In particular,
if we prefix the elements of the 1A, 1A-matrix in the claim by e we get

et(c,v) − et(d,v) = et(c,u) − et(d,u) = ef(c) − ef(d) .

Consider again the Maltsev-chain connecting a to b, which we have shown to be
entirely in B. By applying e we may assume that this chain is entirely within E. If
the elements of this chain are a = a0, a1, . . . , an = b, then as b is the zero element,

a = a− b = (a0 − a1) + (a1 − a2) + · · · + (an−1 − an) .

By the claim and the equation above, for each 1 ≤ j ≤ n there is a gj ∈ F such that

aj−1 − aj = ±(egj(c) − egj(d)) ,

(the sign is + or − depending on whether (c, d) is mapped to (aj, aj−1) or (aj−1, aj)
via a unary polynomial). Hence,

a = ±(eg1(c) − eg1(d)) ± (eg2(c) − eg2(d)) ± · · · ± (egn(c) − egn(d)) .

To finish the proof, we use Corollary 5.1. Let X ⊆ S be such that I(c) is the same
subset of I for every c ∈ X. Then

|X| ≤ m|I| ≤ mM .

This estimate holds for every class of the kernel of the mapping I(x), which assigns
a subset of I to every element of S. Hence,

|S| ≤ 2|I| ·mM ,
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proving (2).
Finally we prove (3). Suppose that S ∈ V(A), where A is an n-element algebra.

Let ` denote the least common multiple of the numbers 1, 2, . . . , n. Then for every
unary function h on the set A we have that h` is idempotent, that is, h2` = h`. Now
let t(x,y) be any term in the language of A, and write ty(x) = t(x,y). Applying the
previous observation to this unary function, where y is any vector in A, we get that
t2`
y (x) = t`y(x) is an identity of A (with variables x and y). Hence this identity holds

in S, which clearly implies that the exponent m of H divides `. We show that m is
a prime power. Then m | ` implies that m ≤ n, which is what we want to prove.

As E is an E-trace of S which contains a nontrivial pair from the monolith of S

we see that S|E is subdirectly irreducible. Apply (3) of Theorem 4.3 to E. We
get that the module on E is also subdirectly irreducible. Its underlying group is
finite, and is therefore the direct sum of its p-components for every prime divisor
p of |E|. These are fully invariant subgroups, and therefore submodules. As this
module is subdirectly irreducible, we get that the underlying group is a p-group for
some prime p, and hence its exponent is a prime power indeed. ¤

Theorem 5.4. Let A be a solvable E-minimal algebra of n elements. Then the
following are equivalent.

(1) V(A) is residually small.

(2) Every subdirectly irreducible algebra in V(A) has at most (2n)nn2

elements.
(3) V(A) is weakly abelian.

Proof. We know that every solvable E-minimal algebra is barely nilpotent. Hence
(1) =⇒(3) follows from Theorem 3.1. The implication (2) =⇒(1) is obvious. To prove
(3) =⇒(2) let S be a finite subdirectly irreducible algebra in V(A). It is well-known
and easy to see that all finite algebras in V(A) are E-minimal, and therefore so is S.
We shall set up the conditions of Lemma 5.2. Let σ be the partition given by the
orbits of Tw(S, 1S). By Corollary 4.9 we have that σ is a congruence, and S/σ is

essentially unary, so we can take r = 1 in Lemma 5.2. Therefore M ≤ nn2

. If σ = 0S,
then we are done. If σ 6= 0S, then it contains the monolith µ of S. Take any nontrivial
µ-block, and let E be the σ-class containing it. By the definition of σ, the set E is
an orbit of H = Tw(A, 1S). Lemma 5.2 (3) shows that the exponent m of H is at
most n. Thus we have proved that the bound in (2) works for every finite subdirectly
irreducible. A well-known result of Quackenbush [10] shows that there are no infinite
subdirectly irreducibles, and the proof is complete. ¤
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1088 Budapest, Múzeum krt. 6–8, Hungary

E-mail address, Keith A. Kearnes: kearnes@louisville.edu
E-mail address, Emil W. Kiss: ewkiss@cs.elte.hu


