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Abstract. Let FΓ be a finite dimensional path algebra of a quiver Γ over a field F. Let

L and R denote the varieties of all left and right FΓ-modules respectively. We prove the

equivalence of the following statements.

• The subvariety lattice of L is a sublattice of the subquasivariety lattice of L.

• The subquasivariety lattice of R is distributive.

• Γ is an ordered forest.
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1. Introduction

Let L be the variety of all left modules over a ring R. Call the subvariety
lattice of L its V -lattice, and the subquasivariety lattice of L its Q-lattice.
This paper addresses two questions raised in [1] concerning the following
properties.

A. The V -lattice of L is a sublattice of the Q-lattice of L.

B. The Q-lattice of L is distributive.

The questions from [1] are:

I. What structural properties of R guarantee that Property A holds?

II. Does Property A imply Property B?

The V -lattice of any congruence modular variety is modular, and the Q-
lattice of any quasivariety is join semidistributive. Since a modular sublattice
of a join semidistributive lattice is distributive, it follows that if Property A
holds for the congruence modular variety L, then the V -lattice of L must be
distributive. This shows that Property A implies a weak form of Property B,
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hence one might say that Question II has a weak affirmative answer for any
ring R.

Nevertheless, there exist rings for which the answer to Question II is
negative. In this paper, we show that if FΓ is a finite dimensional path
algebra over a quiver, then the variety of left FΓ-modules has Property A if
and only if Γ is an ordered forest (thereby answering Question I for this class
of rings). We then show that the variety of left FΓ-modules has Property B
if and only if Γop is an ordered forest. Since the class of ordered forests is not
self dual, Properties A and B are independent of one another for varieties of
left modules over path algebras of quivers.

Although the purpose of this paper is to supply a negative answer to
Question II, our result may be viewed as supplying an affirmative answer to
a noncommutative version of this question (for a certain class of rings). This
is interesting, since it appears that the authors of [1] formulated Question II
based on evidence from [3, 4] pertaining to quasivarieties of modules over
commutative rings. Our results show that if R is a finite dimensional path
algebra over a quiver, then Property A for the variety of left R-modules is
equivalent to Property B for the variety of right R-modules.

2. Quivers and Their Representations

Informally, a ‘quiver’ is a directed multigraph. We formalize this and fix
language in the following definition.

Definition 2.1. A quiver is a 2-sorted structure Γ = 〈V,E;h, t〉 where the
elements of sort V are called the vertices of Γ, the elements of sort E are
called the edges of Γ, and h, t : E → V are functions called head and tail. Γ
is finite if V ∪ E is. (We shall always assume that V ∩ E = ∅.)

A source is a vertex u ∈ V such that h−1(u) = ∅; a sink is a vertex v ∈ V
such that t−1(u) = ∅.

A nontrivial path in Γ is a finite sequence π = en · · · e2e1, n ≥ 1, of
elements of E such that h(ei) = t(ei+1) for every i. This path π starts at
t(e1) and ends at h(en). For each v ∈ V the trivial path at v, denoted πv, is
defined to be v itself. This path starts and ends at v. A path is any trivial
or nontrivial path.

A directed cycle is a nontrivial path that starts and ends at the same
vertex. A quiver without directed cycles is acyclic.

Paths π1 and π2 are composable if π2 starts where π1 ends. If π1 and π2

are composable nontrivial paths, then their composition is the concatenation
π2π1 of the two paths. If π starts at v, then the composition of πv and π is
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ππv := π, while if π ends at v, then the composition of π and πv is πvπ := π.
The composition of πv with itself is πv.

The quiver opposite to Γ = 〈V,E;h, t〉 is the quiver Γop = 〈V,E; t, h〉
obtained by interchanging h and t.

In fact, a quiver is a partial description of a small category (with objects
V , morphisms E, and domain and codomain maps t and h respectively),
and Γop is a partial description of the opposite category. A ‘representa-
tion’ of a quiver Γ is defined to correspond to a functor from the category
freely generated by Γ to the category of vector spaces over some field, and
a ‘homomorphism’ of representations is defined to correspond to a natural
transformation between such functors.

Definition 2.2. Let F be a field. An F-representation of Γ is a function ρ
with domain V ∪ E such that

(a) ρ(v) is an F-vector space for each v ∈ V , and

(b) ρ(e) is a linear transformation from ρ(t(e)) to ρ(h(e)) for each e ∈ E.

The dimension of a representation ρ is dimF(⊕v∈V ρ(v)).
A homomorphism ϕ : ρ1 → ρ2 between representations is a set {ϕv | v ∈

V } of linear transformations ϕv : ρ1(v) → ρ2(v) such that

ρ2(e) ◦ ϕu = ϕv ◦ ρ1(e) (i)

whenever e ∈ E and (t(e), h(e)) = (u, v).

The assignment e 7→ ρ(e) of a linear transformation to each edge in (b)
above extends to paths: π := en · · · e2e1 7→ ρ(en) ◦ · · · ◦ ρ(e2) ◦ ρ(e1) =: ρ(π)
and πv 7→ idρ(v).

Given the homomorphism concept, the definitions of subrepresentation,
quotient, product and (direct) sum are evident.

Definition 2.3. Let F be a field. The path algebra of Γ over F, denoted FΓ,
is the associative F-algebra whose underlying F-space has a basis consisting
of the paths of Γ and whose multiplication is defined on paths by

π2 · π1 =

{

π2π1 if π1 and π2 are composable
0 otherwise.

The following facts will be used.

Theorem 2.4. (1) FΓ is a unital F-algebra if and only if Γ has finitely
many vertices. (In which case, 1 =

∑

v∈V πv.)
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(2) FΓ is finite dimensional if and only if Γ is finite and acyclic. (See
Proposition III.1.1 of [2].)

(3) If Γ has finitely many vertices, the category of F-representations of
Γ and their homomorphisms is equivalent to the category of left FΓ-
modules and their homomorphisms. (See Theorem III.1.5 of [2] for the
equivalence between finite dimensional representations and modules.)

We sketch the constructions that give the equivalence in item (3). If A is
an FΓ-module, then define an F-representation of Γ by letting ρA(v) = πvA
and, if e ∈ E and (t(e), h(e)) = (u, v), letting ρA(e) : πuA → πvA be left
multiplication by the one-edge path e. If ϕ : A → B is an FΓ-homomorphism,
then {ϕ|πvA | v ∈ V } is the corresponding homomorphism ρA → ρB.

For the other direction, if ρ is an F-representation of Γ, define A =
⊕v∈V ρ(v). Let pv : ⊕v∈V ρ(v) → ρ(v) and iv : ρ(v) → ⊕v∈V ρ(v) be the
canonical projections and injections, v ∈ V . Make the space A a left FΓ-
module by defining left scalar multiplication by a path π that starts at u and
ends at v to be the linear transformation iv ◦ρ(π)◦pu. If ϕ = {ϕv | v ∈ V } is
a homomorphism from ρA to ρB , then the function ⊕v∈V ϕv acting diagonally
on A = ⊕v∈V ρA(v) is the corresponding homomorphism from A to B.

Now we introduce a key concept for the results of this paper.

Definition 2.5. A finite acyclic quiver Γ = 〈V,E;h, t〉 is an ordered forest
if h is injective.

To explain this terminology, let E◦ = {(t(e), h(e)) | e ∈ E}. The acyclic-
ity of Γ forces the transitive closure of E◦ to be a strict partial order <
on V . Denote the partially ordered set 〈V ;<〉 by Γ<. Since h is injective,
Γ may be recovered from Γ< by taking E = {(u, v) | v covers u in Γ<},
t : E → V : (u, v) 7→ u and h : E → V : (u, v) 7→ v. Thus, Γ and Γ< de-
termine one another. Now, in the language of ordered sets, the injectivity
of h translates into the statement that any principal order ideal in Γ< is a
chain. (For, if a, b < c in Γ< and a and b are incomparable, then there is
a first vertex d along any given path from a to c in Γ that is also on some
path from b to c. But if this happens then |h−1(d)| ≥ 2, contradicting the
injectivity of h.) Therefore the connected components of Γ< are trees, i.e.
Γ< is a forest.

3. Subdirectly irreducible representations

A module is subdirectly irreducible if it has a nonzero submodule, called its
monolith, that is contained in all nonzero submodules. There is a correspond-
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An ordered forest, and its associated partially ordered set

ing concept for representations. The subdirectly irreducible representations
of a finite acyclic quiver are described in this section.

Definition 3.1. Let ρ be a representation of a quiver Γ = 〈V,E;h, t〉. The
support of ρ is the subquiver Γ|ρ := 〈V ′, E′;h′, t′〉 where V ′ = {v ∈ V | ρ(v) 6=
{0}}, E′ = {e ∈ E | ρ(e) 6= 0}, h′ = h|E′ , and t′ = t|E′ .

Theorem 3.2. A representation ρ of a finite acyclic quiver Γ is subdirectly
irreducible if and only if

(a) Γ|ρ has a unique sink v0 ∈ V ,

(b) dim(ρ(v0)) = 1, and

(c) For each v ∈ V − {v0}, the set of functions

{ρ(π) | π is a nontrivial path from v to v0.}

separates the points of ρ(v).

Proof. Assume that ρ is subdirectly irreducible. Then ρ is not the zero
representation, so Γ|ρ is not empty. Since Γ is finite and acyclic, Γ|ρ must
have a sink, v0 ∈ V . Let U0 be a 1-dimensional subspace of ρ(v0) and let
U be an arbitrary 1-dimensional subspace of ρ(v), v a sink of Γ|ρ. The
subrepresentations generated y U and U0 are 1-dimensional. If U 6= U0,
then these subrepresentations of ρ are disjoint, contradicting the subdirect
irreducibility of ρ. Thus U = U0, establishing that (a) and (b) hold.

If there is a vertex v ∈ V − {v0} and vectors a, b ∈ ρ(v) such that
ρ(π)(a) = ρ(π)(b) for all paths starting at v and ending at v0, then the 1-
dimensional subrepresentation of ρ generated by a−b ∈ ρ(v) is disjoint from
the 1-dimensional representation generated by ρ(v0), again contradicting
subdirect irreducibility. Thus (c) holds.



6 K.A. Kearnes

Now suppose that (a)–(c) hold. Let σ be the nonzero subrepresentation
of ρ whose support has vertex set {v0}. (There is exactly one, by (a) and
(b).) If ρ′ is any subrepresentation of ρ of positive dimension, and a ∈
ρ′(v) is nonzero for some v ∈ V , then it follows from (c) that there is a
path π starting at v and ending at v0 such that ρ′(π)(v) 6= 0. By this
conclusion and (b), 1 ≤ dimF(ρ′(v0)) ≤ dimF(ρ(v0)) = 1. By the choice of
σ, dimF(σ(v0)) = 1. Hence ρ′(v0) = σ(v0). Since σ is supported only at v0,
σ is a subrepresentation of ρ′. Since ρ′ ≤ ρ was chosen arbitrarily, σ is the
least nonzero subrepresentation of ρ, and ρ is subdirectly irreducible.

Corollary 3.3. Let Γ be an ordered forest. A representation ρ of Γ is
subdirectly irreducible if and only if

(a) the vertex set of Γ|ρ is a (linearly ordered) interval in Γ<,

(b) dim(ρ(v)) = 1 for all vertices in Γ|ρ, and

(c) ρ(e) is an isomorphism for all edges in Γ|ρ.

Proof. Assume that ρ is subdirectly irreducible, and that v0 ∈ V is its
sink. If v 6= v0 is another vertex in Γ|ρ, then Theorem 3.2 (c) implies that
there is a directed path from v to v0. Hence the vertices in Γ|ρ lie in the
order ideal of Γ< that is generated by v0. This ideal is linearly ordered since
Γ is an ordered forest. Call it C.

For each vertex v of Γ|ρ there is a unique path π of Γ that starts at v and
ends at v0. (Uniqueness follows from the injectivity of h, existence follows
from Theorem 3.2 (c).) Since ρ(π) is a the unique linear transformation from
ρ(v) to ρ(v0) in the point-separating set of transformations guaranteed by
Theorem 3.2 (c), ρ(π) is injective. Since ρ(v0) is 1-dimensional, each ρ(v)
must also be 1-dimensional (item (b)). If v < u < v0 in Γ<, then the unique
path π from v to v0 must pass through u. Since ρ(π) is an isomorphism,
u must belong to the support of ρ. Hence the vertex set of Γ|ρ is a filter
in 〈C;<〉, equivalently it is an interval in Γ< (item (a)). Since ρ(π) is an
isomorphism for each path in Γ|ρ that ends at v0 and all edges in Γ|ρ belong
to such a path, it follows that ρ(e) is an isomorphism for all e in Γ|ρ (item
(c)).

If (a)–(c) of this corollary hold, then (a)–(c) of Theorem 3.2 hold, hence
ρ is subdirectly irreducible.

The following consequence of Corollary 3.3 will be needed in Section 4.

Corollary 3.4. Let Γ be an ordered forest. If M and N are subdirectly
irreducible left FΓ-modules, then M and N have isomorphic monoliths if
and only if M is embeddable in N or N is embeddable in M .
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Proof. Since the monoliths of each are the unique minimal submodules,
any embedding of one into the other must restrict to an isomorphism between
monoliths.

For the converse, let ρM and ρN be the corresponding representations.
Their supporting vertex sets are linearly ordered intervals in Γ<, say C and
D. The sinks of Γ|ρM

and Γ|ρN
are the maximal elements u0 and v0 of C

and D respectively. According to the proof of Theorem 3.2, the monoliths
of M and N correspond to the subrepresentations supported by {u0} and
{v0} respectively. The scalar πu0

∈ FΓ acts like the identity on the monolith
of M , and like zero on the monolith of N unless u0 = v0. If M and N
have isomorphic monoliths, then necessarily u0 = v0. The order ideal of Γ<

generated by this element contains both C and D as upper intervals, hence
one of C or D is a contained in the other as an order filter. Assume that

C = {v0 > v1 > · · · > vm} ⊆ {v0 > v1 > · · · > vn} = D.

Under this assumption, an embedding of M into N may be constructed
by defining ϕ0 : ρM (v0) → ρN (v0) to be an arbitrary F-space isomorphism,
which must exist since both are 1-dimensional, and then defining linear trans-
formations ϕi : ρM (vi) → ρN (vi) inductively by ϕi+1 = ρ−1

N (ei) ◦ ϕi ◦ ρM (ei)
where ei ∈ E is the unique edge from vi+1 to vi. That ϕ = {ϕi | 1 ≤ i ≤ m}
is a homomorphism follows immediately from (i), while the fact that it is an
embedding follows from the fact that each of the transformations ϕ0, ρM (ei)
and ρN (ei) is an isomorphism.

4. Property A

If R is a ring and L is the variety of left R-modules, then Property A is
the property that the V -lattice of L is a sublattice of the Q-lattice of L. In
this section we shall prove that when R = FΓ is the path algebra of a finite
acyclic quiver, then R has Property A if and only if Γ is an ordered forest.

Throughout this section and the next we use the following notation. If K
is a class of similar algebras, then H(K), S(K), P(K), and Pu(K) denote the
closure of the class under the formation of homomorphic images, subalgebras,
products and ultraproducts respectively. Each of these closure operators is
assumed to include closure under isomorphisms.

Lemma 4.1. Let U be a variety. The V -lattice of U is a sublattice of the
Q-lattice of U if and only if the variety generated by a subdirectly irreducible
algebra of U is join prime in the V -lattice of U .
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Proof. The equivalence of consecutive statements on the following list is
clear, while the equivalence of the negations of the first and last is what is
to be proved.

(a) The V -lattice of U is not a sublattice of the Q-lattice.

(b) There exist subvarieties V,W ⊆ U whose V -lattice join is larger than
their Q-lattice join.

(c) Their exist subvarieties V,W and a subdirectly irreducible algebra A ∈
HSP(V ∪W) − SP(V ∪W).

(d) There is a subdirectly irreducible algebra A ∈ U and subvarieties
V,W ⊆ U such that HSP(A) 6≤ V, HSP(A) 6≤ W, but HSP(A) ≤
HSP(V ∪W).

Theorem 4.2. If the variety of left FΓ-modules satisfies Property A, then Γ
is an ordered forest.

Proof. Let L be the variety of left FΓ-modules. We will argue that if Γ
is not an ordered forest, then L does not satisfy Property A. According to
Definition 2.5 and Lemma 4.1, our task is to derive from the noninjectivity of
the head operation of Γ the existence of a subdirectly irreducible FΓ-module
that generates a subvariety of L that is not join prime in the V -lattice of L.
So assume that Γ has distinct edges d and e with equal heads (h(d) = h(e)).
We separate the argument into two cases depending on whether or not the
tails of these edges are equal.

Case 1. t(d) 6= t(e).

Define a representation ρA of Γ by taking ρA(v) be a copy of the 1-
dimensional space F if the vertex v is at the head or tail of d or e (v ∈
{h(d) = h(e), t(d), t(e)}), and taking ρA(v) = {0} otherwise. Define ρA(d)
and ρA(e) be idF and ρA(f) = 0 for all other edges f ∈ E. The support of
ρA has vertex set {h(d) = h(e), t(d), t(e)} and edge set {d, e}.
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and ρM (t(e)) = {0}, let ρN be the subrepresentation for which ρN (t(e)) =
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ρN (h(e)) = F and ρN (t(d)) = {0}, and let ρP be their intersection (so
ρP (t(d)) = ρP (t(e)) = {0} and ρP (h(d)) = F).
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Let M,N and P be the associated submodules of A. It follows from the
criteria of Theorem 3.2 that A,M,N and P are all subdirectly irreducible.
They are related by P ⊆ M ⊆ A and P ⊆ N ⊆ A. Since dimF(P ) =
1, dimF(M) = dimF(N) = 2, and dimF(A) = 3, P is the least nonzero
submodule of each of them, and Q := M/P,R := N/P and P are simple
modules. No two of these simple modules are isomorphic, since if rP :=
πh(d), rQ := πt(d) and rR := πt(e) then the scalar rX acts like the identity on
the simple module X and like zero on the modules in {P,Q,R} − {X}.

The variety generated by M does not contain A, since the composition
factors of the finite dimensional members of HSP(M) must be among the
composition factors of M , which are P and Q, and the module R /∈ {P,Q}
occurs as a composition factor of A. Similarly, the variety generated by
N does not contain A. Thus, A is a subdirectly irreducible FΓ-module
satisfying HSP(A) 6≤ HSP(M) and HSP(A) 6≤ HSP(N). We complete
the proof of Claim 1 by showing that HSP(A) ≤ HSP(M,N). Indeed, the
inclusion maps iM : M → A and iN : N → A induce a map of the coproduct
iM t iN : M ⊕ N → A whose image contains the images of iM and iN ,
hence contains iM (M) ∪ iN (N) = M ∪ N . Since M and N are distinct
2-dimensional submodules of A, iM t iN (M ⊕ N) contains a 3-dimensional
submodule of A. But A is 3-dimensional, so iM t iN maps M ⊕ N onto A.
Since M ⊕ N = M × N ∈ HSP(M,N), this puts A in HSP(M,N).

Case 2. t(d) = t(e).

In this case, d and e are edges from u := t(d) = t(e) to v := h(d) = h(e).
Let ρA, ρM and ρN be representations of Γ whose supporting vertex set in
each case is {d, e}. Define ρA(u) = ρA(v) = ρM (u) = ρM (v) = ρN (u) =
ρN (v) = F, considered as a 1-dimensional space. Define ρA(d) = ρA(e) =
ρM (d) = ρN (e) = idF, and ρM (e) = ρN (d) = 0F. Let A,M and N be the
associated modules.

The FΓ-module identity e·x = 0 holds in M but not A, and d·x = 0 holds
in N but not A. Thus, HSP(A) 6≤ HSP(M) and HSP(A) 6≤ HSP(N). We
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now argue that HSP(A) ≤ HSP(M,N).

Let ρL be the subrepresentation ρM ⊕ ρN generated by the vector g :=
(1F, 1F) ∈ ρM (u)⊕ρN (u). The space ρL(u) equals F·g, while the space ρL(v)
is spanned by ρL(d)(g) = (1F, 0F) ∈ ρL(v) and ρL(e)(g) = (0F, 1F) ∈ ρL(v).
Define a homomorphism ϕ : ρL → ρA by ϕu : ρL(u) → ρA(u) : g 7→ 1F,

ϕv : ρL(v) → ρA(v) : (1F, 0F) 7→ 1F, (0F, 1F) 7→ 1F,

and ϕw = 0 for w /∈ {u, v}. To verify that ϕ is a homomorphism, it suffices
to show that ρA(d)◦ϕu(g) = ϕv ◦ρL(d)(g) and ρA(e)◦ϕu(g) = ϕv ◦ρL(e)(g).
In both cases, each side reduces to 1F ∈ ρA(v).

The homomorphism ϕ is surjective, since ϕu(g) = 1F ∈ ρA(u) is a gener-
ator for A. Thus, ρA is a quotient of the subrepresentation ρL ≤ ρM ⊕ ρN ,
implying that A ∈ HSP(M,N).

Next we prove the converse of Theorem 4.2.

Theorem 4.3. If Γ is an ordered forest, then the variety L of left FΓ-modules
satisfies Property A.

Proof. We must argue that every subdirectly irreducible left FΓ-module
generates a join prime subvariety of the variety L of all left FΓ-modules.
Assume instead that A ∈ L is subdirectly irreducible, A ∈ HSP(V ∪ W)
for certain subvarieties V,W ⊆ L, but A /∈ V ∪ W. Since HSP(V ∪ W) =
HS({B×C | B ∈ V, C ∈ W}), there must exist modules B ∈ V, C ∈ W, and
submodules D ≤ E ≤ B × C such that E/D ∼= A. By replacing B and C
with submodules if necessary, we may assume that the inclusion E ⊆ B ×C
is a subdirect representation.

Since E/D ∼= A, there is a module D∗ covering D in the submodule lat-
tice of E, such that D∗/D is the monolith of E/D. Extend D to a submodule
D′ ≤ B×C that is maximal for D∗ 6⊆ D′. Then D ⊆ E∩D′ but D∗ 6⊆ E∩D′,
so E ∩D′ = D (since D∗ is the least submodule of E that properly contains
D). By the maximality of D′, (B × C)/D′ is subdirectly irreducible with
monolith (D∗ + D′)/D′. By the second isomorphism theorem,

A ∼= E/D = E/(E ∩ D′) ∼= (E + D′)/D′ ⊆ (B × C)/D′.

Thus, A′ := (B ×C)/D′ ∈ HSP(V ∪W) is a subdirectly irreducible module
contained in the same join of varieties as A, and A′ /∈ V∪W since it contains
an isomorphic copy of A as a submodule. Since A′ satisfies all the properties
required of A, we may replace A by A′, in which case D gets replaced by



Quasivarieties of Modules Over Path Algebras of Quivers 11

D′ and E gets replaced by B ×C. Changing notation back, we may assume
that E = B × C, hence A = (B × C)/D.

Choose submodules B′ ≤ B and C ′ ≤ C maximal for the property that
B′ × C ′ ⊆ D. By replacing B,C,D with B/B′, C/C ′, and D/(B′ × C ′),
we may further assume that B × C has no nonzero product submodule
contained in D. In particular, since (B × {0}) ∩ D and ({0} × C) ∩ D are
product submodules contained in D, they are zero. Thus,

B ∼= (B × {0})/{0} = (B × {0})/((B × {0}) ∩ D)
∼= ((B × {0}) + D)/D ≤ (B × C)/D ∼= A,

forcing B (and similarly C) to be isomorphic to a nonzero submodule of A.
This forces B and C to be subdirectly irreducible, and to have monoliths
isomorphic to the monolith of A.

Since B and C have isomorphic monoliths, Corollary 3.4 guarantees that
either B is embeddable in C or C is embeddable in B. Assuming the former,
we get that B ∈ HSP(C) ⊆ W, so A ∈ HSP(B,C) ⊆ W, contrary to our
choice of A.

Remark 4.4. We have shown that if R = FΓ is a finite dimensional path
algebra of a quiver and L is the variety of left R-modules, then the following
properties are related by the implications (a)⇒(b)⇒(c)⇒(a).

(a) The V -lattice of L is a sublattice of the Q-lattice.

(b) Γ is an ordered forest.

(c) If M and N are subdirectly irreducible left R-modules with isomorphic
monoliths, then one is embeddable in the other.

Our proof of (c)⇒(a) holds for any ring R.

5. Property B

Recall that Property B is the property that the Q-lattice of L is distributive.
In this section we shall prove that FΓ has Property B if and only if Γop is
an ordered forest.

Theorem 5.1. If the variety of left FΓ-modules satisfies Property B, then
Γop is an ordered forest.

Proof. Γop is an ordered forest if and only if its tail operation is injective.
As in the proof of Theorem 4.2, we will prove t(d) = t(e) implies d = e by
considering the cases h(d) 6= h(e) and h(d) = h(e) separately.
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Case 1. h(d) 6= h(e).

Let ρA be the representation whose three supporting vertices are t(d) =
t(e), h(d) and h(e), and which has ρA(t(d)) = ρA(h(d)) = ρA(h(e)) = F

and ρA(d) = ρA(d) = idF. The associated module A is 3-dimensional. A
has 1-dimensional (simple) submodules M and N which are associated to
the subrepresentations ρM and ρN generated by 1F ∈ ρA(h(d)) and 1F ∈
ρA(h(e)) respectively.
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t(d) = t(e)

d e

h(d) h(e)

Γ|ρA

r

r
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@I

�
�
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idF idF

F F

ρA

r

r

r

@
@

@I

�
�

��

{0}

0F 0F

F {0}

ρM

r

r

r

@
@

@I

�
�

��

{0}

0F 0F

{0} F

ρN

Our goal is to prove that the following nonmodular (hence nondistributive)
lattice is a sublattice of the Q-lattice of the variety of all left FΓ-modules.
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r

r

r

@
@

@@

����

�
�

��

HHHH

Q1 = SPPu(A/M)

SPPu(A,A/N) = Q3

SPPu(A/N,N) = Q2

Q0 = SPPu(N)

The inclusion Q2 ⊆ Q3 follows from the fact that N is a submodule of A.
The identity e·x = 0 is satisfied by A/N and by N , but not by A. This shows
that the inclusion is proper. Since the submodule M ≤ A is disjoint from N ,
N is isomorphic to a submodule of A/M ; this guarantees that Q0 ⊆ Q1. The
natural map from A to A/M × A/N is an embedding, since M ∩ N = {0},
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so Q3 ≤ SP(Q1 ∪Q2). These facts are enough to show that the joins in this
figure are correct. What remains to show is that Q1 ∩ Q3 ⊆ Q0.

The supporting vertices of A/M are {t(e), h(e)}, so Q1 satisfies the
identity πv · x = 0 for all vertices v not in this set. The quasi-identity
e · x = 0 −→ x = 0 expressing the injectivity of the e-map holds in A/M ,
hence in Q1. This shows that if L ∈ Q1, then its supporting vertex set is
a subset of {t(e), h(e)}, and ρL(e) is injective. The quasivariety Q3 satisfies
the quasi-identity d · x = 0 −→ x = 0, which expresses the injectivity of the
d-map. Thus, if L ∈ Q1 ∩ Q3, then ρL(d) and ρL(e) are injective, and the
vertices of Γ|ρL

are a subset of {t(e), h(e)}. But if the d-map is injective and
h(d) is not a supporting vertex, then t(d) cannot be a supporting vertex.
Hence the only possible supporting vertex of L ∈ Q1 ∩ Q3 is h(e). This
means precisely that the left FΓ-module L is annihilated by left multiplica-
tion by any path except πh(e), which acts like the identity on L. Any two
nontrivial modules of this type are embeddable in powers of one another,
since this property holds for nontrivial F-vector spaces, and N is one such
module. Thus, (L ∈ Q1 ∩ Q3) ⇒ (L ≤ Nκ for some κ) ⇒ (L ∈ Q0).

Case 2. h(d) = h(e).
The argument here is similar to the one for Case 1. Let u := t(d) = t(e)

and v := h(d) = h(e). Let ρA be the 3-dimensional representation of Γ for
which ρA(u) = F, ρA(v) = F

2 and ρA(w) = {0} for all other vertices w. Let
ρA(d)(x) = (x, 0) ∈ F

2, ρA(e)(x) = (0, x) ∈ F
2, and ρA(f)(x) = 0 for all

other edges f . Let ρM be the 1-dimensional subrepresentation of ρA whose
supporting vertex is v and whose space at this vertex is F · (1, 0). Let ρN be
the 1-dimensional subrepresentation whose supporting vertex is v and whose
space at this vertex is F · (0, 1). Let A,M and N be the associated modules.
We will prove that the following nonmodular lattice is a sublattice of the
Q-lattice of the variety of all left FΓ-modules.
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r

r

r
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HHHH

Q1 = SPPu(A/M)

SPPu(A,A/N) = Q3

SPPu(A/N) = Q2

Q0 = SPPu(N)

It is easy to see that M ∼= N , since (a) both are 1-dimensional as F-spaces
and (b) all paths in FΓ act like zero on each of them, except for the trivial
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path at v which acts like the identity on both of them. Since M and N are
disjoint, M ∼= N ∼= (M +N)/M ≤ A/M and N ∼= M ∼= (M +N)/N ≤ A/N ,
so N is embeddable in both A/M and A/N . The fact that M and N are
disjoint also implies that A ≤ A/M × A/N , so Q3 ≤ SP(Q1 ∪ Q2). These
facts show that the joins are correct in the previous figure. It remains to
show that Q2 6= Q3 and Q1 ∩ Q3 ⊆ Q0.

To see that Q2 6= Q3, note that A/N (and hence Q2) satisfies the identity
e ·x = 0 while A (and hence Q3) does not. To see that Q1 ∩Q3 ⊆ Q0 choose
L ∈ Q1 ∩ Q3 arbitrarily. The quasivariety Q1 = SPPu(A/M) satisfies the
identities πw · x = 0 for all vertices w /∈ {u, v}, since the supporting vertices
of ρA/M are {u, v}. Q1 satisfies the identity d · x = 0 and the quasi-identity
e · x = 0 −→ x = 0, since ρA/M (d) is the zero map and ρA/M (e) is injective.
These identities and quasi-identity are satisfied by L, so the supporting
vertices of L are in {u, v}, ρL(d) = 0, and ρL(e) is injective.

Both ρA(d) and ρA/N (d) are injective, so Q3 satisfies d ·x = 0 −→ x = 0.
Hence L ∈ Q3 satisfies this quasi-identity. Since we have already established
that ρL(d) is zero, it follows that u is not a supporting vertex of ρL. As an
FΓ-module, L is simply an F-vector space on which each path acts like zero
except for the trivial path at v, which acts like the identity. Any nontrivial
module of this type is embeddable in a power of any other nontrivial module
of this type, and N is a nontrivial module of this type. This shows that
(L ∈ Q1 ∩ Q3) ⇒ (L ≤ Nκ for some κ) ⇒ (L ∈ Q0).

Lemma 5.2. If Γop is an ordered forest, then any finite dimensional inde-
composable left FΓ-module is subdirectly irreducible.

Proof. We assume that a finite dimensional FΓ-module A is not subdirectly
irreducible, and prove that it has a nontrivial direct decomposition.

If A is not subdirectly irreducible, then (since it is finite dimensional)
it must have disjoint nontrivial submodules M and N . By extending them
if necessary we may assume that if M ′ ⊇ M and N ′ ⊇ N are submodules
satisfying M ′ ∩N ′ = ∅, then M ′ = M and N ′ = N . Under this assumption,
we will prove that A = M + N = M ⊕ N . Converting from modules A,M
and N to representations ρA, ρM and ρN , our aim is to prove that ρA(v) =
ρM (v)⊕ ρN (v) for every v ∈ V . Since M and N are disjoint, it is enough to
prove that ρA(v) = ρM (v) + ρN (v) for every v ∈ V .

Assume that this is not so, and let v0 ∈ V be a vertex that is maximal
in Γ< for the property that ρA(v) 6= ρM (v) + ρN (v). There is at most one
edge e ∈ E such that t(e) = v0, since t is injective when Γop is an odered
forest. If such an edge exists, let v1 denote h(e). If v1 exists, then v0 < v1
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in Γ<, so the maximality of v0 guarantees that ρA(v1) = ρM (v1) + ρN (v1).
In particular, this means that

ρA(v0) = [ρA(e)]−1(ρA(v1)) = [ρA(e)]−1(ρM (v1)) + [ρA(e)]−1(ρN (v1)). (ii)

Now we define new subrepresentations ρM ′ and ρN ′ of ρA extending ρM and
ρN respectively. Define ρM ′(v) = ρM (v) and ρN ′(v) = ρN (v) for all v 6= v0.
Define ρM ′(v0) = U and ρN ′(v0) = W where U and W are complementary
subspaces of ρA(v0) satisfying

(a) ρM (v0) ⊆ U ⊆ [ρA(e)]−1(ρM (v1)), and

(b) ρN (v0) ⊆ W ⊆ [ρA(e)]−1(ρN (v1)).

(The conditions referring to e are in effect only if e exists.) Observe that
the leftmost subspaces in (a) and (b) are disjoint (since M and N are), the
leftmost subspaces in (a) and (b) are contained in the rightmost subspaces
(since ρM and ρN are subrepresentations of ρA), and the rightmost sub-
spaces in (a) and (b) sum to ρA(v0) (by (ii)). It follows that there do exist
complementary subspaces U and W satisfying (a) and (b).

The inclusion ρM (v0) ⊆ U guarantees that for any edge f ∈ E with
h(f) = v0 we have ρA(f)(ρM (t(f))) ⊆ ρM (h(f)) = ρM (v0) ⊆ U , so ρA(f)
may be considered to be a linear transformation from ρM ′(t(f)) := ρM (t(f))
to U . Similarly ρN (v0) ⊆ W guarantees that ρA(f) may be considered to be
a linear transformation from ρN ′(t(f)) := ρN (t(f)) to W . Moreover, the in-
clusions U ⊆ [ρA(e)]−1(ρM (v1)) and W ⊆ [ρA(e)]−1(ρM (v1)) guarantee that
ρA(e) : U → ρM (v1) and ρA(e) : W → ρN (v1) are linear transformations.
Thus ρM ′ and ρN ′ are representations. By the choices made, the associated
modules M ′ and N ′ are disjoint and properly extend M and N . This con-
tradicts the maximality assumption on (M,N), so A = M +N = M⊕N .

Theorem 5.3. If Γop is an ordered forest, then the variety of left FΓ-modules
satisfies Property B.

Proof. We must prove that if Γop is an ordered forest, then the subquasi-
variety lattice of the variety L of all left FΓ-modules is distributive.

It suffices to prove that the subquasivariety lattice is modular, since
any subquasivariety lattice is join semidistributive and any modular join
semidistributive lattice is distributive. Therefore we must show that Q0 ∩
(Q1 ∨Q2) ⊆ (Q0 ∩Q1)∨Q2 whenever Q0 ⊇ Q2. If this is not the case, then
there is an FΓ-module

A ∈ [Q0 ∩ (Q1 ∨ Q2)] − [(Q0 ∩ Q1) ∨ Q2]. (iii)
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A may be taken to be finitely generated, hence finite dimensional. By choos-
ing A of least dimension among modules satisfying (iii) we guarantee that
A is indecomposable. According to Lemma 5.2, A is subdirectly irreducible.
¿From A ∈ Q0 ∩ (Q1 ∨Q2) we get A ∈ Q0 and A ∈ Q1 ∨Q2 = SP(Q1 ∪Q2).
A is subdirectly irreducible, so the last part of this is equivalent to

A ∈ Q1 ∪ Q2. (iv)

If A ∈ Q1, then since A ∈ Q0 as well we get A ∈ Q0 ∩Q1 ⊆ (Q0 ∩Q1)∨Q2,
which contradicts (iii). On the other hand, if in (iv) we have A ∈ Q2, then
we also contradict (iii). The only conclusion is that there is no module in
[Q0 ∩ (Q1 ∨ Q2)] − [(Q0 ∩ Q1) ∨ Q2].

Remark 5.4. We have shown that if R = FΓ is a finite dimensional path
algebra of a quiver and L is the variety of left R-modules, then the following
properties are related by the implications (a)⇒(b)⇒(c)⇒(a).

(a) The Q-lattice of L is distributive.

(b) Γop is an ordered forest.

(c) Every finitely generated, indecomposable, left R-module is subdirectly
irreducible.

Our proof of (c)⇒(a) holds for any ring R.

We summarize our results in the form that appears in the abstract.

Corollary 5.5. Let L denote the variety of all left FΓ-modules, and let R
denote the variety of all right FΓ-modules. The following are equivalent.

(1) The subvariety lattice of L is a sublattice of the subquasivariety lattice
of L.

(2) The subquasivariety lattice of R is distributive.

(3) Γ is an ordered forest.

Proof. The equivalence of (1) and (3) follows from Theorems 4.2 and 4.3.

It follows from Definition 2.3 that the F-algebra that is opposite to FΓ
is the path algebra over the opposite quiver, i.e. (FΓ)op = F(Γop) =: FΓop.
Therefore the variety of left FΓop-modules is equivalent to the variety R
of right FΓ-modules. Hence the equivalence of (2) and (3) follows from
Theorems 5.1 and 5.3.
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