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Abstract

Let V be a variety of semilattice modes with associated semiring R. We prove that
if R is a bounded distributive lattice, then V has the amalgamation property. We show
that the converse is true when V is locally finite.

1 Introduction

The paper [3] analyzes the structure of semilattice modes and shows that, in many
ways, semilattice modes are very similar to varieties of modules. We prove results in
[3] which show that a number of the categorical and algebraic properties of varieties
of modules are shared by varieties of semilattice modes. Most importantly, there
is a commutative semiring associated with a variety of semilattice modes and each
subdirectly irreducible semilattice mode is polynomially equivalent to a semimodule
over the associated semiring.

In this paper, we point out a difference between varieties of modules and varieties
of semilattice modes: all varieties of modules have the amalgamation property, but
few varieties of semilattice modes have this property. Assume that V is a variety of
semilattice modes and that R is the associated semiring. We show that if R is a
bounded distributive lattice, then V has the amalgamation property. Conversely, if
V is locally finite and has the amalgamation property, then R must be a bounded
distributive lattice. We give an example to show that when V is not locally finite, then
it is possible for V to have the amalgamation property even if R is not a bounded
distributive lattice.

2 Preliminaries

We briefly review the material from [3] which will be needed in this paper. We expect
that the reader will be familiar with the material in [5] and [6] to the degree that we
need not review basic algebra or the definition of a mode. A semilattice mode is a
mode which has a binary term operation which is a semilattice operation. If V is a
variety of semilattice modes, then [3] proves that one can associate a semiring R(V)
to V which determines most of the properties of V. We explain now how R(V) is
constructed.
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FV(x, y) denotes the free algebra on the set {x, y} in the variety V. Let R be
the subuniverse of FV(x, y) which is the image of the endomorphism determined by
x 7→ x+ y, y 7→ y. We define R(V) so that it has universe R and operations ·, +, 1, 0
which are defined as follows. For s, t ∈ R, we define s · t to be the element et(s) where
et is the endomorphism of FV(x, y) determined by x 7→ t, y 7→ y. The operation + is
just the semilattice operation of the variety (which is uniquely determined). + is an
operation on R, since R is a subuniverse of FV(x, y). 1 denotes the element x+ y ∈ R
and 0 denotes the elements y ∈ R. The structure R(V) = 〈R; ·,+, 1, 0〉 is called the
semiring of V.

Let us describe an alternate construction of R(V) which the reader will readily see
agrees with the one above. This time we take for the universe of R(V) the set of all
binary terms r(x, y) of V, modulo V-equivalence, for which

V |= r(x, y) + y = r(x, y).

If s and t are such terms, then s·t := s(t(x, y), y) is another, as is s+t := s(x, y)+t(x, y),
1 := x + y and 0 := y. The collection of these binary terms under the described
operations forms a semiring isomorphic to the one in the preceding paragraph. Here
is the isomorphism: for a binary term r, take its interpretation in F = FV(x, y) and
apply rF to the generators x and y. The assignment r 7→ rF(x, y) is easily seen
to be a bijection from the set of binary terms r (modulo V-equivalence) satisfying
r(x, y) + y = r(x, y) onto the set R. The operations can easily be seen to correspond.

Let t(x0, . . . , xn−1) be a term of V. For each i < n, we define t̂i(x, y) to be
t(y, . . . , y, x, y, . . . , y) + y. For each i < n, the element t̂i = t̂i(x, y) may be con-
strued to be an element of R(V), according to the second construction of this semiring.
We call t̂i the ith coefficient of t. We call

t̂0 • x0 + · · · + t̂n−1 • xn−1

the coefficient representation for t. The point of making these definitions is that
coefficient representations may be manipulated in all the ways one manipulates such
expressions for the terms in a variety of modules. (See Lemma 3.5 of [3].) Hence,
all terms of V may be thought of as “linear combinations of variables” where the
coefficients come from R(V). This motivates us to investigate the properties of R(V).
The identities satisfied by R(V) are described in the next theorem which follows from
Theorem 4.11 of [3].

THEOREM 2.1 The identities of R(V) may be summarized as follows:

• 〈R; ·, 1, 0〉 and 〈R; +, 0, 1〉 are commutative semigroups whose first constant is an
identity element and whose second constant is a zero element for the semigroup
operation.

• Multiplication (·) distributes over addition (+).

• R(V) |= r + r = r. 2

(When we say “the identities of R(V)”, we mean that the given identities must hold in
any semiring of the form R(V) and conversely that any semiring satisfying the listed
identities arises as R(V) for some variety V of semilattice modes.) It is easy to show
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that R(V) is a bounded distributive lattice if and only if R(V) |= r · r = r in addition
to the identities listed in the theorem.

It is shown in [3] that R(V), the semiring of coefficients of terms, is generated as a
semiring by the coefficients of the basic operations. As a result, we have the following
(weak) version of Lemma 4.14 of [3]:

THEOREM 2.2 If V is a variety of semilattice modes of finite type, then R(V) is a
finitely generated semiring. 2

The structure of subdirectly irreducible algebras plays a big role in [3] and will also
play a big role in this paper. The following example is basic.

Example 1. Let S = 〈S; +〉 be an algebra satisfying:

(a) S is a join-semilattice.

(b) S has a least element 0.

(c) S has an element u which is the least element in S − {0}.
Let U be a set of endomorphisms of S satisfying the following conditions:

(i) U is closed under composition and contains the identity endomorphism.

(ii) Members of U commute.

(iii) All members of U are decreasing in the sense that if f ∈ U , then f(x) ≤ x
(meaning f(x) + x = x).

(iv) If x < y in S, then there is an f ∈ U such that f(x) = 0 < f(y).

Define S(U) to be the algebra 〈S; bf (f ∈ U)〉 where bf (x, y) = f(x) + y. The following
result is Theorem 3.3 of [3]:

THEOREM 2.3 A is a subdirectly irreducible semilattice mode iff A is term equiv-
alent to an algebra of the form S(U) where S satisfies (a)− (c) and U satisfies (i)− (iv)
of Example 1. 2

If A is a subdirectly irreducible semilattice mode, then S can always be taken to be
the underlying semilattice of A. U can be taken to be the following set of functions:

U = {sA(x, 0) | s is a binary term}
= {p(x) ∈ Pol1A | p(0) = 0}
= {p(x) ∈ Pol1A | 0 ∈ p(A)}

The equality of these sets implies that for any p ∈ Pol1A the following conditions are
equivalent:

• 0 ∈ p(A).

• p(0) = 0.

• p(x) = sA(x, 0) for some binary term s.
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In fact, it is proved in Theorem 3.1 of [3] that these conditions are equivalent not just
for subdirectly irreducible algebras, but for any semilattice mode which has an element
0 which is a least element in the semilattice order. From Theorem 2.3, each subdirectly
irreducible has a least element 0 and a second least element u and the monolith is the
equivalence relation with {0, u} as its only nontrivial block.

A very important semilattice mode can be constructed from R(V). Call a subset I ⊆
R(V) and annihilator ideal if I is nonempty, closed under +, and closed downward.
Let I be the set of annihilator ideals of R(V) and define a⊕ b = a∩ b for a, b ∈ I. For
each r ∈ R(V) and each a ∈ I let r−1(a) = {x ∈ R(V)|r · x ∈ a}. Then, S = 〈I;⊕〉 as
a join-semilattice and U = {r−1(x)|r ∈ R(V)} is a collection of decreasing, commuting
endomorphisms of S.

If f is an n-ary basic operation symbol for V, then we define a corresponding n-ary
operation [f ] on I by

[f ](I0, . . . , In−1) = f̂−1
0 (I0)⊕ · · · ⊕ f̂−1

n−1(In−1)

for Ij ∈ I, j < n. Here f̂i denotes ith coefficient of f , which is a member of R(V).
We may equip I with operations [f ], f a basic operation symbol for V, and obtain an
algebra of the same type as V. Let us write I(V) to denote this algebra. Theorems
4.16 and 4.17 of [3] together prove that:

THEOREM 2.4 V = SP(I(V)). 2

From the way R(V) and I(V) are constructed, we see that this theorem has the fol-
lowing consequence.

COROLLARY 2.5 Let V be a variety of semilattice modes. The following conditions
are equivalent.

(i) V is locally finite.

(ii) R(V) is finite.

(iii) I(V) is finite.

(iv) V = SP(A) for a finite mode A. 2

Condition (iv) of this corollary may be stated as, “V has finitely many subdirectly
irreducible members, all of which are finite.”

Corollary 4.18 of [3] proves that if A is a finite subdirectly irreducible semilattice
mode and V = V(A), then A ∼= I(V). We get the following result related to the
previous corollary.

COROLLARY 2.6 If A is a finite subdirectly irreducible semilattice mode, then
V(A) = SP(A). 2

In the next section we shall need to know that a locally finite variety of semilattice
modes has only finitely many subvarieties. This follows from Corollary 2.5, but it also
is a consequence of the following, more informative, result. (Theorem 4.20 of [3].)

THEOREM 2.7 If V is a variety of semilattice modes, then the lattice of equational
theories extending the theory of V (and therefore the dual of the lattice of subvarieties)
is isomorphic to Con R(V). 2
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3 The Amalgamation Property

In this section, we classify the locally finite varieties of semilattice modes that have the
amalgamation property (AP). The amalgamation property for V is the property that
asserts that, whenever we have algebras A,B,C ∈ V and embeddings f1 : A→ B and
g1 : A→ C, then we can find an algebra D ∈ V and embeddings f2, g2 which complete
a commutative diagram:

B
f1

↗
f2

↘
A D

g1

↘
g2

↗
C

We say that the triple (f2; g2; D) completes the amalgam (A; f1, B; g1, C). When
convenient, we shall assume that embeddings are inclusions.

We shall begin our proof that V has the AP when R(V) is a bounded distributive
lattice by first proving it in the case where V is locally finite. A simple compactness
argument then proves the result for non-locally finite V. In our proof for the locally
finite case, we consider amalgams of the form (A; f1,B; g1,C) where |A| > 1, B is
subdirectly irreducible and g1 is essential. By Lemma 3.1 below, if we can complete
these amalgams, then we can complete all amalgams. (A homomorphism g1 : A → C

is essential if whenever θ ∈ Con C and θ > 0C, then θ|A def
= g−1

i (θ) > 0A. We
say that B is an essential extension of A if A is a embedded in B by an essential
homomorphism.) Since V is locally finite, Corollary 2.5 (i)↔ (iv) proves V has a finite
cardinality bound on the size of its subdirectly irreducible members; so |B| is finite. It
makes sense to talk about the height of an element in 〈B;≤〉: b ∈ B has height n if a
shortest maximal chain from 0 to b in 〈B;≤〉 has n+ 1 elements. We shall argue that
(A; f1,B; g1,C) may be completed by using induction on k where k is the minimum
height in 〈B;≤〉 of an element of the form f1(a), a ∈ A.

The following lemma referred to in the last paragraph is proved in [2]. We will need
the statement frequently in this paper and, in the proof of Theorem 3.7, we will need
an understanding of the idea of the proof. To see that this theorem applies to varieties
of semilattice modes, we refer the reader to Theorem 5.3 of [3] which proves that any
variety of semilattice modes has the congruence extension property (CEP).

LEMMA 3.1 Assume that V has the CEP. Then V has the amalgamation property
if and only if we can complete each amalgam (A; f1,B; g1,C) where |A| > 1, B is
subdirectly irreducible and g1 is essential. When this is possible we can complete
(A; f1,B; g1,C) with a triple (f2; g2; D) where D is subdirectly irreducible and f2 is
essential.

If we can complete all the amalgams (A; f1,B; g1,C) where all algebras are subdi-
rectly irreducible and both maps are essential, then we can complete all amalgams in
V where both maps are essential.

Proof: First, it is always possible to complete an amalgam (A; f1,B; g1,C) where
|A| = 1. Simply take D = B × C and f2 : B → D : x 7→ (x, a) where A = {a}.
Similarly, take g2 : C→ D : x 7→ (a, x). Then (f2; g2; D) completes the amalgam.
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Suppose that can complete all amalgams where one of the homomorphisms is es-
sential. We shall show how to complete an arbitrary amalgam (A; f1,B; g1,C). Let
θB be a congruence on B which is maximal among all θ ∈ Con B for which θ|A = 0A.
Then (A; f̄1,B/θ

B; g1,C) is an amalgam where f̄1 is essential, so it can be completed;
say that (f2; g2; D) completes the amalgam. Simlarly, we can find (f3; g3; E) which
completes the amalgam (A; f1,B; ḡ1,C/θ

C). One easily verifies that

((f2 × f3) ◦ (f̄1 × idB); (g2 × g3) ◦ (idC × ḡ1); D×E)

completes the original amalgam: (A; f1,B; g1,C). Hence, to establish the amalgama-
tion property we only need to show how to complete those amalgams (A; f1,B; g1,C)
where one of the maps, say g1, is essential.

Let B ≤ ∏
B/θi be a representation of B as a subdirect product of subdirectly

irreducible algebras and define θA
i = θi|A and θC

i = a maximal congruence θ ∈ Con C
such that θ|A = θ A

i (there is at least one since V has the CEP). If we can complete

each amalgam (A/θA
i ; f

(i)
1 ,B/θi; g

(i)
1 ,C/θC

i ), then the product of the amalgamating
algebras, {Di | i ∈ I}, together with the obvious maps (the restrictions of product
maps) amalgamates B with C/(∩θC

i ) over A/(∩θA
i ). But ∩θA

i = (∩θi)|A = 0B|A =
0A. Further, (∩θC

i )|A = ∩θA
i = 0A. Since g1 : A→ C is essential, we get that ∩θC

i =
0C. Therefore we even get that the product of the amalgamating algebras, {Di | i ∈ I},
with the obvious maps amalgamates B with C over A. Hence, all amalgams can be
completed iff we can complete those where B is subdirectly irreducible and C is an
essential extension of the algebra A.

Consider (A; f1,B; g1,C) where B is subdirectly irreducible and g1 is essential. If
(f2; g2; D) completes this amalgam, then we may choose ψ ∈ Con D maximal with
respect to the property that ψ|B = 0B. Then, ψ|A = 0A and, since g1 is essen-
tial, ψ|C = 0C. Thus (f̄2; ḡ2; D/ψ) completes the amalgam with f̄2 essential and
(consequently) with D/ψ subdirectly irreducible.

The argument for the second statement of this lemma is similar to the argument
above. Choose a family {θi | i ∈ I} of strictly meet-irreducible congruences that sepa-
rate the points of A. Let θB

i and θC
i be maximal extensions of θi to B and C respectively.

Necessarily, these congruences are strictly meet-irreducible and separate the points of
B and C respectively (that they separate points follows from the fact that B and C

are essential extensions of A). If all the amalgams (A/θi; f
(i)
1 ,B/θB

i ; g
(i)
1 ,C/θC

i ) can be
completed, then taking products completes the original amalgam. 2

Now we begin a sequence of technical lemmas which show how to construct amal-
gamating triples (f2; g2; D).

LEMMA 3.2 If V is a variety of semilattice modes, A ∈ V and C is a maximal
essential extension of A in V, then 0C exists and equals

∧
a∈A g1(a). In particular, if

0A exists, then g1(0A) = 0C.

Proof: Let C ≤ Πi∈ICi be a representation of C as a subdirect product of subdi-
rectly irreducible semilattice modes. Choose θ ∈ Con Πi∈ICi maximal with respect to
the property that θ|C is the zero congruence of C. Each Ci is subdirectly irreducible,
so each has a least element in the semilattice order. Hence, Πi∈ICi has a least element,
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as does (Πi∈ICi)/θ. But the latter algebra is an essential extension of C and therefore
is isomorphic to C. It follows that C has a least element, 0C, in the semilattice order.

To simplify the notation, assume that A ⊆ C and that g1(x) = x. We must show
that 0C =

∧
a∈A a. To show this means that we must rule out the possibility that there

is an element c ∈ C − {0C} such that c ≤ a for all a ∈ A. Assume that c is such an
element. Then θ = CgC(0C, c) is a nonzero congruence of C. Since C is an essential
extension of A, θ|A > 0A. Assume that (a, b) ∈ θ|A − 0A. By Mal’cev’s congruence
generation theorem we can find a sequence of elements a = x0, x1, . . . , xn = b such
that for all i < n we have {xi, xi+1} = {pi(c), pi(0C)} for some pi ∈ Pol1C. We alter
this to a new sequence

a = y0, . . . , yn = z0, . . . , zn = b

by defining yi = x0 + · · · + xi for i ≤ n and zj = xj + · · · + xn for j ≤ n. We further
define ri(x) = pi(x) + yi ∈ Pol1C and si(x) = pi(x) + zi+1 ∈ Pol1C for i < n. The
sequence of polynomials

(r0, . . . , rn−1, s0, . . . , sn−1)

witnesses the fact that
a = y0, . . . , yn = z0, . . . , zn = b

is a Mal’cev chain connecting a to b by polynomial images of {0C, c}. This chain has
the further property that yi ≤ yi+1 and zi+1 ≤ zi. By deleting unnecessary links
in the chain, we may assume that these inequalities are strict and, because a 6= b,
there remains at least one strict inequality. Without loss of generality, y0 = a < y1.
Now {r0(0C), r0(c)} = {a, y1}. Since our assumption is that c lies strictly below every
element of A, we have 0C < c < a < y1. Hence (r0(0C), r0(c)) = (a, y1). Now suppose
that r0(x) = tC(x, ū), ū ∈ Cn. Then

r0(x) = tC(x, ū)
= tC(x+ 0C, 0C + u0, . . . , 0

C + un−1)
= tC(x, 0C, . . . , 0C) + tC(0C, u0, . . . , un−1)
= tC0 (x, 0C) + r0(0C)
= tC0 (x, 0C) + a
= tC0 (x, 0C) + tC0 (a, a)
= tC0 (x+ a, a).

In particular,
a < y1 = r0(c) = tC0 (c+ a, a) ≤ tC0 (a+ a, a) = a

which is the contradiction we sought. The lemma is proved. 2

LEMMA 3.3 Let V be a variety of semilattice modes. If (A; f1,B; g1,C) is an amal-
gam in V where

(i) B is subdirectly irreducible,

(ii) g1 : A→ C is an essential embedding,

(iii) 0A exists,

(iv) f1(0A) = 0B, g1(0A) = 0C,

then it is possible to complete (A; f1,B; g1,C) in V.
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Proof: The argument we use here is similar to the argument that proves that a
variety of modules has the amalgamation property. We embed each of B and C into
the product B × C and then factor by the least congruence that identifies the two
images of A.

Let D = (B × C)/θ where θ is the congruence on B × C generated by G =
{〈(f1(x), 0C), (0B, g1(x))〉 | x ∈ A}. Define f2 : B → D by f2(b) = (b, 0C)/θ and
similarly define g2 : C → D by g2(c) = (0B, c)/θ. Clearly D ∈ V and f2 ◦ f1(a) =
(f1(a), 0C)/θ = (0B, g1(a))/θ = g2 ◦ g1(a). The only thing we need to verify to con-
clude that (f2; g2; D) completes the amalgam (A; f1,B; g1,C) is that f2 and g2 are
1-1 homomorphisms.

Modes are idempotent, so the function

B→ B×C : b 7→ (b, 0C)

is a 1-1 homomorphism. f2 is just the composition of this homomorphism with the
natural homomorphism B×C → (B ×C)/θ. From this it follows that f2 is a homo-
morphism. Similarly g2 is a homomorphism.

Finally, we must prove that f2 and g2 are 1-1. The strategy here will be to show
that if g2 is not an embedding, then f2 is not an embedding. Then we shall prove that
f2 is an embedding. This will finish the proof. Let us begin by factoring g2 as g2 =
n ◦ g where

g : C→ B×C : c 7→ (0B, c)

and n : B × C → (B × C)/θ is the natural map. If g2 is not an embedding, then
there are distinct c, d ∈ C such that g(c) θ g(d). This means that g−1(θ) > 0C. As
g1 : A→ C is essential, g−1

1 (g−1(θ)) > 0A. It is possible to find distinct a, b ∈ A such
that (g ◦ g1(a), g ◦ g1(b)) ∈ θ. Written differently, ((0B, g1(a)), (0B, g1(b))) ∈ θ. But

(f1(a), 0C) θ (0B, g1(a)) θ (0B, g1(b)) θ (f1(b), 0C)

from the way we defined θ. Now let’s factor f2 as f2 = n′ ◦ f where

f : B→ B×C : b 7→ (b, 0C)

and n′ : B×C→ (B×C)/θ is the natural map. We have (f1(a), f1(b)) ∈ f−1(θ)−0B. If
µ denotes the monolith of B, this implies that µ ⊆ f−1(θ). If µ = CgB(0B, u), then we
get that 〈(0B, 0C), (u, 0C)〉 ∈ θ. There must be some unary polynomial p ∈ Pol1B×C
and a pair 〈u, v〉 = 〈(f1(w), 0C), (0B, g1(w))〉 ∈ G such that

(0B, 0C) = p(u) 6= p(v)

or the same condition with u and v interchanged. (Recall that G is the set of generators
for θ.) Assume that p(x) = tB×C(x, (ei, fi)) for some term t. Since (0B, 0C) is a neutral
element for + in B×C, we get that

p(x) = tB×C(x+ (0B, 0C), (0B, 0C) + (ei, fi))

= tB×C(x, (0B, 0C)) + tB×C((0B, 0C), (ei, fi))

= tB×C
0 (x, (0B, 0C)) + (0B, 0C)

= tB×C
0 (x, (0B, 0C)).
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Here t0(x, y) = t(x, y, . . . , y). Our argument used the fact that

(0B, 0C) ≤ tB×C((0B, 0C), (ei, fi)) = p((0B, 0C)) ≤ p(u) = (0B, 0C)

(or the same statement with v in place of u).
To summarize, we have either

(0B, 0C) = tB×C
0 ((f1(w), 0C), (0B, 0C)) < tB×C

0 ((0B, g1(w)), (0B, 0C))

or else

(0B, 0C) = tB×C
0 ((0B, g1(w)), (0B, 0C)) < tB×C

0 ((f1(w), 0C), (0B, 0C)).

Both cases lead to the same kind of contradiction. In the first case we have

0B = tB0 (f1(w), 0B) ≤ tB0 (0B, 0B) = 0B

in the first coordinate, so

f1(0A) = 0B = tB0 (f1(w), f1(0A)) = f1(tA0 (w, 0A)).

Since f1 is 1-1, we get that tA0 (w, 0A) = 0A. Now in the second coordinate we must
have

0C = tC0 (0C, 0C) < tC0 (g1(w), 0C)

and since g1 is 1-1 we get in the same way that 0A < tA0 (w, 0A) (= 0A). This is a con-
tradiction. The second case (described in the second displayed line of this paragraph)
can be handled by the same argument. 2

COROLLARY 3.4 Let V be a variety of semilattice modes. It is possible to complete
all amalgams (A; f1,B; g1,C) in V where f1 and g1 are essential.

Proof: By Lemma 3.1, it suffices to consider only the case where A, B and C are
subdirectly irreducible. Saying that f1 and g1 are essential means that

f1(0A) = 0B, g1(0A) = 0C and f1(uA) = uB, g1(uA) = uC.

In particular, the hypotheses of Lemma 3.3 are satisfied, so (A; f1,B; g1,C) can be
completed. 2

The next lemma is a crucial part of our argument. It is the place where we require
that R(V) be a finite, bounded distributive lattice. The point of this lemma is to show
how a subdirectly irreducible T with monolith µ can be reconstructed from T/µ and
the subalgebra generated by the unique nontrivial µ-class.

LEMMA 3.5 Assume that V is a variety of semilattice modes with R(V) a finite,
bounded distributive lattice. Let T ∈ V be a subdirectly irreducible semilattice mode
with monolith µ = CgT(0, u), 0 < u. Set V equal to the image of the endomorphism
T→ T : x 7→ x+u and W = SgT({0, u}). Then V ∼= T/µ and the following conditions
hold.
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(i) For any binary term b(x, y) we have

∀x ∈ V (bW(u, 0) = u→ bV(x, 0V) = x).

(ii) There is a term c(x, y) such that

cW(u, 0) = 0 and ∀x ∈ V (cV(x, 0V) = x).

(iii) Whenever e < f in V there is a term b(x, y) such that bV(e, 0V) = 0V <
bV(f, 0V).

Conversely, assume that W is a 2-element semilattice mode with universe {0W, uW}
and that V is a semilattice mode of the same type which has a least element 0V and
V and W are related as in conditions (i) − (iii). If θ is the congruence on V ×W
generated by

G = {〈(c, 0W), (c, uW)〉 | c ∈ V − {0V}},
then T′ := (V ×W)/θ is a subdirectly irreducible with monolith µ = Cg(0T′ , uT′)
such that V ∼= T′/µ and W ∼= SgT′({0T′ , uT′}).

Finally, if T ∈ V is subdirectly irreducible, V and W are related to T as in the
first part of this lemma and T′ = (V ×W)/θ, then the function

f : T′ → T : (v, w)/θ 7→
{
v if v > 0V

w if v = 0V

is an isomorphism.

Proof: Before starting the proof, we explain how we intend to use the hypothesis
that R(V) is a bounded distributive lattice. Choose an algebra A ∈ V which has a
least element 0. Pick a polynomial p ∈ Pol1A such that 0 ∈ p(A). By the remarks
following Theorem 2.3, there is a binary term s(x, y) such that p(x) = sA(x, 0). The
term t(x, y) := s(x, y) + y has tA(x, 0) = sA(x, 0). Replacing s with t if necessary,
we may assume that s ∈ R(V). The assumption that R(V) is a bounded distributive
lattice is equivalent to R(V) |= r2 = r, so we have

V |= s(s(x, y), y) = s(x, y).

In particular, this forces p(x) = sA(x, 0) to be an idempotent unary polynomial. To
summarize, if 0 ∈ p(A), then we have p(p(x)) = p(x) for all x ∈ A.

Now we begin the proof. In the first claim, V ∼= T/µ since the polynomial x 7→ x+u
is an endomorphism of T with kernel µ and image V.

To prove (i), we first note that if p ∈ Pol1T, then p(µ) ⊆ 0T or else p(x) = x for all
x ∈ T . This is proved for any subdirectly irreducible semilattice mode in Theorem 3.2
of [3], but we give a short proof here that works for our mode T. Since T is a mode and p
is a polynomial of T, p is an endomorphism of T. The monolith of T is µ = CgT(0, u),
which has {0, u} as its only nontrivial block, so p(µ) 6⊆ 0T implies that p is a 1-1
endomorphism for which

p({0, u}) = {0, u}.
Therefore, p has 0 in its range, so p(p(x)) = p(x) for all x ∈ T . The only idempotent,
1-1 endomorphism of T is the identity, so p(µ) 6⊆ 0T implies that p(x) = x for all
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x ∈ T . We use this observation in the proof of (i) as follows: If bW(u, 0) = u, then
bT(µ, 0) 6⊆ 0T , so bT(x, 0) = x for all x ∈ T . V is a homomorphic image of T, so
bV(x, 0V) = x for all x ∈ V .

To prove (ii), let X be the set of all f ∈ Pol1T such that f(u) = 0. Then set
F (x) = Σf∈Xf(x). We get that F (x) ∈ Pol1T and F (u) = 0. By Theorem 2.3,
the subdirectly irreducible T is term equivalent to a mode of the form S(U) where
S satisfies (a) − (c) and U satisfies (i) − (iv) of Example 1. Therefore, if u < s,
then there is an f ∈ X = U − {idT } such that f(u) = 0 < f(s) ≤ F (s). This
proves that F−1(0) = {0, u}. Now suppose that F (t) 6= t for some t with u < t.
By the remarks following Theorem 2.3, the fact that 0 is in the range of F implies
that F ∈ {q(x) ∈ Pol1A | 0 ∈ q(A)} = U and the set U is a set of decreasing join-
endomorphisms of the underlying semilattice of T. Hence, we have F (t) < t. From
F−1(0) = {0, u} and u < t we get that u ≤ F (t) < t. T is subdirectly irreducible, so
there is a p ∈ Pol1T such that p(F (t)) = 0 < p(t). Since p and F both have 0 in their
range, they both belong to U and therefore they commute with each other. So, for s
= p(t) we have

F (s) = F (p(t)) = p(F (t)) = 0 < p(t) = s.

Hence s = u. This gives us that

p(p(t)) = p(s) = p(u) ≤ p(F (t)) = 0 < u = s = p(t).

But this is impossible, as we explained in the first paragraph of this proof: since p has
0 in its range, p(p(t)) = p(t). This contradiction proves that F (t) = t for all t with
u < t. Choose c(x, y) such that cT(x, 0) = F (x) (which we can do since F ∈ U). Then
cW(u, 0) = 0 and cT(t, 0) = t for u < t, so cV(x, 0V) = x for all x ∈ V . This proves
(ii).

To finish the first part of the lemma we must prove (iii). For this it suffices to show
that if u < r < s in T, then there is a binary term b(x, y) such that bT(r, 0) = 0 <
u < bT(s, 0). This can be proved in essentially the same way that we proved (ii) with
some simplifications. The sketch of the argument is as follows: Since T is subdirectly
irreducible, there is a unary polynomial F such that F (r) = 0 < F (s). If u < F (s),
then choose any term b(x, y) such that bT(x, 0) = F (x) and we are done. Otherwise,
F (s) = u for every F such that F (r) = 0 and this forces

F (F (s)) = F (u) ≤ F (r) = 0 < F (s).

But this case cannot occur, since then F (x) would be a unary polynomial which is
not idempotent, but has 0 in its range. This finishes the proof of the first part of the
lemma.

Now assume that V and W are as described in the second statement of the lemma.
Let T = (V ×W)/θ where θ is the congruence on V ×W generated by

G = {〈(c, 0W), (c, uW)〉 | c ∈ V − {0V}}.

If ηi, i = 0 or 1, is the kernel of the projection onto the ith coordinate of V×W, then
θ ≤ η0 since G ⊆ η0. To see that θ < η0, we must show that 〈(0V, 0W), (0V, uW)〉 6∈ θ.
Assume otherwise. Then we can find 〈a, b〉 ∈ G and a polynomial p ∈ Pol1V ×W
such that p(a) = (0V, 0W) 6= p(b). We have 〈a, b〉 ∈ η0 and that each η0-class contains
exactly 2 elements, so we get that p(a) = (0V, 0W), p(b) = (0V, uW). Furthermore,
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{a, b} = {(c, 0W), (c, uW)} for some c ∈ V − {0V} since 〈a, b〉 ∈ G. The element
(0V, 0W) is the least element of V×W and this element is in the range of polynomial
p(x). Therefore we can apply the equivalence of the conditions enumerated directly
after the statement of Theorem 2.3 to obtain that p(x) = bV×W(x, (0V, 0W)) for some
binary term b. Altogether, this means that bW({0W, uW}, 0W) = {0W, uW} and
bV(c, 0V) = 0V. But bW(x, 0W) is order-preserving in its first variable, so bW(uW, 0W)
= uW while bV(c, 0V) = 0V. Since c 6= 0V, we have contradicted condition (i). This
contradiction shows that θ < η0, as we hoped.

To finish the proof of the second claim of the lemma we must show that T is
subdirectly irreducible. Since (0V, 0W) is the least element of V ×W, (0V, 0W)/θ
is the least element of T = (V ×W)/θ. If (c, d)/θ ∈ T and c 6= 0V, then since
〈(c, d), (c, u)〉 ∈ θ we get (c, d)/θ = (c, uW)/θ ≥ (0V, uW)/θ. Therefore the element
(0V, uW)/θ is the second least element of T. We write uT for (0V, uW)/θ. To show
that T is subdirectly irreducible, we need to show that for every s < t in T there is
a unary polynomial p ∈ Pol1T such that p(s) = 0T < p(t). If s = 0T, then p(x) = x
works, so we may assume that 0 < s < t and in particular that uT < t. We may assume
therefore that t = (f, uW)/θ and s = (e, uW)/θ with e < f in V. To finish, it will suffice
to show that there are polynomials q(x), r(x) ∈ Pol1T such that r(s) ≤ uT < r(t) and
q(x) = x for x 6= uT while q(uT) = 0T. For then p(x) = q(r(x)) is a polynomial where
p(s) = 0T < p(t).

Using condition (iii) of the lemma and the fact that e < f in V, we can choose
b(x, y) such that bV(e, 0) = 0 < bV(f, 0). Hence,

bT(s, 0T) ≤ uT < bT(t, 0T)

and we may take r(x) = bT(x, 0T). Now by condition (ii) of the lemma there is a term
c(x, y) such that

cW(u, 0) = 0 and ∀x ∈ V (cV(x, 0V) = x).

Hence, for q(x) = cT(x, 0T) we have q(uT) = 0T and q(x) = x for x 6= uT. This finishes
the proof that T is subdirectly irreducible.

What remains is to show that under the conditions of the third part of the lemma
the function

f : T′ → T : (v, w)/θ 7→
{
v if v > 0V

w if v = 0V

is an isomorphism. Equivalently, we must show that

g : V ×W→ T : (v, w) 7→
{
v if v > 0V

w if v = 0V

is a surjective homomorphism with kernel θ. The only nontrivial part of this verification
is that g is a homomorphism. We proceed with that verification. (Be alert to the fact
that 0W = 0T = 0, but 0V = uT.)

There is no loss in generality if we assume that V = V(T) and by making this
assumption we get (by Theorem 2.3) that V is equivalent to a variety where all the
basic operations are binary. So it suffices to show that if b(x, y) is a binary term, then

g(bV×W((v, w), (v′ , w′))) = bT(g((v, w)), g((v′ , w′))).
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By symmetry, we need to consider only the cases: (1) v = 0V = v′, (2) v 6= 0V = v′

and (3) v 6= 0V 6= v′. For Case (1) we simply have

g(bV×W((0V, w), (0V, w′))) = g(0V, bW(w,w′))
= bW(w,w′)
= b(g((0V, w)), g((0V , w′))).

For Case (2) we must show that

g(bV×W((v, w), (0V , w′))) = g(bV(v, 0V), bW(w,w′))
= bT(v, w′)
= bT(v, 0) + bT(0, w′).

If bV(v, 0V) > 0V, then we have

g(bV(v, 0V), bW(w,w′)) = bV(v, 0V) = bT(v, 0) > u.

But bT(0, w′) = bW(0, w′) ∈ {0, u}, so in this case

g(bV(v, 0V), bW(w,w′)) = bT(v, 0) = bT(v, 0) + bT(0, w′) = bT(v, w′)

just as we hoped. Now suppose that bV(v, 0V) = 0V. To settle Case (2) we must verify
the third and fifth equalities in

g(bV(v, 0V), bW(w,w′)) = bW(w,w′)
= bW(w, 0) + bW(0, w′)
= bW(0, w′)
= bT(0, w′)
= bT(v, 0) + bT(0, w′)
= bT(v, w′).

The only way the third equality could fail is for bW(0, w′) = 0 and for bW(w, 0) = u.
In this case we must have w = u and so bW(u, 0) = u. But we have bV(v, 0) = 0 and
v 6= 0. This is a contradiction to property (i) of the lemma. If the fifth equality fails,
then we must have bW(0, w′) = 0 and

0 < bT(v, 0) ≤ bT(v, 0) + u = bV(v, 0V) = 0V = u.

Hence, bT(v, 0) = u. But bV(v, 0V) = 0V and v > 0V, so property (i) shows that 0 =
bW(u, 0) = bT(u, 0). We conclude that

bT(bT(v, 0), 0) = 0 < u = bT(v, 0).

We have produced a unary polynomial bT(x, 0) which is not idempotent but has 0 in
its range. This is impossible, as we observed at the beginning of the proof. Hence, the
proof in Case (2) is complete. Finally, assume that we are in Case (3). We must show
that

g(bV×W((v, w), (v′ , w′))) = bT(v, v′).

Now bV×W((v, w), (v′ , w′)) = (bV(v, v′), bW(w,w′)), so if bV(v, v′) 6= 0V, then both
sides of the last displayed equation are equal to bT(v, v′). Suppose now that bV(v, v′) =
0V. We then get 0V = bV(v, v′) = bV(v, 0V) + bV(0V, v′). Then bV(v, 0V) = 0V,
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v > 0V, and bV(0V, v′) = 0V, v′ > 0V. By property (i) of the lemma, these conditions
imply bW(w, 0) = 0 and bW(0, w′) = 0 and consequently that bW(w,w′) = bW(w, 0) +
bW(0, w′) = 0. So when we are in the situation that bV(v, v′) = 0V holds in Case
(3), then we get that bW(w,w′) = 0 and g(bV×W((v, w), (v′, w′))) = 0. We need to
show that 0 = bT(v, v′) = bT(v, 0) + bT(0, v′). By symmetry, it is enough to show that
bT(v, 0) = 0. Now, we know that in V we have bV(v, 0V) = 0V and the element 0V ∈ V
is none other than the element u ∈W ⊆ T . We also have bW(u, 0) = 0. Together this
gives us that

bT(v, 0) ≤ u = bV(v, 0V)

and
bT(u, 0) = bW(u, 0) = 0.

Hence, bT(bT(v, 0), 0) = 0. Since unary polynomials which have 0 in their range are
idempotent, bT(v, 0) = 0 as desired. This completes the proof of the lemma. 2

LEMMA 3.6 Assume that V is a variety of semilattice modes and R(V) is a finite,
bounded distributive lattice. If (A; f1,B; g1,C) is an amalgam where

(i) f1 and g1 are inclusion homomorphisms,

(ii) B is subdirectly irreducible,

(iii) C is an essential extension of A in V,

(iv) A = B − {0B},
then it is possible to complete (A; f1,B; g1,C) in V.

Proof: The function f : B → B : x 7→ x + u, where u is the least element of
B − {0B}, is an endomorphism of B with kernel µ and image A. Hence, the induced
function f̄ : B/µ→ A is an isomorphism. Let W = SgB({0, u}). Then A and W are
related by conditions (i) − (iii) of Lemma 3.5. Our goal will be to show that since C
is an essential extension of A, then C and W are also related by conditions (i)− (iii)
of Lemma 3.5. Hence, there is a subdirectly irreducible D ∈ V constructed as in the
proof of Lemma 3.5. We then verify that D together with obvious maps of B and
C into D completes (A; f1,B; g1,C) in V. Before proceeding with the argument, we
point out that each of A, B and C is finite. B is finite because of Corollary 2.5 and
the fact that R(V) is finite. A is a subalgebra of B, so A is finite. It is proven in [2]
that when V is residually small and has the congruence extension property, then any
essential extension of a finite algebra is finite. Hence C is finite.

Our first step will be to show that C and W are related by conditions (i) − (iii)
of Lemma 3.5 (C is playing the role of V in Lemma 3.5). Assume that Lemma 3.5 (i)
fails to hold for C and W. Then there is a binary term b(x, y) such that bW(u, 0) = u,
but p(x) = bC(x, 0C) is not the identity function. p(x) is a decreasing endomorphism,
so since C is finite we get that ker p is nontrivial. A is essentially embedded in C, so
(ker p)|A > 0A. But by Lemma 3.2 we get that g1(0A) = 0C. In fact, 0A = 0C since
g1 is inclusion. Thus, p(x) ∈ Pol1A and ker p > 0A. But now bW(u, 0) = u and p(x)
= bA(x, 0A) = bC(x, 0C)|A is not the identity function on A. This is impossible since
A and W ARE related as in Lemma 3.5. Now we show that C and W are related as
in condition (ii). Since A and W are related as in condition (ii), there a term c(x, y)
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such that cW(u, 0) = 0 and cA(x, 0A) is the identity function on A. By the same
reasoning we used for part (i), cC(x, 0C) is the identity function on C. Now assume
that condition (iii) fails for C and W. Then there are elements e < f and whenever
b(x, y) is a binary term we have

bC(e, 0C) = 0↔ bC(f, 0C) = 0.

But, the conditions enumerated after the statement of Theorem 2.3 show that any
unary polynomial of C which has 0 in its range is of the form bC(x, 0C) for some
binary term. Hence, we have that for any p(x) ∈ Pol1C

p(e) = 0↔ p(f) = 0.

Thus, the Cg(e, f)-class containing 0C is just {0C}. Let θ = Cg(e, f)|A. Since 0A = 0C

we get
{0A} ⊆ 0A/θ ⊆ 0C/Cg(e, f) = {0C}

and so 0A/θ = {0A}. But Cg(e, f) is not the trivial congruence on C, so θ = Cg(e, f)|A
is not the trivial congruence on A. Choose (e′, f ′) ∈ θ with e′ < f ′. Since A and W
are related as in condition (iii), there is a term b(x, y) such that bA(e′, 0A) = 0A <
bA(f ′, 0A). This contradicts the fact that the θ-class of 0A is just {0A}. With this we
complete the proof that C and W are related in Lemma 3.5.

Now let θ be the congruence on C×W generated by

G = {〈(c, 0W), (c, uW)〉 | c ∈ C − {0C}}.

Lemma 3.5 proves that D = (C×W)/θ is subdirectly irreducible. The congruence θ ′

= θ|A×W is just the congruence generated by

G = {〈(a, 0W), (a, uW)〉 | a ∈ A− {0A}}.

Thus, (A ×W)/θ′ is subdirectly irreducible and, by the third part of Lemma 3.5,
isomorphic to B. Define f2 : B→ D be the function

f2(b) =

{
(b, uW)/θ if b ∈ A
(0C, 0W)/θ if b 6∈ A.

Then f2 is just an isomorphism of B onto (A ×W)/θ ′ which carries A onto (A ×
{uW})/θ′ in the natural way. Now define g2 : C → D by g2(c) = (c, uW)/θ. g2 is an
isomorphism of C onto the subalgebra of D of elements > (0C, 0W)/θ. g2 also carries
A onto (A×{uW})/θ′ in the natural way. Thus, f2 and g2 are embeddings and f2 ◦ f1

= g2 ◦ g1. This proves that (f2; g2; D) completes (A; f1,B; g1,C). 2

THEOREM 3.7 If V is a locally finite variety of semilattice modes where R(V) is a
bounded distributive lattice, then V has the AP.

Proof: We need to show that we can complete every amalgam (A; f1,B; g1,C)
where |A| > 1, B is subdirectly irreducible and g1 is essential. Assume instead that
(A; f1,B; g1,C) cannot be completed in V and that k is the height of some element
f1(a0) ∈ B, a0 ∈ A, which has minimum height among all elements of the form f1(a),
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a ∈ A. We may assume that our triple is chosen so that the value k is minimal for all
triples (A′; f ′1,B

′; g′1,C
′) of the form above which cannot be completed in V.

Case 1. k = 0.

In this case f1(a0) = 0B, so necessarily a0 is the least element of A: i.e., a0 = 0A.
By Lemma 3.2 we get that g1(0A) = 0C. So Lemma 3.3 now proves that this case can
not occur.

Case 2. k > 0.

In this case uB ≤ f1(a) for all a ∈ A. Let B′ ≤ B be the subalgebra of all elements
of B which are ≥ uB. Thus, B′ is the image of the endomorphism B→ B : x 7→ x+uB.
The triple (A; f1,B

′; g1,C) can be completed in V by induction. The argument which
proves this is the same as the argument used in the proof of Lemma 3.1. One simply
takes a subdirect representation of B′, obtains a representation of A by restriction and
then uses the congruence extension property to extend the representation in a maximal

way to C. This gives a family of amalgams of the form (A/θA
i ; f

(i)
1 ,B′/θi; g

(i)
1 ,C/θC

i )

where each B′/θi is a subdirectly irreducible homomorphic image of B′ and each g
(i)
1

is essential. If all can be completed, then a product completes the original amalgam.
But, by induction, they all can be completed. Each A/θA

i contains ā0 = a0/θ
A
i and the

height of f
(i)
1 (ā0) in B′/θi is no more than the height of f1(a0) in B′. But this latter

height is at most k−1 since B′ was obtained from B by removing the bottom element.
Thus we get that (A; f1,B

′; g1,C) can be completed, as claimed. Let (f2; g2; D) be a
triple which completes it. We may assume that f2 is essential (since g1 was) and we
also may assume that f2 is inclusion.

B
⊆
↗

h
↘

B′ E
f1

↗
f2

↘
j

↗
A D

g1

↘
g2

↗
C

Now Lemma 3.6 proves that (B′;⊆,B; f2,D) may be completed, say by (h; j; E).
Then (h; j ◦ g2; E) completes our original amalgam (A; f1,B; g1,C). This contradicts
our assumption that (A; f1,B; g1,C) cannot be completed in V and completes the
proof of the theorem. 2

THEOREM 3.8 If V is a variety of semilattice modes where R(V) is a bounded
distributive lattice, then V has the AP.

Proof: For the purpose of obtaining a contradiction, assume that V is a variety
of semilattice modes where R(V) is a bounded distributive lattice, but V does not
have the AP. Then there is an amalgam (A; f1,B; g1,C) which cannot be completed
in V. We shall show how to obtain from V a variety U with all of these properties,
but also the property that U is of finite similarity type. Then, by Theorem 2.2, R(U)
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is a finitely generated, bounded distributive lattice. Bounded distributive lattices are
locally finite, so in fact R(U) is finite. But by Corollary 2.5 this implies that U has
only finitely many subdirectly irreducible members and all are finite. It follows that U
is a locally finite variety. Now Theorem 3.7 proves the nonexistence of such a U and
therefore the nonexistence of V.

If D is an algebra, let DD be the expansion of D obtained by letting each element of
D be the interpretation of a new constant symbol. The diagram of D is the collection
∆D of all atomic and negations of atomic sentences which hold in DD. If Σ is a set of
sentences in the language of D, then Σ ∪∆D has a model iff Σ has a model E which
has a submodel isomorphic to D. This claim is Proposition 2.1.8 of [1].

Now, recall that (A; f1,B; g1,C) cannot be completed in V. In this paragraph we
shall expand the language L of V by adding new constant symbols {kb | b ∈ B} for
elements of B and new constant symbols {kc | c ∈ C} for elements of C. We assume
that all new symbols are distinct from the symbols of L and distinct from each other.
Let ∆B be the diagram of B, let ∆C be the diagram of C and let Σ be the set of
equations holding in V. Let Υ be the set of sentences of the form kb = kc where there
is some a ∈ A such that f1(a) = b, g1(a) = c. By a trivial modification of the argument
in [1] the set of sentences Σ ∪∆B ∪∆C ∪Υ has a model iff Σ has a model containing
submodels A′ ∼=h A, B′ ∼=j B and C′ ∼=k C where j−1 ◦ f1 ◦ h = ⊆ and k−1 ◦ g1 ◦ h
= ⊆. (Here A′ ∼=h A indicates that h is an isomorphism from A′ onto A.) In other
words, Σ ∪∆B ∪∆C ∪Υ has a model iff (A; f1,B; g1,C) can be completed in V. By
assumption, we cannot complete this amalgam, so Σ∪∆B∪∆C∪Υ has no model. But
this means that there is a finite subset Σ0 where Σ0 ⊆ Σ ∪∆B ∪∆C ∪Υ and Σ0 has
no model. Let σ be a finite set of operation symbols of V which includes at least all
of the operation symbols occurring in sentences of Σ0 together with enough operation
symbols to express the term x+ y. Let Σ′ be the set of all equations in Σ that involve
only the symbols in σ. We define U to be the variety of type σ which is axiomatized
by the equations in Σ′. U is a variety of modes because the idempotent and entropic
laws for the symbols in σ are equations in Σ involving only symbols in σ. Hence, these
laws are equations of U . There are equations in Σ which involve only the symbols in
σ expressing the fact that x+ y is a semilattice operation. Hence, these are equations
of U . There are equations of Σ expressing the fact that each coefficient of a term of
type σ is idempotent in R(V). These equations belong to Σ′, so R(U) satisfies x2 = x
and must be a bounded distributive lattice. Finally, the reducts of A, B and C to the
symbols in σ satisfy Σ′ and therefore belong to U . If we show that the amalgam of
reducts (A; f1,B; g1,C) cannot be completed in U , then we will have established that
U has all the properties of V, but has finite type as well. But clearly, if (f2; g2; D)
completes this amalgam in U , then we can construct from (f2; g2; D) a model of Σ0

in the obvious way: the model is the expansion of D obtained by using f2 and g2 to
interpret the constant symbols. Hence, the amalgam of reducts (A; f1,B; g1,C) cannot
be completed in U . 2.

We now begin the proof that if V is a locally finite variety of semilattice modes
which has the AP, then R(V) is a bounded distributive lattice. We shall argue the
contrapositive and the argument will proceed as follows. Assume that R(V) is not a
bounded distributive lattice. Let U ⊆ V be a subvariety of V which is minimal for the
property that R(U) is not a bounded distributive lattice. (Such a U exists, since it
is a consequence of Theorem 2.7 that a locally finite variety of semilattice modes has
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only finitely many subvarieties.) We shall show that U is contained in no locally finite
variety of modes which has the AP. This will prove that V did not have the AP.

We will need to understand the structure of R(U). If U =
∨
i∈I Ui where each Ui

is a proper subvariety of U , then R(U) is a proper subdirect product of the semirings
R(Ui) each of which is a bounded distributive lattice. This would imply that R(U) is
a bounded distributive lattice which is false. We conclude that U is a join-irreducible
subvariety of V. Hence, by Theorem 2.7, 0 is a meet-irreducible congruence of the (fi-
nite) semiring R(U) and therefore R(U) is subdirectly irreducible. If µ is the monolith
of R, then R(U)/µ is a bounded distributive lattice. The next result describes the
structure of R(U). In this section, we will call a semiring R minimal if it is finite, sat-
isfies all the identities listed in Theorem 2.1, fails to be a bounded distributive lattice,
but any proper homomorphic image is a bounded distributive lattice.

LEMMA 3.9 If R is minimal with monolith µ, then the following are true:

(i) 0 is a meet-irreducible element of 〈R; +〉 and 1 is a join-irreducible element of
〈R; +〉.

(ii) 〈R − {0, 1}; +〉 ∼= 〈{0, 1},+〉n for some n.

(iii) If 0′ is the least element in the semilattice order on R − {0}, then µ is the
equivalence relation on R generated by (0, 0′).

(iv) If r ∈ R− {1}, then r · 0′ = 0.

Proof: First we show that the only nontrivial µ-class is 0/µ. Since R/µ is a
distributive lattice, we get that (r, r2) ∈ µ for all r ∈ R. Since R is not a distributive
lattice, there exists an element r ∈ R such that r 6= r2. (See the remarks following
Theorem 2.1.) Then, since |R| is finite and rn = rn(1 + r) = rn + rn+1, we get that

r > r2 ≥ r3 ≥ · · · ≥ rn = e = e2

for some n. Let S be the semiring with universe S = {x ∈ R|x ≥ e} which is defined
as 〈S; ·,+, 1, e〉. We claim that the map φ : R→ S defined by x 7→ x+ e is a surjective
homomorphism for which φ(r) = r 6= r2 = φ(r2). The only non-obvious part of this
claim is that φ preserves multiplication. This can be shown as follows:

φ(x)φ(y) = (x+ e)(y + e)
= xy + ex+ ey + e2

= xy + ex+ ey + e
= xy + e(1 + (x+ y))
= xy + e
= φ(xy).

Since (r, r2) ∈ µ and (r, r2) 6∈ ker φ, we conclude that φ is 1-1 and therefore e = 0.
Hence, if r 6= r2, there is an n such that

r µ r2 µ · · · µ rn = 0.

An element r will be called nilpotent if there is an n such that rn = 0. The
set of nilpotent elements of R is clearly an annihilator ideal, I. Now assume that
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a ∈ R− I and r ∈ I. Then a+ r ∈ R− I since I is an order-ideal. Hence, a2 = a and
(a+ r)2 = a+ r. This gives us that

a+ r = (a+ r)2

= a2 + ar + r2

= a+ ar + r2

= a(1 + r) + r2

= a+ r2

= a+ r4 = · · · = a.

Hence, every element not in I is strictly above every element in I.
The ideal congruence Θ(I) = {(x, y) ∈ R2|x + r = y + r, some r ∈ I} has I as

its only nontrivial class by the results of the last paragraph. All elements of I are
µ-related to 0, so µ = Θ(I). This finishes the proof that the only nontrivial µ-class is
0/µ.

Our next goal is to prove that |I| = 2. Since I2 ⊆ I we get that Θ(I2) ≤ Θ(I). We
claim that Θ(I2) < Θ(I). Suppose otherwise that Θ(I2) = Θ(I). I is principal, since it
is an annihilator ideal in a finite semiring, so let a (> 0) denote the largest element of I.
Then a2 is the largest element of I2. But I2 is a Θ(I2)-class, so if Θ(I2) = Θ(I), then
a2 is also the largest element of I. Hence, we get a = a2 which is impossible since a is
a nonzero nilpotent element. Thus 0 = Θ(I2) < Θ(I), so I2 = 0. Choose u ∈ I such
that 0 ≺ u in the semilattice order. Now µ = Cg(0, u) equals the equivalence relation
on R generated by the set of pairs {(p(0), p(u)) | p ∈ Pol1R, p(0) 6= p(u)}. Choose
p(x) ∈ Pol1R. Using the semiring laws we may write p(x) as anx

n + · · · + a1x + a0.
But since I2 = 0, we get that uk = 0k = 0 for k > 1. Hence, (p(0), p(u)) = (q(0), q(u))
where q(x) = a1x + a0. Furthermore, since 0 ≺ u, we get that either a1u = 0 = a10
or a1u = u > 0 = a10. Hence, if q(0) 6= q(u), then (q(0), q(u)) = (r(0), r(u)) where
r(x) = x+a0. Now suppose that u < a where a is the largest element of I. Then since
(u, a) ∈ Cg(0, u) we get a Mal’cev chain u = m0,m1, . . . ,ml = a. Another Mal’cev
chain is u = m0 + u,m1 + u, . . . ,ml + u = a so without loss of generality we may
assume that the original chain consisted of distinct elements ≥ u and that {mi,mi+1}
= {ri(0), ri(u)} for some ri(x) of the form x + bi = x +mi or x +mi+1. But for any
such ri(x) we get that ri(0) = ri(u) which contradicts the fact that the mi are distinct
and {mi,mi+1} = {ri(0), ri(u)}. We conclude that u is the top element of I. Since
0 ≺ u we get that I = {0, u}. Relabel u as 0′. Every element of R − I is above 0′, so
0 is meet-irreducible in 〈R; +〉. This proves the first part of (i). We have also shown
that the only nontrivial µ-class is {0, 0′}. This proves (iii).

Let J = {r ∈ R | r · 0′ = 0}. J is an annihilator ideal and I ⊆ J ⊆ R − {1}. We
claim that J = R−{1}. Assume instead that v ∈ R−{1}−J . Then (0, 0′) ∈ Cg(1, v),
so there is a unary polynomial p(x) = anx

n + · · · + a1x+ a+ 0 such that p(v) 6= p(1)
and one of these elements equals 0. Since v < 1 and polynomials preserve order, this
means that p(v) = 0 < p(1). Write p(x) = bnx

n+ · · ·+b1x+b0. Since v 6∈ J we get that
v 6= 0′, so v = v2. Hence, (p(v), p(1)) = (q(v), q(1)) where q(x) = (bn + · · ·+ b1)x+ b0

= cx+ d. Since 0 = q(v) = cv+ d, we get that d = 0 = cv. Since q(1) = c > 0, we get
that c ≥ 0′. But now we have

0 = q(v) = cv = (c+ 0′)v = cv + 0′v = v0′.

But this implies that v ∈ J contrary to our hypothesis. Our assumption that there is a
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v ∈ R−{1} − J is false and so J = R−{1}. This proves (iv). Since J is closed under
+ we have proved that 1 is join-irreducible in 〈R; +〉. This finishes the proof of (i).

We can finish this lemma by showing that 〈R − {0, 1}; +〉 ∼= 〈{0, 1}; +〉n for some
n. This holds with n = 0 if R = {0, 0′, 1}, so assume that R 6= {0, 0′, 1}. Let 1′ be the
largest element of R − {1}. Since the ordering on R − {0, 1} is that of a distributive
lattice with more than one element, we only need to show that 1′ is the join of the
covers of 0′. Set w =

∨{y ∈ R | 0′ ≺ y}. Our assumption that R 6= {0, 0′, 1} guarantees
that w ≤ 1′ Assume that w < 1′. Then (0, 0′) ∈ Cg(w, 1′), so there is a polynomial
p(x) = fnx

n + · · · + f0 such that p(w) = 0 < p(1′). As in above arguments we may
assume that p(x) = gx+ h. Since 0 = p(w) = gw + h we get that h = 0. Hence, there
is an element g ∈ R such that gw = 0 < g1′. Since 0 < g1′, we get that 0 < g. Since
0′1′ = 0 < g1′, we get that 0′ 6= g. Hence 0′ < g. It follows that there is some y such
that 0′ ≺ y ≤ g. But now y ≤ w, y ≤ g and y = yy ≤ gw = 0. This is a contradiction,
concluding the proof of (ii). 2

The conditions enumerated in Lemma 3.9 determine minimal semirings up to iso-
morphism; there is one isomorphism type for each n that appears in Lemma 3.9 (ii).
Conditions (i) and (ii) of Lemma 3.9 determine the +–ordering on the semiring.
Conditions (iii) and (iv) and the fact that R/µ |= r2 = r imply that, except for
1 · 0′ = 0′ · 1 = 0′, no product of two elements equals 0′. Thus, all products which do
not involve 0′ are determined by the order while all products involving 0′ are determined
by Lemma 3.9 (iv).

LEMMA 3.10 Assume that U is a locally finite variety of semilattice modes and that
R(U) is minimal. Then U contains a subdirectly irreducible mode A with least element
0 and second least element u and the following properties hold:

(i) The largest element t ∈ A is join-irreducible and u < t

(ii) If t∗ ≺ t in 〈A; +〉, then {t∗, t} is a subuniverse of A.

(iii) SgA({t∗, t}) ∼= SgA({0, u}).

Proof: Since R(U) is subdirectly irreducible, U is a join-irreducible element of the
lattice of subvarieties of U by Theorem 2.7. If the lower cover of U is U∗, then choose a
subdirectly irreducible A ∈ U −U∗. We shall argue that A has the desired properties.

Since U = V(A), we get that A ∼= I(U). Therefore, the order of 〈A; +〉 is the
same as the order of 〈I(U);⊕〉. The semilattice operation on I(U) is ideal intersection.
Each ideal is principal, so this operation corresponds to the meet in 〈R(U); +〉. As
join-semilattices, we find that the order on A is the same as the order on I(U), but it
is dual to the order on R(U). The order-theoretic statements deduced about minimal
semirings in Lemma 3.9 allow us to deduce that 〈A; +〉 has a largest element t which is
join-irreducible, a least element 0 which is meet-irreducible, at least one other element,
and 〈A− {0, t}; +〉 is a Boolean semilattice. This is more than enough to deduce part
(i) of this lemma. If t∗ is the lower cover of t, then the unary polynomial p(x) =
x + t∗ is an endomorphism with image {t∗, t}, so this set is a subuniverse. In order
to deduce that SgA({t∗, t}) ∼= SgA({0, u}), we may identify A with I(U). Under this
identification the reader will verify that the top element of I(U) is the annihilator ideal
{0} = t, the lower cover of this ideal is {0, 0′} = t∗, the least element is the annihilator
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ideal R = R(U) = 0A and the upper cover of R is R−{1} = uA. The two subuniverses
we are interested in are the subuniverses {R,R − {1}} and {{0, 0′}, {0}} of I(U).

The algebra I(U) ∼= A is subdirectly irreducible; so, by Theorem 2.3, it is term
equivalent to the algebra on the same base set with basic operations r−1(x) ⊕ y, r ∈
R(U). Changing to a term equivalent algebra does not affect isomorphisms between
subalgebras, so we may assume that the basic operations of I(U) are of the form
r−1(x) ⊕ y = r−1(x) ∩ y, r ∈ R(U). We must show that any such operation behaves
the same way on {R,R − {1}} and {{0, 0′}, {0}}. If r 6= 1, then r−1(R − {1}) = R
and from Lemma 3.9 we get that r−1({0}) ⊇ {0, 0′}. Hence, r−1(x) ∩ y = y on each
of these subuniverses. If r = 1, then r−1(x) ∩ y = x ∩ y on each of these subuniverses.
Clearly the bijection {0} 7→ R − {1}, {0, 0′} 7→ R preserves all operations of the form
r−1(x)⊕ y, so (iii) is established. 2

THEOREM 3.11 If V is a locally finite variety of semilattice modes, then V has the
AP if and only if R(V) is a bounded distributive lattice.

Proof: The “if” direction was proved in Theorem 3.7. We must prove that if V is
locally finite and R(V) is not a bounded distributive lattice, then V does not have the
AP.

Assuming that R(V) is not a bounded distributive lattice, choose U ⊆ V such
that R(U) is minimal. Then U contains a subdirectly irreducible algebra B with the
properties listed in Lemma 3.10. B ∈ V, so we will finish the proof by showing that B
is contained in no locally finite variety of modes which has the AP. This will finish the
proof.

Let A be the subalgebra of B with universe {0, u}. If t is the top element of B
and t∗ is the lower cover of t, then 0 ≺ u ≤ t∗ ≺ t and {t∗, t} is a subuniverse of B.
The map f1 defined by 0 7→ t∗, u 7→ t is an isomorphism from A onto the subalgebra
on {t∗, t}. If a variety with the AP contains B, then it contains A and there must
be a way to complete the amalgam (A; f1,B; g1,B) where g1 : A → B is inclusion.
Since B is subdirectly irreducible and g1 is essential, we must be able to complete
(A; f1,B; g1,B) with a triple (f2; g2; D) where D is subdirectly irreducible and f2 is
essential. Of course this means that D contains elements

f2(0) < f2(u) ≤ f2(t∗) = f2◦f1(0) = g2◦g1(0) = g2(0) < f2(t) = g2(u) ≤ g2(t∗) < g2(t).

The composition f2 ◦ g1 : A → D is essential because each function is. We have
another embedding g2 ◦ f1 : A → D. It makes sense now to consider the amalgam
(A; g2 ◦ f1,D; f2 ◦ g1,D). D is subdirectly irreducible and f2 ◦ g1 is essential. We are
back in the same situation we were in before, but now we have D in place of B. This
is an improvement since D is larger than B. We know this because g2 : B → D is an
embedding which is not onto. In fact every element of g2(B) is ≥ g2(0) which is strictly
larger than f2(0). Since this argument can be repeated as often as we like, we find that
any variety which contains B and has the AP cannot have a finite bound on the size
of its subdirectly irreducibles. Hence, it cannot be locally finite by Corollary 2.5. By
our remarks in the second paragraph this completes the proof. 2

We have proved that if V is any variety of modes where R(V) is a bounded dis-
tributive lattice, then V has the AP. Conversely, we have shown that if V has the
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AP and has a subvariety U where R(U) is minimal, then V cannot be locally finite
(equivalently, |R(V)| cannot be finite). One can actually show that if V has the AP
and has a subvariety U where R(U) is minimal, then R(V) cannot be locally finite.
(Equivalently, R(V) has an element of infinite order.) At this point it is natural to
wonder if the hypothesis that “V is a locally finite variety of semilattice modes” in
Theorem 3.11 can be weakened to the hypothesis that “V is a variety of semilattice
modes where R(V) is locally finite.” One cannot use the same types of arguments that
we have used above since, as the next example shows, such a V may have no subvariety
U where R(U) is minimal.

Example 2. This example is of a locally finite, commutative semiring R satisfying
1 + r = 1, which has no homomorphic image that is minimal in any sense resembling
our use of the term in Lemma 3.9. In fact, if S is any homomorphic image of R which
is not isomorphic to the 1-element or 2-element lattice, then R is also a homomorphic
image of S!

The universe of R is the unit interval of the real numbers, [0, 1]. We define 0R =
0, 1R = 1, x+ y = max{x, y} and x · y = max{x+ y− 1, 0}. We leave it to the reader
to verify the semiring laws along with commutativity of multiplication and 1 + r = 1.

If z ∈ R and z < 1, then z < 1− 1
n for some n. Since 0 ≤ zn ≤ (1− 1

n)n = 0, we get
that every element of R − {1} is nilpotent. Choose any x, y ∈ R with x < y and set
z = x−y+1. One checks that x ≤ z < 1 and y ·z = x. Hence (y ·z, y) ∈ Cg(x, y). From
this we get that (yzn+1, yzn) ∈ Cg(x, y), so (yzn+1, y) ∈ Cg(x, y) for all n. But as we
observed, z < 1 implies that z is nilpotent. Hence (0, y) ∈ Cg(x, y). If 0 ≤ w ≤ y, then
(w, y) = (w + 0, w + y) ∈ Cg(x, y), too. Altogether we have that Cg(x, y) = Θ([0, y]).
Hence, every congruence on R is an ideal congruence. The compact congruences are
those of the form Θ([0, y]) while the non-compact congruences are those of the form
Θ([0, y)). For a fixed y < 1 the function

f : R→ R : x 7→ max

{
x− y
1− y , 0

}

is a surjective endomorphism with kernel Θ([0, y]). Hence, if there is a surjection
g : R → S with ker g = Θ = Θ([0, z]) or Θ([0, z)), z < 1, then we may choose
y ∈ [z, 1) and get

R ∼= R/Θ([0, y]) ∼= (R/Θ)/(Θ([0, y])/Θ).

The last semiring is a homomorphic image of S. Hence, if R has a homomorphism onto
S with kernel Θ([0, z]) or Θ([0, z)), z < 1, then S has a homomorphism onto R. (If R
has a homomorphism onto S with kernel Θ([0, 1]) or Θ([0, 1)), then S is the 1-element
or 2-element lattice, respectively.)

A natural question now is whether there is any variety of semilattice modes which
has the AP where R(V) is not a bounded distributive lattice. There are such varieties
and the next example describes one of them.

Example 3. We will describe a mode which generates a variety with the AP even
though the semiring of the variety is not a bounded distributive lattice. The mode
will be of the form S(U) where S is the ordinal ω + 1 with the join operation defined
as follows: for α, β < ω + 1 define α + β = max{α, β}. U will be the monoid of
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endomorphisms of S generated by the following endomorphism: for 0 < α < ω define
f(α) = α − 1 and define f(0) = 0, f(ω) = ω. Thus, A = S(U) has basic operations
Fn(x, y) = fn(x) + y, 0 ≤ n < ω. Note that, since S and U satisfy the conditions
enumerated in Example 1, A is subdirectly irreducible.

It is shown in Theorem 4.13 of [3] that, when A is subdirectly irreducible with least
element 0,

R(V(A)) ∼= 〈U ; ◦,+, idA, 0〉.
Hence, we may think of R = R(V(A)) as consisting of the elements 0 < · · · ≺ f 2 ≺ f ≺
1 = idA. From this one gets that R has an underlying semilattice dually isomorphic
to that of A. Recall that I(V(A)) is a mode constructed from the annihilator ideals of
R. These ideals are of the form {0} or (f n], 0 ≤ n < ω, so I(V(A)) has an underlying
semilattice isomorphic to the underlying semilattice of A and has basic operations

[Fn](x, y) = (F̂n)−1
0 (x)⊕ (F̂n)−1

1 (y) = (fn)−1(x) ∩ y.

If I is the order-ideal (fn], then f−1(I) = (fn−1] and (fn−1] ≺ (fn] in I(V(A)). This
computation shows that f−1 acts on the underlying semilattice of I(V(A)) in the same
way that f acts on the underlying semilattice of A. Thus, [Fn] acts on I(V(A)) in the
same way that Fn acts on A. It follows that A is isomorphic to I(V(A)).

Theorem 2.4 proves that any subdirectly irreducible in V(A) embeds into I(V(A)),
so every subdirectly irreducible in V(A) is isomorphic to a subalgebra of A. Assume
C ≤ A. Let c0 be the least element of A which lies in C. For c < ω equal to any
element of C−{c0} it is possible to choose n and evaluate the operation Fn(c, c0) so as
to obtain any element of A in the interval [c0, c]. It follows that C∩ [0, ω) is an interval
in 〈A;≤〉; hence C is of the form [c0, a) for some a ∈ A or C is of the form [c0, a)∪{ω}
for some a ∈ A. Conversely, any subset C ⊆ A of the form [c0, a) or [c0, a) ∪ {ω} is
a subuniverse. It is straightforward to use the operations {Fn | n < ω} to prove that
any such C is subdirectly irreducible if it has at least two elements. To summarize,
we have shown in this paragraph that the subdirectly irreducible algebras in V(A) are
precisely the algebras isomorphic to nontrivial subalgebras of A.

To show that V(A) has the AP, we must show how to complete every amalgam of the
form (D; g1,M;h1,N) where D has more than one element, M is subdirectly irreducible
and h1 is essential. But if M is subdirectly irreducible, then there is an embedding
i : M→ A and if (g2;h2; P) completes (D; i◦g1,A;h1,N), then (g2◦i;h2; P) completes
(D; g1,M;h1,N). Hence, we only need to consider those amalgams (D; g1,M;h1,N)
where M = A. A is hereditarily subdirectly irreducible and D is isomorphic to a
subalgebra of A, so we get that D is subdirectly irreducible. N is an essential extension
of D, so N is subdirectly irreducible as well. There is an embedding j : N → A and
if we can complete (D; g1,A; j ◦ h1,A) with (g2;h2; P), then (g2 ◦ j;h2; P) completes
(D; g1,A;h1,N). Hence, we only need to show how to complete those amalgams of the
form (D; g1,A;h1,A). We may assume that g1 is inclusion, so that D ⊆ A.

Let d0 be the least element of D. Since D has more than one element, d0 < ω.
From our above descriptions we see that D must belong to one of only four families of
subalgebras of A:

(i) D = [d0, ω) for some d0 < ω,

(ii) D = [d0, ω] for some d0 < ω,

(iii)n D = [d0, d0 + n] for some d0 < dn < ω or

23



(iv)n D = [d0, d0 + n] ∪ {ω} for some d0 ≤ dn < ω.

No subalgebra of A in one of these families is isomorphic to a subalgebra from a different
family. Furthermore, no subalgebra of type (iii)i is isomorphic to one of the form (iii)j
if i 6= j (and the same for (iv)i and (iv)j .) The subalgebras from the first family may
be distinguished from those in other families because they are infinite, but have no last
element. The second, because they are infinite, but have a last element. The third,
because they are finite, have n elements and F1(l, d0) 6= l for l = the last element of D.
The fourth, because they are finite, have n+ 1 elements and F1(l, d0) = l for l = the
last element of D. One can show, case by case, that for any D belonging to one of the
four families it is possible to complete any amalgam of the form (D; g1,A;h1,A). The
arguments are nearly identical for all cases, so we shall only write down the argument
for the case where D is in family (iv).

Assume that we have an amalgam (D; g1,A;h1,A) where D belongs to family (iv)
and let a = g1(d0) and b = h1(d0). Define g2 : A → A by g2(x) = b + x. Define
h2 : A → A by h2(x) = a + x. (In these last two sentences only, the symbol +
denotes ordinal addition.) Then (g2;h2; A) completes (D; g1,A;h1,A). By Lemma
3.1, we conclude that V(A) has the AP. R(V(A)) is not a bounded distributive lattice.
(It turns out that R(V(A)) is the free 1-generated commutative semiring satisfying
1 + r = 1.)

We end this paper with a question and a problem, both suggested by the results of
this section.

Question 1. Are there varieties U and V with R(U) ∼= R(V) where exactly one of
them has the AP?

Assuming that the answer to the previous question is “No”,

Problem 2. Describe those R(V) for which V has the AP.

Certain special cases might be considered first. For example, one might consider only
when R(V) is finitely generated or only when R(V) is linearly ordered.
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