pn-sequences of Algebras with One Fundamental Operation

KEITH A. KEARNES AND ADAM W. MARCZAK

ABSTRACT. We show that if (po,p1,...) is the p,-sequence of a nontrivial algebra with one
fundamental operation, then p1 > po. Moreover, if 2 < pg < R, then p1 > 2pg.

1. Introduction

The p,,-sequence of an algebra A is the sequence of cardinals p,,(A) := (po, p1,---)
where p, is the number of distinct essentially n-ary term operations of A if n > 0,
and pg is the number of distinct constant unary term operations. In a countable
language, the cardinals in the sequence must come from {0,1,...,Ro}. If A is
nontrivial, then the term operation id(x) = =z is essentially unary, so p; > 0.
Conversely, it is known that almost any sequence of cardinals from {0,1,...,No}
satisfying p; > 0 is the p,-sequence of a nontrivial algebra in a countable language.
For example, one argument in [1] shows that any sequence (po, p1,...) of cardinals
from this set with pg,p; > 0 is the p,-sequence of some algebra in a countable
language. The same argument shows that if the initial segment (pg,p1,...,Dk)
consists of finite cardinals, and pg,p; > 0, then this is the initial segment of the
pr-sequence of a finite algebra in a finite language.

The situation is different if one restricts to algebras defined with only one fun-
damental operation. Proposition 1 of [3] shows that if (pg, 2) is the initial segment
of the p,-sequence of a groupoid, then pg < 2. This led the second author to con-
jecture that, more generally, if (pg,p1) is an initial segment of the p,-sequence of a
groupoid, then pg < p1. We prove this conjecture here, not only for groupoids but
for any nontrivial algebra defined with a single fundamental operation. We show
further that 2py < p; when 2 < pg < Ny.

Although we focus exclusively on the relationship between pg and p; in this note,
our work shows that there is an absolute constant ¢ > 0 such that when A has one
fundamental operation and 2 < pg(A) < Xg then p,(A) > 227" for all n > 1.

2. The Proofs
Let A be a nontrivial algebra with one fundamental operation whose p,-sequence

is (po,p1,...). We are interested in identifying restrictions on the initial segment
(po,p1), so we begin by showing that there is no restriction on p; if pg = 0 or 1
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(other then the restriction p; > 0 mentioned in the introduction), and there is no
restriction on pg if p1 = Ng.

Ifpo = 0and p; € {1,...,R¢}, then (pg,p1) is representable as the initial segment
of the p,-sequence of a unary algebra (A; f) where |A| = p; and f is a (possibly
infinite) cyclic permutation of A. Similarly, if pp = 1 and p; € {1,...,R¢}, then
(po, p1) is representable as the initial segment of the p,-sequence of a unary algebra
(A; f) where A is an inital segment of w = {0,1,...} of appropriate length and
f(z) = max(0,z — 1).

Now assume that (pg,p1) = (po,No) with pg > 1. Let B = (B; f) be an algebra
with |B| = po and f a binary operation on B such f(z,z) is a cyclic permutation
of B, and f(z,y) = 0 for some fixed 0 € B whenever x # y. The unary term
operation f(z, f(xz,z)) = 0 is constant, so applying f(z,z) to it repeatedly one
generates exactly |B| = pp constants. B cannot have more than |B| constants, so
it has exactly |B| = po constant unary term operations. Now C := (Z;x — y) has
exactly one constant unary term operation and infinitely many nonconstant unary
term operations, so A := B x C has |B| = pp constant unary term operations and
No nonconstant unary term operations. This shows that (pg, No) is representable.

So, henceforth we need to consider only the cases where pg ¢ {0,1} and p; # No.
Notice that if A° is the subalgebra of A whose elements are represented by constant
term operations, then po(A) = po(A°) and p1(A) > p1(A°). Therefore, to establish
a lower bound on p; in terms of py (for example p; > po) it suffices to consider only
those cases where A = A°. This suggests the following definition.

Definition 2.1. A nontrivial algebra A with p,-sequence (po,p1,-..) is relevant if
(1) A = (A4;f) has one fundamental operation,
(2) every element of A is represented by a constant term operation,
(3) pi is finite and py > 2.

The following terminology will also be used.

Definition 2.2. The cosocle of an algebra A is the quotient A /6 where 6 is the
intersection of maximal congruences of A.

Before proceeding to the main theorem we record some properties of relevant
algebras.

Lemma 2.3. If A = (A; f) is relevant, then the following hold.

(i) Every nontrivial quotient A /0 of A is relevant.
(ii) Every polynomial operation of A is a term operation.
(iii) A has no nonempty proper subuniverse and no nonidentity automorphism.
(iv) The polynomial 6(z) := f(xz,x,...,z) has no fized points.
(v) Any class of a principal congruence has at most py + 1 elements.
(vi) A is finite.
(vil) The cosocle of A is an independent product of primal algebras.
Proof. Ttem (i) follows because each of Conditions (1), (2) and (3) of Definition 2.1

are preserved when passing to nontrivial quotients. Item (ii) holds because of
Condition (2): every constant operation is a term operation. For item (iii), any
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nonempty subuniverse must contain all elements represented by constant term op-
erations, and any automorphism must fix all elements represented by constant term
operations. For item (iv), if a € A is a fixed point of §(z) = f(=,z,...,z), then
{a} is a nonempty proper subuniverse, contrary to (iii).

If A is a relevant algebra and X C A x A, let G(X) be the directed graph whose
vertex set is A and whose edge set is

E = E(X) :={(¢(a), q(b)) | g € Poli(A), (a,b) € X}.

Here and elsewhere Pol; (A) denotes the set of unary polynomials of A. If X
consists of a single pair, write G(a,b) and E(a,b) instead of G(X) and E(X). The
edge set E = E(X) is the disjoint union of a subset L C E of loops (pairs of the
form (z,z)) and subset N C E of nonloops (pairs of the form (z,y), z # y). Two
elements of A are considered connected in G(X) if there is an undirected path from
one to the other.

Now we consider only the case X = {(a,b)}. A nonloop (g(a),q(b)) in E(a,b)
satisfies ¢(a) # q(b), hence each nonloop in E(a,b) is generated from (a,bd) by a
nonconstant unary polynomial q. Moreover, distinct nonloops are generated from
(a,b) by distinct polynomials. Thus the number of nonloops in E(a, b) is not greater
than the number of distinct nonconstant unary polynomials of A, which is p; ac-
cording to item (ii) of this lemma. It follows from Maltsev’s congruence generation
theorem that the connected components of G(a, b) are the classes of the congruence
generated by (a,b), denoted hereafter by Cg(a,b). By elementary graph theory, the
size of a component C is at most one more than the number of nonloop edges in
C, which we have shown is at most p;. Thus, the size of any class C of Cg(a,b) is
at most p; + 1, establishing item (v) of this lemma.

Choose a € A and let § = Cg(a,d(a)). If § # A x A, then A/6 is a relevant
algebra according to item (i), yet @ := a/8 is a fixed point of § in A /6 contrary to
item (iv). Hence § = A x A. Now, by item (v), the unique 8-class A has size at most
p1 + 1, proving item (vi): A is finite. (Indeed, this proves that po = |4| <p1 +1.)

To prove item (vii), let 1) be a maximal congruence of A. By items (i), (iii) and
(vi), A /% is finite, simple, and has no proper nonempty subuniverse or nonidentity
automorphism. Theorem 1 of [5] proves that an algebra with one fundamental op-
eration that has these properties is primal. If ¢’ is a different maximal congruence,
then A /¢ 2 A /Y. Forif (a,b) € ¥ —1)’, then the constant term operations naming
a and b are equal in A /1) but not in A /4’ and this is an identity satisfied by A /¢
and not A/+¢'. Thus, if # is the intersection of maximal congruences of A, then
A /8 is a finite subdirect product of nonisomorphic primal algebras. By the main
result of [4], any finite set of nonisomorphic primal algebras in the same language is
independent, hence any finite subdirect product of such algebras is an independent
product. O

Now we can prove the main theorem.

Theorem 2.4. If (po,p1,...) is the p,-sequence of an algebra with one fundamental
operation, then p1 > po; moreover p1 > 2pg if 2 < po < Ng.
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Proof. Tt suffices to prove the theorem for relevant algebras only. If A is such and
2 = pg = |A|, then Lemma 2.3 (vi) implies that A is a 2-element primal algebra.
Hence p; = 22' —22° = 2 > po. To finish the proof it suffices to assume that
po = |A| > 2 and show that p; > 2po.

Let 6y,...,60; be the maximal congruences of A. Since A/6; is primal, the
tame congruence-theoretic type of the prime quotient (8;,1) is 3 for each i (cf. [2]).
Choose one (6;,1)-minimal set U; for each i. Each U; has empty tail, since each 6;
is maximal. Since the type is 3 this means that U; = {0;,1;} has 2 elements, and
the induced algebra A |y, is polynomially equivalent to a Boolean algebra. Tame
congruence theory guarantees the existence of idempotent polynomials e; € Pol; (A)
such that e;(A) = U; for each 4, as well as Boolean complementations ¢; € Pol; (A),
cioe; = ¢, ¢;(0;) = 1;, and ¢;(1;) = 0;. Let X = {(0;,1;) 1 <4 < k}, and let
G = G(X) = (A4; E) be the graph defined in the proof of Lemma 2.3.

Claim 2.5. G(X) is connected.

If 9; is a maximal congruence, then it follows from the definition of a (f;,1)-
minimal set that (0;,1;) ¢ 6;. But (0;,1;) € Cg(X), so Cg(X) £ 8; for all i.
Hence Cg(X) = A x A. The claim now follows from the fact, noted in the proof of
Lemma 2.3 (v), that the connected components of G(X) are the Cg(X)-classes.

Claim 2.6. (u,v) € E if and only if (v,u) € E.

If (u,v) = (g(0;),q(1;)) for some ¢ € Pol;(A) and some (0;,1;) € X, then
(v,u) = (goci(0:),g0¢i(1;)) € E.

Claim 2.7. If (u,v) € E is a nonloop, then there exists ¢ € Polj(A) and 1 <i < k
such that

(1) (U,U) = (Q(Oz)aq(lz))7

(2) la(A)| =2, and

(3) 8; C ker(q) for some i.

By the definition of E, if (u,v) € E, there exists 1 < i < k and a polynomial
q' € Pol;(A) such that (u,v) = (¢'(0;),q'(1;)). Let ¢ :== q' o e;. Then

(9(05),4(1:)) = (¢' 2 €(0:),¢ o €i(1:)) = (¢'(0:), ' (1:)) = (u,v),

since e; is idempotent with image U; = {0;,1;}. This shows that (1) holds for this
i and ¢. Since {u,v} C q(A) = ¢'(ei(A)) C {u,v} and u # v we get (2): |¢(4)| = 2.
Finally, since ¢ = ¢' o e; and both ¢ and e; have range of size 2, it follows that
ker(q) = ker(e;). To set up a contradiction, assume that (a,b) € 6; — ker(e;).
Then {e;(a),e;(b)} is a 2-element subset of e;(A) = {0;,1;} consisting of 6;-related
elements. But this contradicts the definition of a (6;,1)-minimal set. (We must
have (0;,1;) ¢ 6;.) This contradiction yields (3): 8; C ker(e;) = ker(q).

Claim 2.8. For each nonloop e € E choose q. € Poly(A) satisfying (1), (2) and
(8) of Claim 2.7. The assignment e — ¢, is an injective mapping from the set of
nonloops to the set of unary polynomials whose range has size 2. Consequently the
number of nonloops of G is strictly less than p; .
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By Lemma 5.15 (2) of [2], the fact that typ(6;,1) = 3 guarantees that the
congruence p; := Cg(0;,1;) is the smallest p € Con(A) for which pV 6; = 1.
If §; is a maximal congruence different from 6;, then 6; vV 6; = 1, implying that
(0i,1;) € pi < 0;.

Now suppose that d,e € E are nonloops, and gg and ¢, satisfy Conditions
(1), (2) and (3) of Claim 2.7. If ¢4 = g =: ¢, then for some ¢ and j we must
have (g(0:),q(1;)) = d and (q(0;),q(1;)) = e (Condition (1)). If i # j, then
(0;,1;) € 6; < ker(g), according to Condition (3), and this contradicts the fact
that (g(0;),¢(1;)) = d is a nonloop. Hence i = j. But then d = (¢(0;),4(1;)) =
(g(05),9(15)) = e; i.e., g4 = ¢ implies that d = e.

This proves that the size of the set of nonloops e € E is not greater than the size
of the set of g, € Pol;(A). Each ¢, is nonconstant, by Condition (2) of Claim 2.7,
so the set of g.’s is not larger than p;. Indeed, the number of the g.’s must be
strictly less than p, since id € Pol;(A) is nonconstant and cannot equal any g..
(The range of id has size |A|, not 2.)

Let G = (A;E) be the undirected graph associated to G = (4; E). G differs
from G in that we have discarded all loops and replaced each nonloop (u,v) by the
corresponding doubleton {u,v}. The purpose for this is to eliminate the obvious 1-
vertex cycles guaranteed by the loops and 2-vertex cycles guaranteed by Claim 2.6.
Yet, as we now prove, at least one cycle still remains.

Claim 2.9. G has a cycle.

We assume to the contrary that G has no cycle. It is connected, by Claim 2.5,
so it is a tree.

Because of the way the edge relation of G is defined, any ¢ € Pol;(A) is an
endomorphism q: G — G of directed graphs. We will apply this observation to
powers of §(z) = f(z,...,2) € Polj(A). Some iterate 6% of ¢ is idempotent,
and § is a permutation of the set 6¥(A4). Since G is connected and §* is a graph
endomorphism, the graph induced on the image B := §*(A) is connected. The
undirected graph B with vertex set B is a subgraph of G, which is an acyclic
graph, so B is also acyclic and therefore is a tree.

The exponent of 6* was chosen so that § is a permutation of B. Since § is a
polynomial, it is an automorphism of the tree B.

An automorphism of a (finite, nonempty, undirected) tree has fixed vertex or a
fixed edge. To see this, suppose not and let a: T — T be a counterexample with
|T'| minimal. T cannot have a single vertex only (else it would be a fixed vertex of
a), and T cannot have only two vertices (else the edge connecting them would be
fixed by «). This implies that T has both leaves and nonleaves. If O is an a-orbit
consisting of leaves, then T'— O is a smaller nonempty tree, and « restricts to an
automorphism of T'— O. By the minimality of |T'|, the tree T' — O has a vertex or
edge fixed by a, which is also a fixed vertex or edge of T'.

In Lemma 2.3 we showed that § has no fixed points in A. Since it is an au-
tomorphism of B it follows from the previous paragraph that some edge {u,v} of
B is fixed by 4, i.e. §(u) = v and §(v) = u. Since [{u,v}| = 2 < |A|, the set
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{u,v} is not a subuniverse. Reordering the variables of the basic operation if nec-

essary, we may assume that f(u,u,...,u,v,...,0,v) = w ¢ {u,v}. According to
Claim 2.7, there exist ¢ € Pol;(A) and 1 <4 < k such that (u,v) = (¢(0:),q(1;))-
Let r(z) = f(u,u,...,u,2,...,2,z) and s(z) = f(z,z,...,2,v,...,0,v). Then u,v

and w are distinct, (u,v) € E,

(v, w) = (r(u),r(v)) = (r o q(0i),r 0 q(1s)) € E,
and

(w,u) = (s(u),s(v)) = (s 0 q(0;),s 0 q(Li)) € E,
so there is a cycle in G involving u, v and w, hence also one in G.

Now we prove the theorem. Since the undirected graph G has |A| = po vertices,
is connected, and has a cycle, it follows that G has at least py edges. But each
undirected edge in G corresponds to two nonloops of G, according to Claim 2.6.
Thus, the number of nonloops in G is at least 2py and, by the last statement
in Claim 2.8, the number of nonloops is strictly less than p;. This proves that
2po < p1. O

In the introduction we claimed that there is an absolute constant ¢ > 0 such that
when A has one fundamental operation and 2 < po(A) < N then p,(A) > 227
for all n > 1. To establish this it suffices to consider only the case where A is
relevant. Now, if 6 is a maximal congruence of A, then there is a ¢ > 0 such that
Pn(A) > pn(A/8) > 227" for all n > 1 because A /6 is primal. The value of ¢ that
works when |A| = 2 also works for all larger A, so this ¢ is absolute.

If A is an independent product of primal algebras, then A is term equivalent
to an algebra with one fundamental operation. If all direct factors of A have size
2, then p; = po(po — 1). As we have not found an example of an algebra with
one fundamental operation which fails to satisfy p; > po(po — 1), we speculate
that this inequality may be closer to the truth than the inequalities established in
Theorem 2.4. In the case where A = A° and the cosocle of A is simple, it may
be that the graph G(X) defined in the proof of Lemma 2.3 is a complete directed
graph. If this is the case, then p; > po(po — 1) holds simply because p; exceeds
the number po(po — 1) of nonloops in G(X). But G(X) is not complete when the
cosocle is not simple, so a proof that p1 > po(po — 1) holds for any algebra with
one fundamental operation (if this inequality is indeed true) will no doubt require
estimates on the number of unary polynomials with range of size greater than 2.
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