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Abstract. We compute the singular rank and the idempotent rank of those sub-
semigroups of the full transformation semigroup that contain all singular transfor-
mations.

1. Introduction

The rank of a semigroup is the cardinality of a least-size generating set. Let Tn
denote the semigroup of all transformations of V = {1, . . . , n}, let Sn ⊆ Tn be the
group of permutations in Tn, and let Singn = Tn − Sn be the subsemigroup of Tn
consisting of the singular transformations. Any subsemigroup S < Tn containing
Singn is the disjoint union of Singn and some subgroup G < Sn of permutations.
Singular transformations are of no use in generating permutations, so a least-size
generating set for S = G ∪ Singn must be a disjoint union M ∪ N where M ⊆ G
is a least-size generating set for G, and N ⊆ Singn is a least-size set for which
Singn ⊆ 〈G∪N〉. Therefore, we define the singular rank of S to be the cardinality of
a least-size set N ⊆ Singn for which Singn ⊆ 〈G ∪ N〉. In this note we explain how
to compute the singular rank of any subsemigroup S < Tn that contains Singn.

The idempotent rank of a semigroup that is generated by idempotents is the cardi-
nality of a least-size generating set of idempotents (cf. [4]). The semigroup Singn is
idempotent-generated, and its idempotent rank is n(n−1)/2 (cf. [2, 3]). This notion
of “idempotent rank” has a natural extension to subsemigroups S < Tn generated
by idempotents and permutations: it is the cardinality of a least-size set of idem-
potents needed in a generating set that consists of idempotents and permutations.
Since Singn is idempotent-generated, any semigroup of the form S = G ∪ Singn has
an idempotent rank in this sense, and in this note we explain how to compute it. A
special case of this computation is handled by Theorem 3.18 of [6], which proves that
if ε ∈ Tn is an idempotent of rank n− 1, then Singn ⊆ 〈G∪{ε}〉 if and only if G acts
weakly doubly transitively on V = {1, . . . , n}. Consequently the idempotent rank of
G ∪ Singn is 1 if and only if G acts weakly doubly transitively on V .
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There is an alternate way to view the problems of computing the singular rank and
idempotent rank of a semigroup of the form S = G∪Singn. For a group G < Sn and
a set N ⊆ Singn let NG = {ng = g−1ng | n ∈ N, g ∈ G} be the set of G-conjugates
of elements of N . It is easy to see that 〈NG〉 ⊆ 〈G ∪ N〉 and that these semigroups
contain the same idempotents. Since Singn is idempotent-generated, it follows that
Singn ⊆ 〈G ∪N〉 if and only if 〈NG〉 = Singn. Thus, the singular rank (idempotent
rank) of a semigroup of the form G∪Singn is the size of a least-size set N of singular
transformations (idempotents) such that 〈NG〉 = Singn. The stated purpose of [5] is
to begin an investigation of the following question: Given G < Sn, what is a least-size
set N ⊆ Singn such that 〈NG〉 = Singn? Equivalently, what is the singular rank of
G ∪ Singn? This question is not answered in [5], but will be answered here. (The
result of [5] is that the singular rank of G ∪ Singn is 1 if and only if G acts weakly
doubly transitively on V . Thus, the results of [5] and [6] show that the singular rank
of G ∪ Singn is 1 if and only if the idempotent rank is 1, a fact that is very easy
to establish directly. We will find in this paper that for certain groups G < Sn the
singular rank and idempotent rank of G ∪ Singn differ.)

We introduce more notation to allow us to state our results in a simple way.
Fix a subsemigroup S < Tn of the form G ∪ Singn with G < Sn. Let E =
{{1, 2}, {1, 3}, . . . , {n − 1, n}} be the set of doubletons of V . The pair 〈V ;E〉 is
a complete graph. The action of G on V induces an action of G on E according to
the rule: g({i, j}) = {g(i), g(j)}. Let v denote the number of vertex-orbits under the
action of G, and let e denote the number of edge-orbits under the induced action.

Theorem 1.1. If n > 2, and S = G ∪ Singn with G < Sn, then the singular rank of
S is e.

The n = 2 case of Theorem 1.1 is covered by the next theorem, since when n = 2
all singular transformations are idempotent (so singular rank = idempotent rank).

Theorem 1.2. The idempotent rank of S = G∪ Singn, G < Sn, is either e or e+ 1,
with the two cases being distinguished in the following way:

(i) it is e+ 1 if v = 2 and all edges connecting the two vertex-orbits belong to the
same edge-orbit,

(ii) otherwise it is e.

It follows from the two theorems that if one wants to generate all singular trans-
formations with G∪N for some least-size set N of singular transformations, then for
almost all groups G one can choose the elements of N to be idempotent. In the ex-
ceptional case, where v = 2 and edges connecting the two vertex-orbits all belong to
the same edge-orbit, one can do a little better with non-idempotent transformations.
However, it follows from our proof that even in the exceptional case a least-size set
N can be constructed where all but one of the members are idempotent.
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This paper ends with Theorem 2.9, which describes all pairs (G, I) where G < Sn,
I ⊆ Singn is a set of idempotents, and 〈G ∪ I〉 contains Singn. This extends Theo-
rem 6.3.12 of [1], which describes all such pairs (G, I) with G = {1}.

2. The Proofs

In this section we prove Theorems 1.1 and 1.2 through a sequence of four lemmas.
Lemmas 2.1 and 2.4 provide the necessary lower bounds for our two theorems, while
Lemmas 2.6 and 2.8 provide the necessary upper bounds. The usage of the sym-
bols Tn, Sn, Singn, S, G,N, I, V, E, v, and e in this section will conform to that of the
introduction.

Lemma 2.1. If N ⊆ Singn and 〈G ∪ N〉 contains Singn, then N must contain at
least e transformations of rank n− 1.

Proof. In this proof we will use the fact that a transformation in Tn has rank n − 1
if and only if it is constant on exactly one edge of the graph 〈V ;E〉.

Assume that 〈G ∪N〉 contains Singn. Choose and fix an edge {i, j} ∈ E. Choose
a transformation α ∈ Singn of rank n − 1 that is constant on this edge. Since
α ∈ 〈G ∪ N〉, it is possible to express α as τ1 · · · τk−1τk with τi ∈ G ∪ N . We claim
that no generality is lost if we assume that k ≥ 2, τk−1 ∈ N , and τk ∈ G. To see
this, note that if τk 6∈ G we can change the representation by adding τk+1 = 1 ∈ G to
the end of the product. Next, there is no need to ever choose both τk−1 and τk from
G, for if this happened we could change the representation by replacing the last two
transformations by their product. Thus, we may assume that τk ∈ G and τk−1 6∈ G.
But since α is not a permutation we cannot have k = 1, so k ≥ 2 and τk−1 ∈ N .

Since α = τ1 · · · (τk−1τk) and both α and τk−1τk have rank n− 1, it follows that α
and τk−1τk have the same kernel. Thus, both α and τk−1τk are constant on the same
edge, which is {i, j}. This implies that τk−1 has rank n−1, and that it is constant on
the edge {τk(i), τk(j)}. Hence, for any edge {i, j} there is a transformation τk−1 ∈ N
of rank n− 1 that is constant on an edge {τk(i), τk(j)} in the edge-orbit of {i, j}. It
follows that the number of different τk−1 ∈ N of rank n− 1 is at least as large as the
number e of edge-orbits. �

Say that a transformation τ represents an edge of 〈V ;E〉 if τ is constant on that
edge. A transformation has rank n−1 when it represents exactly one edge. What the
proof of Lemma 2.1 shows is that if 〈G∪N〉 contains Singn, then the transformations
of rank n − 1 in N must represent at least one edge from each edge-orbit, and so
there are at least e members of N of rank n− 1.

We will use the following notation in the upcoming definition: If a group H acts
on a set X and x ∈ X, then the orbit of x is denoted [x]. The set of orbits of X
under H is denoted X/H. Recall that G acts on both the vertices and edges of the
complete graph 〈V ;E〉.
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Definition 2.2. The orbit multigraph of G is 〈V/G;E/G〉.
The orbit multigraph of G is the (multigraph-) quotient of 〈V ;E〉 modulo G. It

typically has multiple edges and loops. For example, if [i′] = [i] 6= [j] = [j ′] and
[{i, j}] 6= [{i′, j ′}], then both [{i, j}] and [{i′, j ′}] are edges in E/G that connect [i] to
[j], but they are different edges. Also, if γ ∈ G and γ(i) 6= i, then [{i, γ(i)}] will be
a loop on [i] = [γ(i)]. Of course, multiple loops on the same vertex arise frequently.

Example 2.3. Let V = {1, 2, 3, 4} and G < S4 be the group whose elements are
{1, α, β, αβ} where α = (1 2) and β = (3 4). The vertex-orbits are [1] = {1, 2} = [2]
and [3] = {3, 4} = [4]. The edge-orbits are [{1, 2}] = {{1, 2}}, [{3, 4}] = {{3, 4}},
and [{1, 3}] = {{1, 3}, {1, 4}, {2, 3}, {2, 4}}. Thus, the orbit multigraph of G is:

u u
[1] = [2] [3] = [4]

[{1, 3}]
[{1, 2}] [{3, 4}]

Now replace G with the subgroup G′ < G whose elements are {1, αβ}. There
is no change in the set of vertex-orbits, but there is a change in the edge-orbits.
Now they are [{1, 2}] = {{1, 2}}, [{3, 4}] = {{3, 4}}, [{1, 3}] = {{1, 3}, {2, 4}}, and
[{1, 4}] = {{1, 4}, {2, 3}}. This means that the orbit multigraph of G′ is:

u u
[1] = [2] [3] = [4]

[{1, 3}]

[{1, 4}]

[{1, 2}] [{3, 4}]

Lemma 2.4. Assume that I ⊆ Singn is a set of idempotents, and that 〈G∪I〉 contains
Singn. If the orbit multigraph of G has exactly one edge that is not a loop, [{k, `}],
then I must contain at least two idempotents of rank n − 1 that represent edges in
the orbit [{k, `}]. Hence I contains at least e+ 1 idempotents of rank n− 1.

Proof. The last claim follows from the first, for if Singn ⊆ 〈G ∪ I〉, then by applying
Lemma 2.1 to N = I we see that I has at least one member of rank n−1 representing
each edge-orbit. Therefore, if I has at least two members of rank n− 1 representing
edges in the orbit [{k, `}], then I has at least e+ 1 members of rank n− 1.

To prove the first statement, assume that Singn ⊆ 〈G∪ I〉 and that I has only one
idempotent of rank n− 1 that represents an edge in [{k, `}]. By renaming k and ` if
necessary, no generality is lost in assuming that the idempotent is

εk→`(x) =

{
` if x = k;
x otherwise.
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Claim 2.5. If I ′ is the set of idempotents in I of rank n− 1, then [`] is closed under
all transformations in G ∪ I ′.

The set [`] is closed under all elements of G because [`] is an orbit. If [`] were not
closed under some ε ∈ I ′, then there would be an element a ∈ [`] such that ε(a) ∈ [k].
Then {a, ε(a)} would be an edge of [{k, `}] represented by this ε. But ε = εk→` is
the only member of I ′ that represents an edge in [{k, `}]. Since εk→`(x) = x on [`]
there is no a ∈ [`] with εk→`(a) ∈ [k]. The claim is verified.

The property described in the claim for elements of G∪ I ′ is inherited by elements
of 〈G ∪ I ′〉, but it is not shared by

ε`→k(x) =

{
k if x = `;
x otherwise,

Thus ε`→k ∈ Singn ⊆ 〈G ∪ I〉 and ε`→k 6∈ 〈G ∪ I ′〉. This is a contradiction since ε`→k
has rank n−1 and all transformations in 〈G∪I〉 of rank n−1 must lie in 〈G∪I ′〉. �
Lemma 2.6. Assume that the orbit multigraph of G has exactly k edges that are not
loops. If k = 1, then there is a set I ⊆ Singn of idempotents with |I| = e + 1 such
that Singn ⊆ 〈G ∪ I〉. If k 6= 1, then there is a set I ⊆ Singn of idempotents with
|I| = e such that Singn ⊆ 〈G ∪ I〉.
Proof. We first orient the orbit multigraph so that it is strongly connected, allowing
edges to be singly-oriented or doubly-oriented. (An oriented graph or multigraph is
strongly connected if it has a directed path between any two vertices.) We choose our
orientation as follows. In the case where k = 1 we doubly-orient the edge that is not
a loop and orient the loops arbitrarily. This is a strongly connected orientation. If
k 6= 1, then we singly-orient all edges in such a way that the multigraph is strongly
connected. To see that this is possible, note that since the orbit multigraph is the
quotient by G of the complete graph 〈V ;E〉 its underlying simple graph is complete.
In particular, the orbit multigraph is connected. Hence, when k = 0 (and so all edges
are loops) there is only one vertex. In this case any orientation makes it strongly
connected. When k > 1, then since the underlying simple graph is complete there is
a cycle that visits each vertex without repeating any edges. If we orient the edges
in such a cycle so that it is a directed cycle, then we can orient the remaining edges
and loops arbitrarily and we will have a strongly connected multigraph. Now, from
each edge-orbit choose and fix exactly one edge-representative {i, j}. Using this
representative, we indicate the fact that [{i, j}] is singly-oriented from [i] to [j] with
the notation [i→ j]. We use [i↔ j] to indicate that [{i, j}] is doubly-oriented.

Now that we have described a strongly connected orientation of the orbit multi-
graph, we describe how to pick the set I of idempotents. We select for membership
in I exactly one idempotent for each singly-oriented edge: for [i → j] we choose
the unique idempotent εi→j of rank n − 1 that satisfies εi→j(i) = j. For a doubly-
oriented edge [i ↔ j] we choose for membership in I the two idempotents εi→j and
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εj→i. Note that in the situation when all edges are singly-oriented we have chosen
one idempotent for each edge-orbit, so |I| = e. In the special situation where the
orbit multigraph has exactly one edge [i↔ j] which is not a loop we have chosen two
idempotents representing the edge-orbit of {i, j} and one idempotent for all other
edge-orbits, so |I| = e + 1.

Now we argue that 〈G ∪ I〉 contains Singn. Define a binary relation v on V
according to the rule: i v j if i = j or εi→j ∈ 〈G ∪ I〉.
Claim 2.7. v equals V × V .

For each εi→j ∈ I and each group element γ ∈ G the idempotent εγ(i)→γ(j) =
γεi→jγ

−1 is in 〈G∪I〉. Thus, i v j implies γ(i) v γ(j) for every γ ∈ G, so the relation
v is invariant under (or preserved by) G. Since the idempotents in I represent every
edge-orbit, it follows that for any edge {k, `} either k v ` or ` v k.

Next we argue that v is a transitive relation. Suppose that i v j and j v k.
To prove i v k it suffices to consider only the case where i, j and k are distinct.
Therefore we have εi→j, εj→k ∈ 〈G ∪ I〉. From the last paragraph we have either
εi→k ∈ 〈G ∪ I〉 or εk→i ∈ 〈G ∪ I〉. In the first case there is nothing left to prove, so
assume we have εk→i ∈ 〈G ∪ I〉. Then since εi→j, εj→k, εk→i ∈ 〈G ∪ I〉 and

εi→k = εi→jεj→kεk→iεi→jεj→kεk→i

we are done. Thus, v is a reflexive transitive relation (i.e., a quasiorder) on V . The
results of the first paragraph show that (a) any two elements of V are v-comparable,
so the associated partial order is a chain, and (b) the action of G on V is order-
preserving.

Our claim that v= V × V is the claim that the partial order associated to v has
one element. To prove this, choose t ∈ V from the top (v ∩ w)-class of the quasiorder
and b ∈ V from the bottom class. Since the orientation of the orbit multigraph is
strongly connected, there is a sequence [t] = [i1], [j1] = [i2], . . . , [jp] = [b] such that
there is an oriented edge [im → jm] for each m. Hence, εim→jm ∈ I for each m, and so
im v jm for each m. It is also true that jm v im+1 for each m. To see this, note that if
jm 6v im+1 then since all pairs of elements are v-comparable we must have im+1 v jm.
Since [jm] = [im+1] there is a group element γ ∈ G such that γ(im+1) = jm. If the
order of γ is r, then im+1 v jm = γ(im+1) v γ2(im+1) v · · · v γr(im+1) = im+1,
forcing jm v im+1 after all. Altogether this means that t v b, so the associated
partial order has one element. This proves the claim.

It follows from the claim and the definition of v that 〈G ∪ I〉 contains all idem-
potents of rank n − 1. It is proved in [3] that the set of idempotents of rank n − 1
generates Singn, so we are done. �

Lemma 2.8. If n > 2, then there is a set N ⊆ Singn with |N | = e such that 〈G∪N〉
contains Singn.
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Proof. From Lemma 2.6 it follows that there is such an N consisting entirely of
idempotent transformations in all situations except the situation where the orbit
multigraph has exactly one edge that is not a loop. It is only in this exceptional case
that we must explain how to choose N .

Assume that the edge of the orbit multigraph that is not a loop is the edge [{i, j}].
Since n > 2, at least one of the vertex-orbits has more than one element. Assume
that j 6= k, but [j] = [k]. Since [i] 6= [j] = [k] it follows that [{i, j}] 6= [{j, k}].

For each edge-orbit [{`,m}] that is distinct from [{i, j}] and [{j, k}] choose the
single idempotent ε`→m for membership in a set labeled N ′. This set now has e− 2
elements. Let N consist of the members of N ′ together with the non-idempotent
transformation

α(x) =





j if x = i;
k if x = j;
x otherwise,

and the idempotent εj→i. Altogether we have chosen e transformations for N , of
which e− 1 are idempotent.

From N we can generate εi→j = αεj→i and εj→k = εj→iα. This shows that 〈G∪N〉
contains all of the idempotents in N together with εi→j and εj→k. But this set of
idempotents represents every loop of the orbit multigraph and it represents the special
edge [{i, j}] in both directions, for we now have generated εi→j and we earlier chose
εj→i ∈ N . From the proof of Lemma 2.6 we see that we have enough idempotents to
guarantee that 〈G ∪N〉 contains Singn. �

Theorem 1.1 follows immediately from Lemmas 2.1 and 2.8. Moreover, these lem-
mas show that a least-size set N ⊆ Singn for which Singn ⊆ 〈G ∪N〉 can be chosen
so that at most one member fails to be idempotent. Theorem 1.2 follows from Lem-
mas 2.4 and 2.6.

Theorem 2.9. Given a subgroup G < Sn and a subset I ⊆ Singn of idempotents,
〈G ∪ I〉 contains Singn if and only if 〈G ∪ I ′〉 contains Singn where I ′ is the set of
elements of I of rank n− 1. 〈G ∪ I ′〉 contains Singn exactly when

(1) every edge-orbit contains an edge represented by an element of I ′; and
(2) the orientation induced on the orbit multigraph by I ′ is strongly connected.

Proof. Since the elements of G ∪ Singn of rank ≥ n − 1 are a generating set, and to
generate elements of G∪ Singn of rank ≥ n− 1 one can only use elements of G∪ I of
rank ≥ n− 1, it follows that 〈G ∪ I〉 contains Singn if and only if 〈G ∪ I ′〉 generates
Singn.

It follows from the proof of Lemma 2.6 that if conditions (1) and (2) holds, then I ′

contains sufficiently many idempotents for 〈G ∪ I ′〉 to generate Singn. On the other
hand, if condition (1) fails to hold, then the proof of Lemma 2.1 shows that 〈G ∪ I〉
will not contain Singn since the transformations of rank n − 1 in 〈G ∪ I〉 represent
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only edges that lie in edge-orbits of elements of I ′. Finally, if (1) holds but (2) fails,
then 〈G ∪ I ′〉 cannot contain Singn. The argument for this is a combination of the
arguments for Claims 2.5 and 2.7: If the orientation is not strongly connected, then
the quasiorder v as defined before Claim 2.7 is not V × V , but it is a G-invariant
quasiorder whose associated order is a chain of more than one element. Now, using
an argument like the one in Claim 2.5, one can show that if T is top (v ∩ w)-class
of the quasiorder, then T is closed under all elements of G ∪ I ′, but not under all
idempotents of rank n− 1. Hence Singn 6⊆ 〈G ∪ I ′〉 when (1) holds and (2) fails. �
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