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LOCALLY SOLVABLE FACTORS OF VARIETIES

KEITH A. KEARNES

(Communicated by Lance W. Small)

Abstract. We give necessary and sufficient local conditions, which are easy
to check, for a locally finite variety V to decompose as the product of a locally
solvable subvariety U and a subvariety W which has type set disjoint from the
type set of U .

1. Introduction

A variety is an equationally definable class of similar algebras. The category of
varieties under interpretation has finite products, so given varieties U and W one
can form V = U ×W. This product of U and W is sometimes called the varietal
product, the varietal sum, the direct sum or the independent join of U and V , and
the product symbol is sometimes ×, ⊗, or ⊕. We call it simply the product and
we use ×. We remark that the equality V = U × W only determines V up to
term equivalence (which means isomorphism in the category of varieties), and this
equality implies that U and W are term equivalent to subvarieties of V .

There are several well–known examples of varieties which are products of subva-
rieties. The variety RB of rectangular bands is LZ ×RZ where LZ is the variety
of left-zero semigroups and RZ is the variety of right-zero semigroups. If R and S
are unital rings, then for the corresponding module varieties we have

MR×S =MR ×MS.

One can generalize the latter example. If V is any variety whose members have
an underlying group structure and V is generated by U ∪ W where U and W are
subvarieties of V which have trivial intersection, then V = U ×W.

When V = U × W, then every member of V has a canonical factorization as a
product of a member of U and a member ofW, and every homomorphism between
members of V respects these canonical factorizations. Thus, it is straightforward to
reduce virtually any question about V to the corresponding question for each factor
variety. It is precisely this fact that makes the recognition of such factorizations
of varieties desirable. One of the deepest theorems in all of general algebra is the
theorem of R. McKenzie and M. Valeriote in [5] which states that if V is a locally
finite variety which has a decidable first–order theory, then V decomposes as

S ×A×D,
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where S is a decidable multisorted unary variety, A is a decidable affine variety,
and D is a decidable discriminator variety. Based on this factorization, they have
described an algorithm which converts a finite algebra A in a finite language into
a finite ring R such that V(A) is decidable if and only if the variety of R–modules
is decidable. The question of which finite rings have a decidable theory of modules
is still open.

The McKenzie–Valeriote proof uses tame congruence theory, the viewpoint of
which is that every finite algebra may be approximated locally by algebras of five
very different, but classifiable “types”. An extremely valuable technique, developed
by Valeriote in his Ph. D. thesis, [6], is that establishing “transfer principles” shows
that the approximating algebras of different types are essentially independent of
each other. This is a basic first step towards decomposing a locally finite variety
into a product of subvarieties of disjoint type sets; and this approach is especially
well tailored to the techniques of tame congruence theory. The following question
arises: After establishing that the necessary transfer principles hold, what else must
be checked to guarantee a product decomposition? This question was answered in
Section 3 of [1] in the sense that a simple list of necessary and sufficient conditions
were given for such decompositions to exist. In this paper, we show that direct
decompositions occur more readily when a proposed direct factor is locally solv-
able. Our results eliminate the need for some of the semantic embeddings in the
McKenzie–Valeriote proof. In particular, all of Chapter 13 of [5] can be eliminated.

Our notation is standard with one exception: we denote the operations of a
lattice by + for join and juxtaposition for meet. For the congruence lattice of A,
we write 0A and 1A for the least and largest elements, although we may drop the
superscripts. Our notation for product congruences follows [2] and we describe it
briefly now. Let πi : A0 ×A1 → Ai, i = 0, 1, denote the canonical projection onto
the ith factor. If α ∈ Con (Ai), then αi denotes the congruence π−1

i (α) of A0×A1

except in the case where α = 0; in this case we write ηi for π−1
i (α) = π−1

i (0), which
is the kernel of the projection onto the ith factor algebra. If α ∈ Con (A0) and
β ∈ Con (A1); then, according to our rules, the meet α0β1 is the congruence on
A0 ×A1 consisting of the pairs

{〈(x, y), (u, v)〉 ∈ (A0 ×A1)2 | (x, u) ∈ α, (y, v) ∈ β}.

Congruences of this form are called product congruences. A fact about product
congruences which we shall use without comment in this paper is that two product
congruences which permute coordinatewise must permute.

2. Splitting off locally solvable factors

The book [3] develops a local structure theory for finite algebras. For a given
finite algebra A, the local structure is partially encoded in a labeling of the congru-
ence lattice of A. In this paper we will not need to know anything of this theory
except that whenever α is covered by β in Con (A) it is possible to assign a label
to this covering pair. This label, written typ (α, β) and called the type of 〈α, β〉, is
some number from the set {1 ,2 ,3 ,4 ,5 }. One property about allowable labelings
which we will need is the fact that perspective covering pairs must have the same
label. What this means is that if α1 ≺ β1, α2 ≺ β2, α2∨β1 = β2, and α2∧β1 = α1,
then typ (α1, β1) = typ (α2, β2).
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Definition 2.1. Let T, T ′ ⊆ {1 ,2 ,3 ,4 ,5 } be sets of type labels. A finite algebra
A is said to satisfy the 〈T, T ′〉 transfer principle if there do not exist congruences
α ≺ β ≺ γ on A such that

(1) typ (α, β) ∈ T and typ (β, γ) ∈ T ′, and
(2) the interval I[α, γ] in Con (A) is {α, β, γ}.

A locally finite variety is said to satisfy the 〈T, T ′〉 transfer principle if its finite
members do.

If A is a finite algebra and T is a set of type labels, then we can define a binary
relation ∼

T
on Con (A) by specifying that

α∼
T
β ⇔ typ {αβ, α+ β} ⊆ T.

A basic result connecting these relations to the transfer principles is Theorem 3.10
of [1], which proves the following.

Theorem 2.2. Let A be a finite algebra and assume that T and T ′ are disjoint
sets of type labels such that typ {A} ⊆ T ∪ T ′. Then A satisfies the 〈T, T ′〉 and
〈T ′, T 〉 transfer principles if and only if ∼

T
and ∼

T ′
are permuting congruences on

Con (A). 2

Under the assumptions of the above theorem, let ρT (ρT ′) denote the largest
congruences ∼

T
–related (∼

T ′
–related) to 0A. The congruence ρT (ρT ′) is called the

T–radical (T ′–radical) of A. Theorem 2.2 proves that when A satisfies the 〈T, T ′〉
and 〈T ′, T 〉 transfer principles, then Con (A) is naturally isomorphic to the direct
product

I[ρT , 1
A]× I[ρT ′ , 1

A]

considered as labeled lattices. In fact, ρT and ρT ′ are complements in Con (A) and
the natural homomorphism from A into (A/ρT )×(A/ρT ′) is a subdirect embedding.
A direct consequence of Theorem 2.2 is the following.

Corollary 2.3. Assume that A is finite, and that every subalgebra of A2 satisfies
the 〈T, T ′〉 and 〈T ′, T 〉 transfer principles. If A is a subdirect product of B and
C, where typ {B} ⊆ T ′ and typ {C} ⊆ T , then the T–radical and T ′–radical of A
are η0|A and η1|A, respectively, and every congruence on A is the restriction of a
product congruence on B×C. 2

In this corollary, the assumption that every subalgebra of A2 satisfies the transfer
principles implies that HS(A2) satisfies the transfer principles, since homomorphic
images inherit the transfer principles. The hypothesis is only used to force B×C,
which is in HS(A2), to satisfy the transfer principles.

The next result we need is Theorem 2.1 of [4].

Theorem 2.4. Let A be a finite algebra, let B be a maximal subuniverse of A,
and let γ be a minimal abelian congruence on A. If γ|B > 0, then B is a union of
γ–classes. 2

In this theorem, the statement that γ is a minimal abelian congruence on A
means that typ (0A, γ) ∈ {1 ,2 }. In what follows, the phrase that “typ {V} ⊆
{1 ,2 }” is equivalent to “V is locally solvable”.
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Theorem 2.5. Let A be a finite algebra and let T and T ′ be sets of type labels for
which

(1) T ∩ T ′ = ∅,
(2) typ {A} ⊆ T ∪ T ′, and
(3) T ⊆ {1 ,2 }.

If the 〈T, T ′〉 and 〈T ′, T 〉 transfer principles hold in all subalgebras of A2, then

A ∼= (A/ρT )× (A/ρT ′).

Proof. We assume that the theorem is false and argue to a contradiction. To
simplify notation, we will write A0 for A/ρT and A1 for A/ρT ′ . Remember, though,
that typ {A0} = typ {ρT , 1A} ⊆ T ′ and similarly that typ {A1} ⊆ T . Let A be
a finite algebra which satisfies the hypotheses of the theorem, but for which the
natural embedding ϕ : A→ A0 ×A1 is not onto. We choose such an A such that
Con (A) has minimum height among all such examples. Identify A with ϕ(A).

We have assumed that all subalgebras of A2 satisfy the 〈T, T ′〉 and 〈T ′, T 〉 trans-
fer principles, which implies that every subalgebra of A0×A1 satisfies these transfer
principles. For any B such that A ≤ B ≤ A0 ×A1, we can apply Corollary 2.3
to obtain that Con (A0 ×A1) ∼= Con (B) by restriction. If such a B is a proper
subalgebra of A0 ×A1, then B is subdirectly (but not isomorphically) embedded
into

A0 ×A1
∼= (B/ρT )× (B/ρT ′).

In particular, if B is a proper subalgebra of A0×A1 containing A, then B is also a
counterexample to the theorem and the labeled congruence lattice of B is the same
as that of A. By extending A if necessary, we may assume that A is a maximal
proper subalgebra of A0 ×A1.

Since η0|A = ρT and η1|A = ρT ′ are complementary congruences of A which
are not a pair of factor congruences, ρT fails to permute with ρT ′ . Choose σ, τ ∈
Con (A) such that 0A ≺ σ ≤ ρT and 0A ≺ τ ≤ ρT ′ . We claim that σ and τ fail to
permute. Before proving this, let’s show that σ fails to permute with ρT ′ . If this
were not the case, then we would have σ+ρT ′ = σ◦ρT ′ . The algebra A/σ satisfies all
the assumptions made about A and has a congruence lattice of smaller height. By
the minimality restriction placed on A, A/σ has a direct decomposition as described
in the theorem. Hence, the T–radical of A/σ (which is ρT /σ) permutes with the
T ′–radical (which is (σ + ρT ′)/σ). Therefore, ρT permutes with σ + ρT ′ = σ ◦ ρT ′
in Con (A). Since σ is comparable with ρT we get that

1A = ρT + ρT ′
= ρT + σ + ρT ′
= ρT + (σ ◦ ρT ′)
= ρT ◦ (σ ◦ ρT ′)
= (ρT ◦ σ) ◦ ρT ′
= ρT ◦ ρT ′ ,

which shows that ρT permutes with ρT ′ . This contradicts our assumption that
A does not factor as (A/ρT ) × (A/ρT ′). We conclude that σ does not permute
with ρT ′ . The argument that σ does not permute with τ is very similar to the one
just described. Assume that σ + τ = σ ◦ τ . By the minimality of A, the algebra
A/τ satisfies the transfer principles and factors as the product of an algebra of
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type T and an algebra of type T ′. It follows that the T–radical of A/τ permutes
with the T ′–radical. Furthermore, the T ′–radical, which is a coordinate projection
kernel, permutes with any product congruence, and therefore permutes with any
congruence. Thus, ρT ′/τ permutes with (σ+ τ)/τ . This implies that ρT ′ permutes
with σ + τ = σ ◦ τ , so

σ + ρT ′ = σ + τ + ρT ′ = (σ ◦ τ) + ρT ′ = σ ◦ τ ◦ ρT ′ = σ ◦ ρT ′ .

This contradicts our earlier conclusion that σ does not permute with ρT ′ , so σ
cannot permute with τ .

To finish the proof, we will show that σ does permute with τ ! By Corollary 2.3,
σ is the restriction to A of a congruence on A0 × A1 of the form η0β1 where
0 ≺ β in Con (A1) and τ is the restriction to A of a congruence α0η1 where 0 ≺ α
in Con (A0). Since typ {A1} ⊆ T , and Con (A0 × A1) is a direct product of
labeled lattices, we get that typ (0, η0β1) ∈ T ⊆ {1 ,2 }. Theorem 2.4 applies to
this situation. Since A is a maximal subuniverse of A0 × A1, η0β1 is a minimal
abelian congruence of A0 ×A1, and (η0β1)|A = σ > 0, we get that A is a union of
(η0β1)-classes. Choose any pair of elements

(a, b) ∈ σ + τ = (η0β1 + α0η1)|A.

Then, since the product congruences η0β1 and α0η1 of A0 ×A1 permute, we get
that (a, b) ∈ (η0β1 ◦ α0η1)|A. This means that there is a c ∈ A0 ×A1 such that
(a, c) ∈ η0β1 and (c, b) ∈ α0η1. But the facts that a ∈ A, (a, c) ∈ η0β1, and
A is a union of η0β1-classes imply that c ∈ A. We get that (a, c) ∈ (η0β1)|A
and (c, b) ∈ (α0η1)|A. Therefore, (a, b) ∈ (η0β1)|A ◦ (α0η1)|A = σ ◦ τ . The pair
(a, b) ∈ σ + τ was chosen arbitrarily, so σ + τ = σ ◦ τ and σ and τ permute. This
contradiction finishes the proof.

Corollary 2.6. Let V be a locally finite variety and let T1 = {1 }, T2 = {2 } and
T3 ⊆ {3 ,4 ,5 }. Assume that typ {V} ⊆ T1 ∪ T2 ∪ T3. If V satisfies the 〈Ti, Tj〉–
transfer principle for each i 6= j, then each finite member of V is isomorphic to a
direct product A1 ×A2 ×A3 where typ {Ai} ⊆ Ti.

Proof. Choose any finite A ∈ V and apply Theorem 2.5 to A with T = T1 ∪ T2

and T ′ = T3. This proves that A ∼= B × A3, where typ {B} ⊆ T1 ∪ T2 and
typ {A3} ⊆ T3. Then apply Theorem 2.5 to B to decompose it into A1 × A2,
where typ {Ai} ⊆ Ti.

In [1], a relation of the form ∼
T

is said to be hereditary throughout V if whenever

A ∈ V is finite and B ≤ A is a subalgebra, we have

α ∼
T
β ⇒ α|B ∼

T
β|B

for any two congruences α, β ∈ Con (A). If there exists a decomposition V =
VT × VT ′ where T and T ′ are disjoint sets of type labels and typ {VX} ⊆ X ,
then clearly ∼

T
and ∼

T ′
are hereditary and the 〈T, T ′〉 and 〈T ′, T 〉 transfer principles

must hold. These necessary conditions are not sufficient in general to obtain a
factorization of V (e.g., they are not sufficient for congruence distributive varieties),
but the next theorem shows that when T ⊆ {1 ,2 }, then these necessary conditions
are sufficient.
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Theorem 2.7. Let V be a locally finite variety and let T and T ′ be disjoint sets
of type labels where typ {V} ⊆ T ∪ T ′ and T ⊆ {1 ,2 }. Then V = VT × VT ′ with
typ {VX} ⊆ X if and only if the following conditions hold:

(1) The 〈T, T ′〉 and 〈T ′, T 〉 transfer principles hold and
(2) ∼

T
and ∼

T ′
are hereditary.

Proof. We prove only the nontrivial direction, which is that (1) and (2) are sufficient
to obtain a decomposition. For X ∈ {T, T ′}, say that an algebra in V is locally–X
if every finitely generated subalgebra has a congruence lattice with only type X
labels. Let VX denote the collection of all locally–X algebras in V . Using the
transfer principles and the hereditariness of ∼

X
, it is not hard to show that VX is

a subvariety of V of type set X which contains every member of V of type set X .
Theorem 2.5 proves that every finitely generated algebra in V is isomorphic to a
product of an algebra from VT and an algebra from VT ′ . This is enough to prove
that V = VT × VT ′ .

To augment Theorem 2.7, we reproduce a result (Theorem 3.6) from [1] which
gives an easy test for whether ∼

T
and ∼

T ′
are hereditary. We state the result with the

same hypotheses as Theorem 2.7 even though it is proved under weaker hypotheses
in [1].

Theorem 2.8. Let V be a locally finite variety and let T and T ′ be disjoint sets of
type labels where typ {V} ⊆ T ∪ T ′. Assume that V satisfies the 〈T, T ′〉 and 〈T ′, T 〉
transfer principles. For X ∈ {T, T ′}, the congruence ∼

X
is hereditary if and only if

whenever

(1) A ∈ V is a finite subdirectly irreducible algebra with monolith µ,
(2) typ {A} ⊆ X, and
(3) B is a subalgebra of A,

then typ {0B, µ|B} ⊆ X. 2

The following corollary bears the same relationship to Theorem 2.7 that Corol-
lary 2.6 bore to Theorem 2.5.

Corollary 2.9. Let V be a locally finite variety and let T1 = {1 }, T2 = {2 } and
T3 ⊆ {3 ,4 ,5 }. Assume that typ {V} ⊆ T1 ∪ T2 ∪ T3. Then V = V1 ×V2 ×V3 with
typ {Vi} ⊆ Ti if and only if the following conditions hold:

(1) The 〈Ti, Tj〉 transfer principles hold for each i 6= j, and
(2) ∼

T2

and ∼
T3

are hereditary. 2

The only remark necessary is that ∼
T1

is always hereditary, since it is the strongly

solvable congruence. Therefore, we do not need to check this condition in (2).
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