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Projectivity and isomorphism of strictly simple algebras

K. A. KEARNES AND Á. SZENDREI

Abstract. We describe a sufficient condition for the localization functor to be a categorical equivalence.
Using this result we explain how to simplify the test for projectivity. This leads to a description of the
strictly simply algebras which are projective in the variety they generate. A byproduct of our efforts is
the result that if A and B are strictly simple and generate the same variety, then A$B or else both are
strongly abelian.

1. Introduction

Let A be an algebra and let e be a unary term in the language of A. The term
e is idempotent if A � e2=e. If e is idempotent, we call the set e(A) a neighborhood
of A. In Section 2 we explain how to localize the structure of A to the neighbor-
hood e(A). If V is a variety of algebras and V � e2=e, then localization to the
range of e is a functorial construction on the members of V.

In this paper we analyze properties of the localization functor. In Section 2 we
describe broadly applicable sufficient conditions which guarantee that this functor
is a categorical equivalence. We use this in the succeeding sections to reduce
questions about projectivity and isomorphism to the case of term minimal algebras.
As an application, we show that if A and B are strictly simple algebras which
generate the same variety and are not strongly abelian then A$B. It follows then
that if A and B are finite simple algebras of type 2 which generate the same variety
then A$B. This settles a question left open in [4] where it is demonstrated that the
analogous statement holds for types 3 and 4 and fails for types 1 and 5.

2. The localization functor

Let A be an algebra and let e be an idempotent of A. For every term t of A, et
is a term of A of the same arity as t such that the neighborhood e(A) is closed
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under the term operation et. We will use the symbol e(A) to denote the following
algebra. The universe of e(A) is the neighborhood e(A). The set of fundamental
operation symbols will be the set {et : t is a term in the language of A}, and the
interpretation of et as an operation on e(A) is the obvious one: the restriction et �e(A)

of the term operation et of A to e(A). The algebra e(A) is called the localization of
A to the neighborhood e(A).

Fixing the similarity type of e(A) as we have allows us to consider the
localization construction A � e(A) for any class K of similar algebras in which the
identity e2=e holds. As a result, we get a class e(K)={e(A): A �K} of similar
algebras. There is a natural way to extend the objects mapping

e : K�e(K), A � e(A)

to a functor: to each homomorphism 8 : B�C we define the corresponding
homomorphism to be

e(8)=8 �e(B): e(B)�e(C).

Here e(8) is not only a handy notation for the image of 8 under the functor e ; it
can also be interpreted as the image of the subalgebra 8 of B×C under the term
operation e. It is straightforward to check that with this latter interpretation we
have e(8)=8 �e(B), that 8 �e(B) is indeed a homomorphism from e(B) into e(C) and
that e : K�e(K) is a functor. It is not hard to show that if K is closed under the
formation of isomorphic images, subalgebras, products or ultraproducts, then so is
e(K). If K is closed under the formation of homomorphic images of subalgebras,
then so is e(K). Thus, if K is a variety, quasivariety, prevariety or pseudovariety,
then so is e(K).

There are two concepts about the relationship between an idempotent e and an
algebra A which we shall find interesting. To define the first concept, let A be any
algebra and let e be any idempotent unary term of A. We say that e separates A,
or e is separating for A, provided that for every a"b in A there is a unary term g
such that eg(a)"eg(b). Separation will be a basic concept in this paper, so let us
prove a simple characterization of what it means for e to separate A.

LEMMA 2.1. Let A be an algebra and let e be an idempotent term of A. Then
e separates A if and only if

(1) any isomorphism between subalgebras of A which restricts to a subset of the
identity on e(A) is the identity on its domain, and

(2) any congruence on a subalgebra of A which restricts to a subset of the equality
relation on e(A) is the equality relation on its domain.
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Proof. For the purposes of this proof, call a pair of elements a, b �A an
inseparable pair if eg(a)=eg(b) holds for every unary term g. Clearly e separates A
if and only if A has no inseparable pair of distinct elements.

Assume that e separates A, and therefore that A has no inseparable pair of
distinct elements. If 8 : B�C is an isomorphism between subalgebras of A which is
the identity on e(A) then (b, 8(b)) is an inseparable pair for all b �B. Since we have
assumed that e separates A we get that 8= idB, so (1) holds. If a is a congruence
on a subalgebra whose restriction to e(A) is trivial, then any (b, c) � a is an
inseparable pair. The fact that e separates A implies that a is trivial, so (2) holds.

Now assume that (1) and (2) hold. Let u denote the equivalence relation on A
comprised of the inseparable pairs. Observe that for every (a, b) � u we have
e(a)=e(b), so e(u) is the equality relation on e(A). Choose (c, d) � u and let S
denote the subuniverse of A2 generated by (c, d). A typical member of S is of the
form (g(c), g(d)) where g is a unary term so, since (c, d) � u, we get that S¤u as
well. From this we get that R1�S@ $ S and R2�S $ S@ are symmetric subuniverses
of A2 contained in u which have the property that

(a, b) �Ri [ (a, a), (b, b) �Ri.

The transitive closure of each Ri is a congruence on a subalgebra of A which, since
Ri¤u, restricts trivially to e(A). We have assumed that (2) holds, so each Ri is the
equality relation on a subalgebra. But the statement that S@ $ S and S $ S@ are
subalgebras of A2 which are subsets of the equality relation on A means precisely
that S is the graph of an isomorphism between subalgebras of A. Since S¤u this
isomorphism is the identity on e(A), so S is the identity relation on its domain. This
is true for S generated by an arbitrarily chosen (c, d) � u, so u is the equality
relation on A. Thus, A contains no inseparable pair of distinct elements, hence e
separates A. 


Now we turn to the second concept that interests us. As usual, let A be an
algebra and let e be an idempotent unary term of A. We say that e is dense for A
if A is generated as an algebra by e(A).

A basic lemma relating the properties of separation and density of the term e to
the properties of the functor e is the following.

LEMMA 2.2. Let V be a 6ariety and let e be a unary term in the language of V
for which V � e2=e.

(1) The subclass of all A �V for which e is separating is a pre6ariety. (That is, it
is a class closed under the formation of isomorphic images, subalgebras and
products.)
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(2) Consider e as a functor from V to e(V). Choose A, B �V and consider the
induced mapping Hom(A, B)�Hom(e(A), e(B)).
(i) If e is dense for A, then this mapping is injecti6e.

(ii) If e is dense for A and separating for B, then this mapping is surjecti6e.

Proof. The first claim of the lemma is proved by noting that e is separating for
A �V if and only if

A � /
g

eg(x)=eg(y) [ x=y.

Implications of this form, which may have infinitely many conjuncts, are preserved
by the formation of isomorphic images, subalgebras and products. Therefore, the
collection of members of V for which e is separating is a prevariety.

Next we prove statement (2) (i). Assume that 8, c �Hom(A, B) and that
e(8)=e(c). This means exactly that 8 and c have the same restriction to e(A).
The equalizer of 8 and c is a subalgebra of A which, since e(8)=e(c), contains
e(A). Since e is dense for A we get that the equalizer of 8 and c is A, and so 8=c.

Finally we must prove that (2) (ii) holds. For this, choose l �Hom(e(A), e(B)).
We need to prove that there is a l. �Hom(A, B) such that e(l. )=l. We identify a
homomorphism with its graph, thus y=l(x) is synonymous with (x, y) � l. Stipu-
lating this, l is a subuniverse of e(A)×e(B). Let l. be the subuniverse of A×B
generated by l.

We claim that e(l. )=l. This can be justified as follows. From the definition we
have l¤l. , so l=e(l)¤e(l. ). Conversely,

(a, b) � e(l. ) [ (a, b) � {et((r0, s0), . . . ) � (r0, s0), . . . � l}

[ (a, b) � l,

so e(l. )=l. (The first implication follows from the definition of l. and the second
implication follows from the fact that et is a term in the language of e(V) and that
l is a subuniverse of e(A)×e(B).) Therefore, if we prove that l. is a mapping from
A to B then we will have finished the proof of (2) (ii).

Assume that (a, b), (a, c) � l. ¤A×B and that b"c. Since e separates B there is
a unary term g such that eg(b)"eg(c). But now we have that (eg(a), eg(b)),
(eg(a), eg(c)) � l and eg(b)"eg(c), which contradicts the fact that l is a mapping.
We conclude that if (a, b), (a, c) � l. then b=c. This implies that l. is a partial
homomorphism from A to B. The domain of l. is a subalgebra of A that includes
the domain of l, which is e(A), so since e is dense for A we get that the domain of
l. is A. Thus l. �Hom(A, B) and e(l. )=l. This proves (2) (ii). 
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THEOREM 2.3. Let V be a 6ariety and let e be a unary term of V for which
V � e2=e. Let S denote the full subcategory of V whose objects are the algebras in
V which are separated by e. Let D denote the full subcategory of S whose objects are
the algebras in S for which e is dense. Then

(1) e(D)=e(S), and this category is a pre6ariety, and
(2) e is a categorical equi6alence from D to e(D).

Proof. Since D is a subclass of S, to prove the first claim of (1) we must show
that for every A �S there is an algebra A% �D such that e(A%)=e(A). Simply take
A% to be the subalgebra of A generated by e(A). Clearly this A% is in S since S is
a prevariety, e is dense for A% since e(A %)=e(A) is a generating set for A%, and
e(A%)=e(A) by the properties of the e-construction. The fact that e(S) is a
prevariety follows from the fact that S is.

Now we prove (2). First we give some standard definitions associated with
categorical equivalence. One says that a functor F : C�C% is faithful if the induced
map

F : HomC(A, B)�HomC%(F(A), F(B))

is injective for each pair of objects A, B �C. We say that F is full if this induced
map is surjective for all A and B. We say that F is representative if for each object
C% �C% there is an object C �C such that F(C)$C%. We will use the following well
known theorem (a proof of which can be found in [8]): A functor is a categorical
equivalence if and only if it is full, faithful and representative.

Now, e is a full and faithful functor from D to e(D) by Lemma 2.2 (2). It is
representative because the target category is defined to be the image of the functor.
Thus it is a categorical equivalence. 


In fact, what the proof of Theorem 2.3 (2) shows is that if K is any class of
similar algebras for which e is a separating and dense idempotent, then e is a
categorical equivalence from K to e(K). There is some connection between this
statement and results in [9]. In that paper it is shown that if K is closed under the
formation of subalgebras and contains the free algebras of V(K), and if there exist
an n-ary term f and n unary terms gi such that the ‘‘invertibility equation for e ’’
holds:

K � f(eg1(x), . . . , egn (x))=x,

then e is a categorical equivalence from K to e(K). The connection is this: the
invertibility equation for e implies that e is separating and dense for all members of
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K. This is trivial to verify. Hence, the fact that the functor e is a categorical
equivalence when the term e is invertible is a special case of Theorem 2.3 (2).

COROLLARY 2.4. Let A and B be algebras in the same language and assume
that e is a separating and dense idempotent for both A and B. Then A$B if and only
if e(A)$e(B).

Proof. The assumptions imply that A, B �D where D is the subclass of the
variety V=V({A, B}) defined in Theorem 2.3. Since e is a categorical equivalence
from D to e(D) we get that A$B if and only if e(A)$e(B). 


3. Strictly simple and term minimal algebras

If A is an algebra, then the unary term e is a minimal idempotent of A if the term
operation associated to e is a nonconstant idempotent operation whose range is
minimal among ranges of nonconstant idempotent term operations of A. The
property that e is a minimal idempotent of A is equivalent to an equational
property of A, hence of V(A):

� V(A) � e2(x)=e(x),
� V(A) �/ e(x)=e(y),
� If V(A) � f 2(x)= f(x)=ef(x), then V(A) � e(x)= fe(x) or V(A) � f(x)=

f(y).

In particular, if B is an algebra for which V(B)=V(A), then e is a minimal
idempotent for B if and only if e is a minimal idempotent for A.

We call an algebra or class of algebras term minimal if e(x)=x is a minimal
idempotent. If one localizes an algebra A to the neighborhood defined by a minimal
idempotent one obtains a term minimal algebra, and trivially this is how all term
minimal algebras arise. The class of term minimal algebras is a rich and compli-
cated one which perhaps we will never understand. However, there are important
special cases were a full description of the clones of term minimal algebras is
known. One such special case is the class of term minimal algebras which are
expansions of finite algebras by constants. These term minimal algebras are called
E-minimal algebras (in [4] and [7], for instance). The classification of E-minimal
algebras which are not strongly solvable can be found in [4], while the strongly
solvable case is handled in [7]. Another understood class of term minimal algebras
are the term minimal strictly simple algebras. An algebra is strictly simple if it is
finite, simple and has no nontrivial proper subalgebras. The clones of term minimal
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strictly simple algebras are classified in [10]. Our first result in this section is a
consequence of this classification and Corollary 2.4.

THEOREM 3.1. Let A and B be strictly simple algebras which generate the same
6ariety. Then either A$B or both A and B are strongly abelian.

Proof. Since A is finite, it has a minimal idempotent; let e be one such. Then e
is a minimal idempotent for V=V(A)=V(B), and hence for B. The local algebras
e(A) and e(B) are term minimal, and since

V(e(A))=e(V)=V(e(B)),

it follows that e(A) and e(B) generate the same variety. By Lemma 2.1, e is
separating for both A and B. Since A and B have no proper nontrivial subalgebras,
e is dense for both A and B. By Corollary 2.4 we need only to prove that
e(A)$e(B) or that both A and B are strongly abelian.

We claim that e(A) and e(B) are strictly simple. To see that e(A) has no
nontrivial proper subalgebras, choose S5e(A) arbitrarily. For S. =SgA(S) we have
e(S. )=S. Since A has no nontrivial proper subalgebras, S. is trivial or equal to A.
Thus S=e(S. ) is trivial or equal to e(A). To see that e(A) is simple, assume that u

is a congruence on e(A). Then for u. equal to the transitive closure of SgA2(u) we
have e(u. )=u. Since A is simple, we conclude that e(A) is simple as well. This
argument shows that e(A) and e(B) are strictly simple.

Now we can use the classification of strictly simple term minimal algebras. The
crucial facts we need, which follow from the classification, are these: If T is a term
minimal strictly simple algebra, then

(i) either T is the unique strictly simple algebra in V(T), or T is an abelian
algebra with no trivial subalgebras;

(ii) if T is an abelian algebra, then T is affine or essentially unary.
Since e(A) and e(B) are term minimal strictly simple algebras which generate the
same variety, we must have by (i) that e(A)$e(B) or else that e(A) and e(B) are
both abelian and have no trivial subalgebras. The property of being essentially
unary is equational, so either e(A) and e(B) are both affine or they are both
essentially unary. It is a consequence of Theorem 12.4 of [2] that two strictly affine
algebras which generate the same variety are isomorphic. Therefore, we have that
e(A)$e(B) or else that e(A) and e(B) are both essentially unary.

To finish the proof, we note that whenever A is a finite simple algebra and e is
any nonconstant polynomial of A, then e(A) contains a minimal set N. If A�N is
essentially unary, then typ{A}={1} and this implies that A is strongly abelian.
Therefore, we have that e(A)$e(B) or else that A and B are both strongly
abelian. 
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One can easily find nonisomorphic strictly simple G-sets which generate the
same variety, so the assumption in the previous corollary that A and B are not
strongly abelian is necessary to show that A$B.

Theorem 3.1 resolves an open question from [4]. It is proved in Theorem 14.8
of [4] that if A and B are finite simple algebras which generate the same variety then
they have the same tame congruence theoretic type. It is also shown that if this type
is 3 or 4, then A$B. Examples are given to show that if the type is 1 or 5 then it
is possible that A$/ B. In Exercise 14.9 (3) it is asked if there exist nonisomorphic
simple algebras of type 2 which generate the same variety. There do not exist such
algebras, for in [11] it is shown that any simple algebra of type 2 is strictly simple.
Therefore, from these remarks and the previous theorem we get that:

COROLLARY 3.2. If A and B are simple algebras which generate the same
6ariety and typ{A} � {2, 3, 4}, then A$B.

4. Projective algebras

In this section we want to use the localization functor to determine when an
algebra P is projective. By a category of algebras we will mean any full subcategory
of the category of all algebras in a given language. If P is a category of algebras,
then an algebra P �P is projective in P if whenever

(a) A, B �P,
(b) s : A�B is a surjective homomorphism and
(c) 8 : P�B is any homomorphism,

then there exists 8) : P�A such that s $ 8) =8. We will call P projective, with no
reference to P, if it is projective in the variety it generates. In this section we explain
how to simplify the test for whether an algebra P is projective in a given variety of
algebras.

Let K be a class of similar algebras and assume that P is in the variety
generated by K. It is well known and easy to prove that the following conditions
are equivalent:

(1) P is projective in V(K);
(2) P is a retract of a free algebra in V(K);
(3) P is a retract of a free algebra in ISP(K);
(4) P is projective in ISP(K).



Projectivity and isomorphism of strictly simple algebras 53Vol. 39, 1998

We want to connect these conditions with projectivity in a category smaller than
ISP(K). Choose and fix an e which is separating idempotent for all algebras in K.
For this fixed e let E denote the full subcategory of ISP(K) whose object class
consists of the algebra in ISP(K) for which e is dense. Call P a dense projective in
V(K) if P is projective in V(K) and e is dense for P.

THEOREM 4.1. The dense projecti6es in V(K) are precisely the algebras which
are projecti6e in E.

Proof. Any algebra projective in V(K) lies in ISP(K), as we have observed,
and therefore any dense projective must lie in E. If P is such an algebra (projective
in V(K) and lying in E), then P is projective in E since E is a full subcategory of
V(K). Therefore, what we must prove is that E has no projectives other than these.
That is, we must show that if P �E is projective in E, then it is projective in V(K).
To prove this, we will show that any P which is projective in E is a retract of a free
algebra of V(K).

Let F be a free algebra of rank large enough for there to be a surjection
s : F�P. Let L be the subalgebra of F generated by e(F ). Since F � ISP(K), we get
that L � ISP(K) and of course L is generated by e(F)=e(L). Hence L �E.
Furthermore, since L contains e(F ), the homomorphism s �L : L�P is surjective:
indeed, the image of s �L is

s �L (L)=s(SgF(e(F )))

=SgP(s(e(F )))

=SgP(e(s(F )))

=SgP(e(P))

=P

because P is in E. Since P is projective in E, there is a homomorphism t : P�L
such that s �L $ t= idP. If i : L�F denotes inclusion, then i $ t : P�F is a homo-
morphism for which we have

s $ (i $ t)= (s $ i) $ t=s �L $ t= idP.

Hence i $ t is a right inverse for s which shows that P is a retract of F. This finishes
the proof of the theorem. 
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THEOREM 4.2. Assume that e is a separating idempotent for all algebras in K
and that e is separating and dense for some P �V(K). Then P is projecti6e in V(K)
if and only if e(P) is projecti6e in V(e(K)).

Proof. Let E be the full subcategory of ISP(K@{P}) whose object class
consists of the algebras for which e is dense. Under the given hypotheses we have
that P �E, so by Theorem 4.1 P is projective in V(K) if and only if it is projective
in E. By Theorem 2.3 and the remarks immediately after its proof, the localization
functor is a categorical equivalence from E to e(E). Therefore, the following are
equivalent:

(1) P is projective in V(K);
(2) P is projective in E;
(3) e(P) is projective in e(E) and e(E)= ISP(e(K));
(4) e(P) is projective in V(e(K)).

This finishes the proof. 


We apply Theorem 4.2 to describe the projective strictly simple algebras. In this
case, we take K={A} where A is a strictly simple algebra. Let e be any minimal
idempotent for A. As we observed in the proof of Theorem 3.1, e is a separating
and dense idempotent for A and e(A) is strictly simple. By Theorem 4.2 we have
that A is projective if and only if e(A) is projective. Therefore the characterization
of projective strictly simple algebras reduces to the term minimal case, which is
handled in the next lemma.

LEMMA 4.3. A strictly simple term minimal algebra is projecti6e if and only if
it is not definitionally equi6alent to an irregular G-set.

Proof. Most of this is already proved in Corollary 2.7 of [6]. There it is shown
that if T is nonabelian or has a trivial subalgebra then T is projective. The
remaining cases to consider are when T is abelian and has no trivial subalgebras.
Moreover, the proof of Corollary 2.7 of [6] in the subcase where every element of
T is the interpretation of a constant term works equally well in the abelian and
nonabelian cases. Thus, the only strictly simple term minimal algebras which could
fail to be projective are the abelian ones which have no proper subalgebras and no
constant terms. As we have mentioned previously, the abelian term minimal strictly
simple algebras are essentially unary or affine. If T is essentially unary, then it is
equivalent to a (transitive) primitive G-set. If T is affine, then it is the expansion by
translations of a simple affine module.

In the affine case T is projective. In fact, in this case the collection of unary term
operations of T coincides with the group of additive translations {x � x+
t � t �T}. The automorphism group of T also coincides with this group. The
coincidence of these groups implies that T$FV(T)(1). Since T is free it is projective.
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In the unary case, assume that T is a faithful primitive G-set. Since T is faithful,
the left regular representation of G, call it L, belongs to V(T). Furthermore, since
T is transitive and L is free there is a surjective homomorphism from L onto T. If
T is projective, then it must be that T is a retract of L. But L has no proper
subalgebras so we must have that T$L. Thus, if T is projective then it must be
equivalent to a regular G-set. Conversely, if T is equivalent to a regular G-set then,
since T has no proper subalgebras, T must be isomorphic to L. Since L$T is free,
we get that T is projective. 


COROLLARY 4.4. A strictly simple algebra A is projecti6e if and only if it has
no idempotent unary term e such that e(A) is definitionally equi6alent to an irregular
G-set.

This corollary can be used to give a new proof of Theorem 3.1, if one uses the
easily proven fact that two subdirectly irreducible projective algebras which gener-
ate the same variety must embed into one another.

We actually have a good deal more information than we have stated about the
class of projectives in V(A) when A is a strictly simple algebra. If e is a fixed
minimal idempotent of A, then an algebra P �V(A) is a dense projective (recalling
terminology from Theorem 4.1) if and only if e is separating and dense for P and
e(P) is projective in V(e(A)). Therefore the determination of dense projectives in
V(K) can be reduced to the determination of the projectives in V(e(K)). The
entire class of projectives in V(e(A)) is not hard to describe when A is abelian.
When A is nonabelian, the class of projectives in V(e(A)) has been worked out in
some key cases. For example, the full class of projectives for the varieties of
Boolean algebras, distributive lattices and semilattices can be found respectively in
[3], [1] and [5]. It seems a (difficult but) feasible project to characterize the dense
projectives in varieties generated by strictly simple algebras using Theorem 4.2.
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