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Abstract

We develop a new centrality concept and apply it to solve certain outstanding problems about
�nite algebras. In particular, we describe all �nite algebras of �nite complexity and all �nite
strongly abelian algebras which generate residually small varieties. c© 1999 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The symbols for the basic operations of abelian groups are the binary sum +, unary
negation −, and nullary unit 0. Using these symbols, there are many di�erent ways
to construct terms whose interpretation in any abelian group is subtraction. The most
obvious way to express subtraction is with x + (−y), but the term

((−z) + x) + ((z + 0) + ((−0) + (−y)))

interprets as the same operation in every abelian group. This term, whose composition
tree is depicted in Fig. 1, is a more complicated composition of basic operation symbols
than x+ (−y). This is re
ected by the fact that its composition tree has greater depth
than the composition tree for x + (−y).
We will use the depth of the composition tree as a measure of the complexity of a

term. So, for example, x+(−y) has complexity 2 while ((−z)+x)+((z+0)+((−0)+
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Fig. 1. The composition tree for ((−z) + x) + ((z + 0) + ((−0) + (−y))).

(−y))) has complexity 4. For a given term operation, like subtraction, there will usually
be many di�erent terms which interpret as that operation. We de�ne the complexity of
a term operation to be the minimum of the complexities of all terms which interpret
as that operation. (Subtraction has complexity 2 for most abelian groups. However,
subtraction has complexity 1 for any nontrivial abelian group satisfying the equation
y = −y, since then x + y interprets as subtraction. Subtraction has complexity 0 for
the one-element group.) If A is an algebra in a �nite language, then we de�ne the
complexity of A to be the ordinal which is the supremum of the complexities of all
of its term operations. This ordinal is �nite or !. This paper contains an analysis of
the structure of �nite algebras which have �nite complexity.
Saying that a �nite algebra A in a �nite language has �nite complexity means that

there is a number N such that for any term of A which has a complicated nesting
of subterms (i.e., a deep composition tree) one can always replace the term with
an equivalent one whose composition tree has depth less than N . Thus, there exists
a bound K , computable from N and the arities of the basic operations, such that
each term operation can be obtained as an interpretation of a term having at most
K variables. In other words, every term operation may depend on at most K of its
variables. It is not too hard to see that this bounds the growth rate of the number
of inequivalent term operations of A as a function of the number of variables. The
number of inequivalent n-ary term operations of A equals the size of the n-generated
free algebra in the variety V(A) generated by A, so if we de�ne the free spectrum
of A to be the function fV(A)(n) = |FV(A)(n)| then, if A has a �nite language, A has
�nite complexity if and only if the free spectrum of A is bounded from above by a
polynomial.
As is witnessed very clearly in the case of groups, the rate of growth of the free

spectrum function is intimately related with fundamental structural properties. For ex-
ample, a �nite group whose free spectrum function grows at a rate which is less than
doubly exponential must be nilpotent. Furthermore, as is proved in [3,12], it is nilpo-
tent of class 6k if and only its free spectrum function is bounded above by 2p(n) for
some polynomial p(n) of degree 6k. In this paper the fundamental structural proper-
ties associated with a slow-growing free spectrum function are our main concern, not
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Fig. 2. C = normal; W = weak; R = rectangular; S = strong.

the spectrum function itself; the function interests us only to the extent that bounding
its growth rate helps us to discover these structural properties. Just as free spectrum
problems and other problems about groups might force one to discover the signi�cance
of nilpotence in group theory, and more generally of the group commutator operation,
so we have been forced by a circle of problems to isolate a new kind of nilpotence
which is associated with a new kind of commutator operation.
By a commutator operation we mean a certain kind of binary operation on the

congruence lattice of an algebra. For groups the commutator of normal subgroups is a
commutator operation; for commutative rings the product of two ideals is a commutator
operation. These special examples are generalized in Chapter 3 of [4] to a commutator
operation de�nable for any algebra. This de�nition is based on a centrality concept
we call normal centrality. From the normal centralizer relation one de�nes the normal
commutator, and at once has concepts of solvability, nilpotence and abelianness at
hand. A new centralizer relation is de�ned in [5] called the weak centralizer, and
along with that concept there is a weak commutator and notions of weak solvability,
weak nilpotence and weak abelianness. Also appearing in [4] is the notion of a strongly
abelian algebra or congruence. This notion has never before been associated with a
centralizer relation or a commutator operation, but in Section 2 we explain how this can
be done. The main focus of this paper is yet a fourth kind of centrality which we call the
rectangular centralizer. Associated to the rectangular centralizer is a commutator and
concepts of rectangular solvability, rectangular nilpotence and rectangular abelianness.
The four centralizer concepts are related to each other as in Fig. 2. What the order in

Fig. 2 is meant to suggest is that the strongest (most restrictive) centralizer condition
that one can impose on a pair of congruences, among the centralities mentioned, is the
strong centralizer condition, and the weakest is the weak centralizer condition. Normal
and weak centrality seem to be closely related, as do strong and rectangular centrality.
Parallel edges in Fig. 2 are meant to suggest that the relationships seem to be parallel.
The relations R and C seem to be complementary concepts within this interval. Strong
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centrality is the conjunction of rectangular and normal centrality by de�nition. Weak
centrality seems to behave like the disjunction of rectangular and normal centrality.
The abelianness concepts that arise from the four types of centrality are essentially

di�erent from one another. However the concepts of strong and rectangular solvability
coincide for �nite algebras, and similarly the concepts of normal and weak solvability
coincide. The same statements are true if we replace solvability by nilpotence. In this
paper we are concerned almost exclusively with rectangular centrality and the associ-
ated abelianness and nilpotence concepts. But instead of choosing the obvious phrase
‘rectangularly abelian’ for the abelian concept, we will tend toward more euphonius
terminology, and say simply that an algebra is rectangular when the rectangular com-
mutator operation is trivial. Furthermore, rather than call an algebra ‘rectangularly
nilpotent’ we prefer the sound of ‘strongly nilpotent’, and we will use the latter after
proving the equivalence of these two concepts in Lemma 3.4.
Here is a summary of the results of the paper. In Section 2 we give the full de�nitions

of the various centralizers and prove some of their basic properties, with most of our
attention devoted to determining when a tolerance rectangularly centralizes a prime
quotient. Section 3 further develops the rectangular centralizer and includes a proof
of the equivalence of strong and rectangular nilpotence. Lemma 3.4 of this section
gives many equivalent formulations of strong nilpotence, including local and equational
characterizations. Section 4 uses a Ramsey argument to prove that a �nite algebra in a
�nite language has �nite complexity if and only if it is strongly nilpotent. Sections 5
–7 are about rectangular algebras and their structure. Speci�cally, Section 5 begins by
solving a combinatorial problem about partitioning rectangles, and then it applies the
solution to obtain a tight bound on the essential arity of a �nite rectangular algebra.
Section 6 proves a representation theorem for rectangular algebras. Section 7 gives a
Klukovits-type characterization of the clone of a rectangular variety, which we apply to
show that any locally �nite rectangular variety is �nitely generated. Our �nal section,
Section 8, includes the characterization of strongly nilpotent, locally �nite varieties
which are residually small. The main result states that such a variety is residually
small if and only if its algebras are rectangular. This yields an algorithm to decide if
a �nite strongly nilpotent (in particular, strongly abelian) algebra in a �nite language
generates a residually small variety. Example 8.7 presents a �nite, simple, strongly
abelian algebra generating a residually large variety.
The notation and terminology of this paper is standard, and for the most part follows

[4]. Algebras are written in bold face, as in A;B;C ; : : : . The underlying set (or any set
without structure) will be written in italics, as in A; B; C; : : : . A sequence of elements
(a1; a2; : : :) of any length will frequently be denoted by a bold face lower case character,
as in a, for example. We will not specify the length if it is irrelevant or can be
determined from the context. If A is an algebra and R is a binary relation on A, then
we may use the notation aR b, as well as the usual notation (a; b) ∈ R, to denote
the fact that a is R-related to b. As an extension of this convention, by the notation
aR b we mean that the vectors a and b are R-related componentwise, that is, ai R bi

for every i. If R = � is a congruence we may also use the notation a ≡� b to denote
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that (a; b) ∈ �. The factor notation A=� will be extended so that it applies to relations
on A. Therefore, if a ∈ A, then a=� is the coset of � containing a, and if R is an n-ary
relation, then

R=�:={(a1=�; : : : ; an=�) | (a1; : : : ; an) ∈ R}:
This will most often be used when the relation in question is a tolerance, that is, a
compatible, re
exive, symmetric binary relation. If T is a tolerance on A, then T=� is
again a tolerance (on A=�), and it equals the tolerance (�◦T ◦�)=�. If � is a congruence
(which is nothing more than a transitive tolerance), then �=� is a tolerance. But if �
contains �, then �=� is a congruence. If t is a term in the language of A, then we may
also use t to denote the term operation of A represented by t if there is no danger of
confusion or need to make a distinction. If it seems wise to make the distinction, then
we will write tA for the interpretation of t in A.
Some of the statements and proofs in Sections 2 and 3 use tame congruence theory.

The monograph [4] is the handbook for this theory (see [6] as a companion).

2. What is rectangularity?

All the concepts of centrality mentioned in the Introduction can be expressed in the
following way. Let L and R be symmetric binary relations of an algebra A. By an
L; R-matrix we mean a matrix of the form[

t(a; c) t(a; d)
t(b; c) t(b; d)

]
;

where t is a polynomial of A, and a, b; c; d are vectors of A such that a L b and
c R d . These matrices form a subalgebra in A4, which is generated by the set{[

a a
b b

]
| (a; b) ∈ L

}
∪
{[

c d
c d

]
| (c; d) ∈ R

}
of trivial L; R-matrices, and the diagonal of A4.
Now let � be a congruence of A. Following [4] we say that L (normally) centralizes

R modulo �, or that C (L; R; �) holds, if for every L; R-matrix[
t(a; c) t(a; d)
t(b; c) t(b; d)

]
=
[
u v
w z

]
we have u ≡� v if and only if w≡� z. We now de�ne the three other concepts of
centrality mentioned in the Introduction.

De�nition 2.1. Let L and R be symmetric binary relations of an algebra A, and � a
congruence of A. We say that
(1) W (L; R; �) holds if for every L; R-matrix, if three of its elements are �-related,

then all four elements are �-related;
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(2) R(L; R; �) holds if for every L; R-matrix, if the two elements on the main diagonal
are �-related, then all four elements are �-related;
(3) S(L; R; �) holds if and only if C (L; R; �) and R(L; R; �) both hold.

Extending the usual terminology from C to W and S , we will express the fact
that W (L; R; �) or S(L; R; �) holds by saying that L weakly or strongly centralizes R
modulo �. We will express R(L; R; �) by saying that L rectangulates R modulo �. The
relation L is called rectangular if R(L; L; 0A) holds, and A is called rectangular if the
relation 1A = A× A is rectangular.
Consider the L; R-matrices of A of the form[

t(a; c) t(a; d)
t(b; c) t(b; d)

]
=
[
u v
w z

]
where u= z. We shall denote by R(L; R) the set of all pairs (u; v) which occur on the
�rst row of such a matrix. The relation R(L; R) is a compatible, re
exive relation of
A, but is highly asymmetric in general, even when L= R= A× A.
We list some very elementary properties of these concepts. We leave the proof of

this result to the reader.

Lemma 2.2. Let L and R be symmetric binary relations of an algebra A; and � a
congruence of A.
(1) R(L; R; �)⇔ R(R; L; �).
(2) We have R(L; R; �) if and only if for every L; R-matrix if the two elements in

the main diagonal are �-related; then the elements in the top row are �-related.
(3) R(L; R; 0A)⇔ R(L; R) = 0A.
(4) If �i (i ∈ I) are congruences of A; then R(L; R; �i) for all i ∈ I implies

R(L; R;
∧

i∈I �i).
(5) If 
 is a congruence and 
6�; then we have R(L; R; �)⇒R(L=
; R=
; �=
)

in A=
.
(6) If L′ ⊆L; R′ ⊆R and R(L; R; �) holds; then R(L′; R′; �) holds.
(7) If L and R are compatible; R= � ◦ R ◦ � and L∩ R⊆ �; then R(L; R; �) holds.
(8) If � is a congruence of A; then R(L; �; �)⇒R(L; �; � ∧ �).
(9) A is rectangular if and only if for every n-ary polynomial t of A; and ev-

ery element a∈A; the set {(a1; : : : ; an) ∈ An | t(a1; : : : ; an) = a} is a rectangular subset
of An; that is; it can be written in the form A1× · · · ×An; where the Ai are subsets
of A.
(10) Each of R(L; R; �) and C (L; R; �) implies W (L; R; �).
(11) S(�; �; 0A) holds for a congruence � of A if and only if � is strongly abelian

in the sense (studied in [4]) that whenever t(x; y) is a polynomial of A; a ≡� b ≡� c
and u ≡� C; then t(a; u) = t(b; C)⇒ t(c; u) = t(c; C).

We especially encourage the reader to verify (9), which explains the name of rectan-
gular centrality. The statement in (4) allows us to de�ne the rectangular commutator
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of L and R to be the smallest � for which R(L; R; �) holds. It is denoted by [L; R]R.
Thus we can speak about rectangular solvability, and rectangular nilpotence as well.
One can similarly de�ne the weak and the strong commutator [L; R]W and [L; R]S .
If R is a symmetric binary relation on A, then two polynomials f(x) and g(x)

are called R-twins if there exists a polynomial h(x; y) and vectors u R C such that
f(x)=h(x; u) and g(x)=h(x; C) holds for every x. Consider the set of all permutations
of A that are R-twins of the identity map. It is easy to see that this set is closed under
composition. When A is �nite, this is a group of permutations called the R-twin group
of A, and it is denoted by Tw(A; R). The reader can verify that Tw(A; R) is a normal
subgroup of the group consisting of all permutations of A that are unary polynomials.
We extend twin group terminology to E-traces as follows. If N is an E-trace (i.e., the
intersection of a congruence class and the range of an idempotent polynomial), then
the R-twin group on N is the group of restrictions to N of polynomials which map N
bijectively onto N and which are R-twins of the identity on N . This group is denoted
by Tw(A|N ; R).
Recall from [4] that if A is an algebra, then a 1-snag of A is a pair (a; b) ∈ A2 such

that a 6= b and for some binary polynomial p(x; y) of A we have[
p(a; a) p(a; b)
p(b; a) p(b; b)

]
=
[ ∗ a
a b

]
:

If we let f(x) = p(b; x); g(x) = p(a; x) and R = {(a; b); (b; a)}, then f and g are
R-twins and f(a) = a; f(b) = b and g(b) = a. This property for more general twins
is a useful concept, so for any symmetric binary relation R we say that (a; b) is a 1;
R-snag of A if a 6= b and there exist R-twin unary polynomials f and g of A such that
f(a) = a; f(b) = b and g(b) = a. In this paper we shall use this concept frequently in
the situation when R is a tolerance.
Our �rst aim is to understand what it means for R(T; �; �) to hold when T is a

tolerance and 〈�; �〉 is a ‘prime quotient’ (meaning that � ≺ � is a covering pair of
congruences). For the following series of lemmas we �x the following notation. Let
A be a �nite algebra, � ≺ � a �xed covering pair of congruences of A, and N a
〈�; �〉-trace. (A 〈�; �〉-trace is a minimal E-trace for � which is not an E-trace for
�. For an alternate de�nition, see De�nition 2:25 of [4]. Chapters 2–5 of that book
describe several properties of traces, although we will not need to know very many
of these properties here.) Let T be a tolerance of A. First we show that if R(T; �; �)
holds and T ‘intersects’ �− �, meaning that T ∩ �* �, then the type must be 1.

Lemma 2.3. If R(T; �; �) holds; and T intersects �−�; then the type of 〈�; �〉 is 1. On
the other hand; if T does not intersect �− �; then R(T; �; �) holds.

Proof. If there is a pair of elements in (a; b) ∈ (T ∩�)−�, then according to Theorem
2:8 (4) of [4] we can map this pair by a unary polynomial to a new pair of ele-
ments (p(a); p(b)) ∈ (T ∩�)−� where both p(a) and p(b) belong to a 〈�; �〉-minimal
set. Since (p(a); p(b)) ∈ � − �, both p(a) and p(b) lie in a 〈�; �〉-trace. By
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Corollary 5:2 (2) of [4], all 〈�; �〉-traces are polynomially isomorphic, so there is no
loss of generality in assuming that p(a) and p(b) belong to N . Changing notation
back, if there is a pair (a; b) ∈ (T ∩ �) − �, then we may select such a pair with
a; b ∈ N . In all types other than 1, any two elements of a 〈�; �〉-trace that are not
�-related form a 1-snag. But if N has a 1-snag (a; b) ∈ T , then the matrix[

p(b; a) p(b; b)
p(a; a) p(a; b)

]
=
[
a b
∗ a

]
(obtained by interchanging rows in the de�nition of a 1-snag), together with a 6≡� b
clearly contradict R(T; �; �). The other statement follows from Lemma 2.2(7).

Lemma 2.4. The following statements are equivalent.
(1) R(T; �; �) holds.
(2) R(T; N 2; �) holds.
(3) There is a congruence 
6� satisfying R(T; N 2; 
).
(4) There is no 1; T -snag in N 2 − �.
(5) Every T -twin of the identity map which maps N into N equals the identity

map modulo � on N .
(6) The T -twin group on N=� is trivial; and W (T; N 2; �) holds.
(7) Every T -twin of a permutation f of N which maps N into N equals f modulo

� on N .
(8) For any two T -twin unary polynomials mapping a �-class C to N; either they

are equal modulo � on C; or both collapse C into �.
(9) For any two T -twin polynomials mapping a product C = C1 × · · · × Ck of

�-classes to N; either they are equal modulo � on C; or both collapse C into �.
(10) If [ uw

v
z ] is a T; �-matrix with all entries in N; then this matrix is trivial modulo

�; that is; either u ≡� v and w ≡� z; or else u ≡� w and v ≡� z.

Proof. (1)⇒ (2). By Lemma 2.2(6).
(2)⇒ (3). Take 
= �.
(3)⇒ (4). (The idea of the proof of Lemma 2.3 works here.) Let (a; b) be a 1; T -snag

in N 2 − � with respect to the T -twin polynomials f and g. Then the T; N 2-matrix[
f(a) f(b)
g(a) g(b)

]
=
[
a b
∗ a

]
is a failure of R(T; N 2; 
) for any 
6�.
(4)⇒ (5). Suppose that u and C are T -related, h(x; u) = x for every x ∈ N , and

h(N; C)⊆N . Let b ∈ N and a = h(b; C) ∈ N . Then (a; b) is a 1; T -snag, contradicting
(4) unless a � b. Thus h(x; C) is also the identity map modulo �.
(5)⇒ (7). Let h(x; u) and h(x; C) be T -twins, and assume that f(x) = h(x; u) is a

permutation of N . Then its inverse can be obtained in the form fk for some k. Clearly,
fk ◦f and fk ◦ h(x; C) are still T -twins, and the �rst one is the identity map. So these
are �-related by (5). Since fk is a permutation of N , we get h(x; u)�h(x; C).
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(7)⇒ (8). Let f and g be T -twin unary polynomials of A mapping C into N . Let
M ⊆C be any 〈�; �〉-trace. By composing f and g with a polynomial isomorphism
mapping N to M we get from (7) that either f|M and g|M are equal modulo �, or
they both map M into a �-class.
Now suppose that f does not collapse C to a �-class, that is, f(a) and f(b) are

not �-related for some a; b ∈ C. We want to show that f(x)�g(x) for every x ∈ C.
Connect a and b by traces. There is a trace N ′ in this chain that is not collapsed to
� by f. Hence our remark applied to M = N ′ implies that f|N ′ and g|N ′ are equal
modulo �. Now let N ′′ be any trace that overlaps with N ′ modulo �. Then f|N ′′ and
g|N ′′ are equal modulo �, even if both of these functions collapse N ′′ into �, because
of the overlap. So connecting N ′ to x via traces we see that f(x)�g(x) indeed.
(8)⇒ (9). Let f and g be T -twin polynomials of A mapping C into N . Clearly,

f(x) and g(x) are T -related for every x ∈ C. Thus if T ∩ N 2⊆ �, then we are done.
If this is not the case, then by Lemma 2.3 we see that the type of this quotient is 1.
Hence, both f and g may depend on at most one variable on C modulo �. But (8)
shows that if f does not depend on a variable, then g does not depend on it either.
Hence they must depend on the same variable (or on no variables at all), and we are
done by (8).
(9)⇒ (10). Suppose that there exists a modulo � nontrivial T; �-matrix in N . By

switching rows and columns if necessary, we may assume that this matrix has the
form [

u v
w z

]
=
[
t(a; c) t(a; d)
t(b; c) t(b; d)

]
;

where u; v; w; z ∈ N , aTb, c�d , but u 6≡� v 6≡� z. Look at the polynomials f(x)= t(a; x)
and g(x) = t(b; x). Both map C = C1 × · · · × Cn to N , where Ci = ci=� = di=�. But
f does not collapse C to � because of the �rst row, and it does not equal g on C
modulo � because of the second column. This contradiction with (9) proves (10).
(10)⇒ (1). Suppose that there exists a T; �-matrix where the diagonal is �-related,

but the top row is not. Both the top row and the bottom row are �-related, and so
the entire matrix lies in a single �-class C. Theorem 2:8 (4) of [4] guarantees that we
can choose a unary polynomialp that maps C to N , but does not map the pair in the
top row to �. This way, we get a new failure of R(T; �; �) where the corresponding
matrix lies entirely in N , but the diagonal is in � while the top row is not. Therefore
this matrix is nontrivial modulo �, contradicting (10).
We have now established that all statements are equivalent, with the exception of

(6). From (5) we deduce the part of (6) which refers to the twin group. From (2)
and Lemma 2.2(10) we deduce the part of (6) which refers to weak centrality. To
�nish the proof it is su�cient to show (6)⇒ (5). Suppose that u and C are T -related,
f(x) = h(x; u) = x for every x ∈ N , and g(x) = h(x; C). Assume that g(N )⊆N . If g is
a permutation on N we are done, since then g is a twin of the identity and (6) asserts
that the twin group is trivial. If g collapses N to a �|N -class D⊆N , then let b ∈ N −D
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be outside this class and let a= g(b) ∈ D. The T; N 2-matrix[
f(a) f(b)
g(a) g(b)

]
=
[
a b
a′ a

]
;

where b 6≡� a ≡� a′, is clearly a failure of W (T; N 2; �).

Here are some easy consequences of this lemma.

Lemma 2.5. The following statements hold.
(1) R(T; �; �)⇒C (�; T ; �).
(2) A congruence of a �nite algebra is rectangularly solvable if and only if it is

strongly solvable.

Proof. To see (1) suppose that there exists a �; T -matrix M such that

M =
[
u v
w z

]
;

and u ≡� v while w 6≡� z. Since both columns are �-related, we can map the whole
matrix M into a trace N with a unary polynomial which keeps the bottom row in
�− � although the top row will still be in �. The transpose of this matrix is a modulo
� nontrivial T; �-matrix in N , which contradicts Lemma 2.4 (10). Therefore the �rst
statement of this lemma is proved.
To show the second statement, �rst note that if a congruence � of a �nite algebra A

is strongly solvable, then it is rectangularly solvable, too, since strong centrality implies
rectangular centrality. Conversely, if � is rectangularly solvable, then there is a chain
0A= �06�16 · · ·6�n= � of congruences of A such that we have R(�i+1; �i+1; �i) for
every i. Let �i6� ≺ �6�i+1 be any prime quotient. Then we have R(�; �; �i), so by
Lemma 2.4(3) we get R(�; �; �). Thus, by Lemma 2.3 we see that the type of 〈�; �〉
is 1. Therefore we can build a chain of type 1 quotients from 0A to � showing that �
is strongly solvable.

We remark that, while R(L; R; �) is symmetric in its �rst two variables, the relation
C (L; R; �) is not. The order of the relations in Lemma 2.5 (1) is therefore critical, since
it is not true that R(T; �; �) implies C (T; �; �). To see this, let S be the two-element
left zero semigroup and A = S0 the semigroup obtained from S by adding 0 as an
absorbing element. Then for the only nontrivial congruence � of A (which has blocks
S and {0}) we have 0A≺ � and R(1A; �; 0A), but we do not have C (1A; �; 0A).

3. Rectangular and strong nilpotence

We shall now turn our attention from centrality to nilpotence. We shall �nd that
all possible concepts of nilpotence with respect to strong centrality coincide with
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rectangular nilpotence. We shall characterize this concept in several ways, and use
these characterizations throughout the paper.
Since the normal commutator is not symmetric, one can speak about left and right

nilpotence in general. One can even have a mixed expression like

[[�; [�; [[[�; �]; �]; �]]]; �] = 0A;

which is still another possible type of nilpotence for �. We can reformulate this by
saying that A has a chain 0A = �06�16 · · ·6�n = � of congruences such that each
quotient �i+1=�i in this chain is centralized either from the left or from the right by �.
Here ‘centralize’ may mean any of the centrality concepts, like normal, weak, strong,
or rectangular centrality, with respect to which we are investigating nilpotence.
Now suppose that � is a strongly nilpotent congruence of A in the weakest possible

sense described above, that is, for a suitable chain of congruences we have either
S(�; �i+1; �i) or S(�i+1; �; �i) for every i. In any case we have R(�; �i+1; �i), so � is
rectangularly nilpotent. Since rectangularity is symmetric, we have only one concept of
rectangular nilpotence. We shall show that conversely, if � is rectangularly nilpotent,
then it strongly centralizes every prime quotient of A, both from left and right.
For applications to the study of residually small varieties we need to state some of

our results for tolerances. The following lemma suggests an appropriate de�nition of
nilpotence for tolerances.

Lemma 3.1. Let A be any algebra; and � a congruence of A. Then � is rectangularly
nilpotent if and only if there is a chain 0A=�06�16 · · ·6�k =1A of congruences of
A such that each quotient 〈�i−1; �i〉 is rectangulated by �; that is; R(�; �i; �i−1) holds
for every i. The analogous statement holds for left and right nilpotence with regard
to other types of centrality as well.

Proof. The fact that � is rectangularly nilpotent implies that there is a chain of con-
gruences connecting 0A to � such that each quotient is rectangulated by �. Add 1A to
the end of this chain. As R(�; 1A; �) obviously holds, we get a chain like the one in
the statement. Conversely, if some chain �i connects 0A to 1A such that every quotient
is rectangulated by �, then the chain � ∧ �i connects 0A to �, and still every quotient
is rectangulated by �. The same argument works for all other types of centrality.

Now we explain what we will mean for a tolerance T to be left or right nilpotent
in one of our senses. For example, if we are referring to strong centrality we will say
that T is strongly left nilpotent if there is a chain 0A = �06�16 · · ·6�k = 1A of
congruences of A such that S(T; �i+1; �i) holds for all i; we say T is strongly right
nilpotent if there is a chain 0A = �06�16 · · ·6�‘ = 1A of congruences such that
S(�i+1; T ; �i) holds for all i. We allow ourselves to replace strong centrality with any
other form of centrality in this de�nition. Since the rectangular and weak centralizer
relations are symmetric with respect to the �rst two variables, it is apparent that left and
right nilpotence agree for these two centralities. We will learn that for �nite algebras
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strong left and right nilpotence agree as well. Ordinary left and right nilpotence do not
agree (see [5]).
For our later discussion of nilpotent radicals we shall need a re�nement of the snag

concept. For the appropriate de�nition, recall from [1] that a 〈�; �〉-subtrace of A is
any pair {a; b} of elements of A such that a; b are contained in some 〈�; �〉-trace, but a
and b are not �-related. A subtrace is a 〈�; �〉-subtrace for some prime quotient 〈�; �〉.

De�nition 3.2. Let A be an algebra and T a tolerance of A. A strong 1; T -snag of
A is any subtrace (a; b) of A such that there exists a binary polynomial p of A and
(c; d) ∈ T such that, for f(x) :=p(x; c) and g(x) :=p(x; d), we have f(a)=a, f(b)=b
and g(b) = a.

Thus, a strong snag is a snag that is a subtrace and for which the twins f and g di�er
in a single parameter. To complete the picture, we shall call the pairs in R(T; T )− 0A
weak 1; T -snags. Clearly, A has no weak 1; T -snags if and only if T is rectangular.
We will need to be able to push snags forward into a factor algebra and to pull them
back. The next lemma proves that weak snags can be pushed forward, strong snags
can be pulled back, and ordinary snags go both ways.

Lemma 3.3. Let A be a �nite algebra; and � a congruence of A. If (a; b) is a (weak)
1; T -snag of A; and (a; b) 6∈ �; then (a=�; b=�) is a (weak) 1; T=�-snag of A=�. Con-
versely; if (a=�; b=�) is a (strong) 1; T=�-snag of A=�; then there exist a′�a and b′�b
such that (a′; b′) is a (strong) 1; T -snag of A.

Proof. The polynomials that witness that (a; b) is a (weak) 1; T -snag are also poly-
nomials which, modulo �, witness that (a=�; b=�) is a (weak) 1; T -snag. Therefore, we
only need to show how to pull back a (strong) snag from a factor algebra.
Suppose that (a=�; b=�) is a 1; T=�-snag in A=�. Then there exist T -twin unary poly-

nomials f and g of A such that f(a)�a, f(b)�b and g(b)�a. Let k be such that fk

is idempotent, let b′ = fk(b) and a′ = f2k−1g(b′). It is straightforward to check that
these elements satisfy the conditions with respect to the T -twin polynomials f2k and
f2k−1g. This shows how to pull back an ordinary 1; T -snag.
If (a=�; b=�) is a strong 1; T -snag, then the same argument works to pull back the

snag structure, and pulling back this way preserves the fact that the T -twins di�er in
a single parameter. But we have to pull it back in such a way that we get a sub-
trace. From the fact that (a=�; b=�) is a subtrace, we get that there exist congruences
�6� ≺ � and a 〈�=�; �=�〉-trace N=� such that a; b ∈ N and (a; b) ∈ �−�. Let U=� be a
〈�=�; �=�〉-minimal set containing N=�, and e a unary polynomial of A such that e=� is
idempotent, and its range is U=�. Then e does not collapse (a; b) to �, so there exists
a 〈�; �〉-minimal set U ′ of A such that U ′ ⊆ e(A). Let e′(A) = U ′ for an idempotent
polynomial e′ of A. Clearly, U ′=� is a 〈�=�; �=�〉-minimal set of A=� contained in U=�,
and hence U=� = U ′=�. Therefore a′′ = e′(a)�a and b′′ = e′(b)�b. Clearly, (a′′; b′′) ∈
�− �, so they are contained in a trace N ′ ⊆U ′. Replacing f and g with e′f and e′g,
respectively, the conditions in A=� do not change, but the new f is now a permutation
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of N ′. Therefore the pair (a′; b′) obtained using the new f and g with the method in
the previous paragraph (starting from a′′ and b′′) is in (N ′)2 ∩ (�− �), so it is indeed
a subtrace.

In the next lemma, A is a �nite algebra, T is a tolerance of A, 〈�; �〉 denotes a
typical, unspeci�ed prime quotient, U is an arbitrary 〈�; �〉-minimal set, and eU is any
idempotent unary polynomial for which eU (A) = U .

Lemma 3.4. The following are equivalent.
(1) T is rectangularly nilpotent.
(2) For every pair (e; f) of T -twin unary polynomials of A; if e2 =e then efe=e.
(3) For every triple (e; f; g) of simultaneous T -twin unary polynomials of A; if

e2 = e and g2 = g; then efg= eg.
(4) For every pair (h; k) of T -twin unary polynomials of A there exists a positive

integer n such that h2n−1khn = hn.
(5) There is no 1; T -snag in A.
(6) There is no strong 1; T -snag in A.
(7) For any prime quotient 〈�; �〉; if p(x; y) is a binary polynomial and (c; d) ∈

T; then eUp(x; c) is the identity map modulo � on U if and only if eUp(x; d) is the
identity map modulo � on U .
(8) For any prime quotient 〈�; �〉; any two T -twin unary polynomials of A map-

ping U into U have the property that if one is the identity map on U modulo �; then
the other one is also the identity map on U modulo �.
(9) For any prime quotient 〈�; �〉; any two T -twin polynomials of A mapping any

product C = C1 × · · · × Ck of �-classes into U have the property that either they are
equal modulo � on C; or both collapse C into a �-class.
(10) For any prime quotient 〈�; �〉; if [ uw v

z ] is a T; �-matrix with entries in U; then
it is trivial modulo �; that is; either u ≡� v and w ≡� z or else u ≡� w and v ≡� z.
(11) T strongly centralizes every prime quotient of A from the left and from the

right.
(12) T rectangulates every prime quotient of A.
(13) For every prime quotient 〈�; �〉 and each 〈�; �〉-trace N; the tolerance T weakly

centralizes N 2 modulo � and the T -twin group on N=� is trivial.

Proof. We will prove this statement by induction on the size of A, so we can assume
that all the statements are equivalent for all proper factors of A.
(1)⇒ (2). If (1) holds, then there exists a chain 0A = �06�16 · · ·6�n = 1A such

that R(T; �i+1; �i) holds for every 06i¡n. If (2) fails, then efe(a) 6= e(a) for some
a ∈ A. Let b = e(a), c = ef(b), so b 6= c. Choose i so that (b; c) ∈ �i+1 − �i. Since e
and f are T -twins, so are ee and ef. Therefore[

ee(c) ee(b)
ef(c) ef(b)

]
=
[
c b
∗ c

]
is a T; �i+1-matrix showing that R(T; �i+1; �i) fails.
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(2)⇔ (3). Obviously (2) is the special case of (3) where e = g. For the converse,
applying (2) we get that g = geg, and by (2) again, efge = eeee = e, since fg is a
T -twin of ee = e. Hence

efg= ef(geg) = (efge)g= eg:

(2)⇒ (4). Let e = hn be an idempotent power of h. Then (2) applied to g= hn−1k
gives that

h2n−1khn = hn(hn−1k)hn = ege = e = hn:

(4)⇒ (5). Suppose that (a; b) is a 1; T -snag, and so there exist T -twin polynomials h
and k satisfying h(a)=a, h(b)=b, k(b)=a. Then we have hn(b)=b, but h2n−1khn(b)=a,
contradicting (4).
(5)⇒ (6). A strong 1; T -snag is an ordinary 1; T -snag.
(6)⇒ (7). Suppose that f(x) = eUp(x; c) is the identity map of U modulo �. We

have to show that g(x) = eUp(x; d) is also the identity map on U modulo �. Since f
is the identity on U modulo �, we have f(�|U )* �. From Theorem 2:8(3) of [4] it
follows that f is a permutation of U . By composing both f and g with a polynomial
inverse of f we may assume that f is the identity map on all of U . Now consider the
algebra A=�. By (6) and Lemma 3.3, this algebra does not contain strong 1; T=� snags.
Therefore, by the induction hypothesis, this algebra satis�es (2). That means that we
have fgf(x)�f(x) for every x ∈ A. In other words, a= g(b)�b for every b ∈ U . Now
if a and b are not �-related, then from f(a) = a and f(b) = b we see that (a; b) is
a strong 1; T -snag, which is impossible by (6). Therefore we have g(b)�b for every
b ∈ U .
(7) ⇒ (8). The di�erence in statements (7) and (8) is that (7) is concerned only

with T -twins built from binary polynomials and (8) deals with arbitrary twins. To prove
the statement for arbitrary twins f(x)=eU t(x; c) and g(x)=eU t(x; d), consider �rst the
binary polynomial p(x; y)=eU t(x; y; c2; : : : ; ck). From the fact that f(x)=eUp(x; c1) is
the identity map on U modulo �, and c1Td1, we get that eU t(x; d1; c2; : : : ; ck) is also the
identity map of U modulo �. Now using the binary polynomial eU t(x; d1; y; c3; : : : ; ck)
we see that eU t(x; d1; d2; c3; : : : ; ck) is again the identity map on U modulo �. Contin-
uing this process of switching ci’s to di’s we �nally get that g is the identity map on
U modulo � as well. Thus (8) is proved.
(8) ⇒ (9). This implication is similar to (7) ⇒ (9) of Lemma 2.4. First we prove

the unary version. Let f and g be any two T -twin unary polynomials of A mapping
A into U . We show that if f is a permutation on U , then f and g are equal on
U modulo �. Indeed, pre�xing f and g by a polynomial inverse of f on U we can
assume that f is the identity map on U . Now, from (8), we get that g is the identity
on U modulo �.
This observation shows that our assumption is stronger than that of Lemma 2.4 (7).

Therefore, if f and g map the �-class C into the same trace of U , then we are done
by Lemma 2.4(7) ⇒ (8). We are also done if they map C into the same �-class in
the tail of U , since then both of them collapses C to �. Therefore we may assume that
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f(C) and g(C) are contained in di�erent �-classes within U , and we have to show
that both sets are contained in some �-class.
Suppose that f(a) and f(b) are not �-related for some a; b ∈ C. Connect a and

b by traces. There is a trace N ′ in this chain that is not collapsed to � by f. Let
U ′ ⊇N ′ be a 〈�; �〉-minimal set. Then f|U ′ is a bijection between U ′ and U , let h be
its polynomial inverse. Thus f ◦ h is the identity map on U , hence it must be equal
to its T -twin g ◦ h modulo � by (8). But this is impossible, since f(N ′)⊆f(C) and
g(N ′)⊆ g(C) are not even �-related. This contradiction proves the unary case of (9).
For the general case we can also assume (this time using Lemma 2.4(7) ⇒ (9))

that the k-ary T -twin polynomials f and g map C to di�erent �-classes within U .
Fixing any k − 1 variables of f and g arbitrarily, the resulting unary functions cannot
be equal modulo �, and so by the unary version that we have already proved we see
that they both must collapse the corresponding Ci to a �-class. Therefore f and g both
collapse C to �.
(9)⇒(10). This is the same proof as that of Lemma 2.4(9)⇒(10), with N replaced

by U .
(10)⇒(11). Let 〈�; �〉 be a prime quotient of A. We show C (T; �; �) �rst. Suppose

that there exists a T; �-matrix where the elements in the top row are �-related, but
elements in the bottom row are not. We can map this matrix into any 〈�; �〉-minimal
set U with a unary polynomial while keeping the bottom row in � − �. This yields a
modulo � nontrivial T; �-matrix in U , contradicting (10). We have shown that (10) ⇒
C (T; �; �). The same argument can be used to show that (10) implies both C (�; T ; �)
and R(T; �; �). Therefore S(T; �; �) and S(�; T ; �) are both implied by (10).
(11)⇒(12). Is tautologous.
(12)⇔(13). This follows from the equivalence of (1) and (6) in Lemma 2.4.
(12)⇒(1). If (12) holds and 0A = �06�16 · · ·6�n = 1A is any maximal chain of

congruences, then R(T; �i+1; �i) will hold for every 06i¡n.

It is a consequence of the equivalence between conditions (11) and (13) of this
lemma that if all T -twin groups on sets of the form N=� are trivial, then all concepts of
nilpotence coincide for T . In particular, from (12) ⇔ (11) it follows that rectangularly
nilpotent tolerances are the same as strongly nilpotent tolerances. We shall prefer this
second name. An algebra is called strongly nilpotent if the tolerance A×A is strongly
nilpotent. Here are some easy consequences of Lemma 3.4.

Lemma 3.5. Let A be a �nite algebra.
(1) If A is strongly nilpotent; then every �nite algebra in the variety generated by

A is strongly nilpotent.
(2) Every rectangular congruence of A is strongly nilpotent.
(3) If T is a strongly nilpotent tolerance of A; then the ranges of any two idem-

potent T -twin polynomials are polynomially isomorphic.
(4) If T is a strongly nilpotent tolerance of A; and � is a congruence of A; then

T=� is a strongly nilpotent tolerance in A=�.
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Proof. The statement in (1) follows from the fact that a �nite algebra is strongly nilpo-
tent if and only if it satis�es the property in Lemma 3.4(4), which is an equationally
expressible property. For (2), if � is a rectangular congruence, then 0A6�61A is
a chain which witnesses that � is rectangularly nilpotent. Therefore � is strongly
nilpotent. To see that (3) holds, let e and f be idempotent T -twins, and apply
Lemma 3.4(2) to get efe = e and fef = f. It follows that e and f are polynomial
isomorphisms between their ranges. Finally, (4) is an easy consequence of
Lemma 2.2 (5).

After hearing about the results proved in the next section, Joel Berman asked whether
one can check if a �nite algebra A is strongly nilpotent by looking at subalgebras of
small powers of A. The next lemma answers this question a�rmatively, and indicates
a polynomial time algorithm to determine if a �nite algebra in a �nite language is
strongly nilpotent.

Lemma 3.6. A �nite algebra A is strongly nilpotent if and only if for any two dif-
ferent elements a; b ∈ A, the subalgebra of A3 generated by (a; b; b) and the set
{(x; x; y) | x; y ∈ A} does not contain (a; b; a).

Proof. The elements of this subalgebra are triples (f(a); f(b); g(b)), where f and g
are (A×A)-twin unary polynomials of A. Therefore the condition stated in this lemma
is the condition that A has no 1; (A × A)-snags. By Lemma 3.4 (5) ⇔ (11) this is
equivalent to strong nilpotence.

In the �nal part of this section we shall de�ne and investigate the strongly nilpotent
radical and coradical of an algebra.

De�nition 3.7. Let A be an algebra, e an idempotent unary polynomial of A, and
E=e(A). De�ne the congruence �E of A by (c; d) ∈ �E if and only if for every binary
polynomial p(x; y) of A we have that ep(x; c) is the identity map of E if and only if
ep(x; d) is the identity map of E.

It is obvious that �E is indeed a congruence, and it depends only on E, and not on e.
It is also clear that if A is �nite, ep(x; c) is any permutation of E, and (c; d) ∈ �E , then
ep(x; c) = ep(x; d) for every x ∈ E, because one can compose ep with a polynomial
inverse of ep(x; c) on E. If E is polynomially isomorphic to the range F of some other
idempotent polynomial, then clearly �E=�F . Therefore, if 〈�; �〉 is a prime quotient of
A, then �U is the same for every 〈�; �〉-minimal set U . Denote by �A the intersection
of the congruences �U for every such 〈�; �〉. This congruence is called the strongly
nilpotent radical of A.

Lemma 3.8. If A is a �nite algebra; then �A is a strongly nilpotent congruence which
contains every strongly nilpotent tolerance of A.
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Proof. We have already pointed out that �A is a congruence. By the de�nition of �A,
the statement of the lemma follows if we can show that the following modi�ed form
of Lemma 3.4(7) is also equivalent to rectangular (that is, strong) nilpotence:
(7′) For any prime quotient 〈�; �〉, if p(x; y) is a binary polynomial and (c; d) ∈ T ,

then eUp(x; c) is the identity map on U if and only if eUp(x; d) is the identity map
on U .
(In this modi�ed form the phrase ‘modulo �’ is missing.)
To show that (7′)⇒ (7) one has to pre�x f(x) = eUp(x; c) and g(x) = eUp(x; d)

by a polynomial inverse of f. To show that (7)⇒ (7′) we use that (7) implies (2)
of Lemma 3.4, and as f is idempotent we get that fgf = f, which proves that g is
indeed the identity map on U .

Now we turn our attention to coradicals.

De�nition 3.9. Let A be a �nite algebra, and T a tolerance of A. The congruence
generated by all strong 1; T -snags is called the strongly nilpotent coradical of T , and
is denoted by �A(T ).

Lemma 3.10. If A is a �nite algebra; and T is a tolerance of A; then the following
hold.
(1) The congruence �A(T ) is the smallest congruence � of A such that T=� is a

strongly nilpotent tolerance of A=�.
(2) The tolerance T is strongly nilpotent if and only if �A(T ) = 0A.
(3) The congruence �A(T ) equals the congruence generated by all (ordinary)

1; T -snags of A.

These statements are easy consequences of Lemmas 3.3 and 3.4. Finally we show
that the coradical-radical pair determines a polarity of the congruence lattice of any
�nite algebra. (Recall that a polarity on a lattice L is a pair 〈�; �〉 where � is a
decreasing join endomorphism of L, � is an increasing meet endomorphism of L, and
��(x)6x6��(x) holds for all x ∈ L.) For a �nite algebra A and a congruence � on
A, let �A(�) be the unique congruence above � for which �A(�)=� = �A=�. Clearly,
�A = �A(0A).

Lemma 3.11. If A is a �nite algebra; then 〈�A; �A〉 is a polarity of the congruence
lattice of A. The congruence of Con(A) generated by the tolerance corresponding to
this polarity is the strong solvability congruence.

Proof. By Lemma 1:2(1) of [4], it is su�cient to prove that �A is decreasing and
for any two congruences � and � of A that �A(�)6� if and only if �6�A(�). From
the statements proved so far the reader can check that this is indeed the case. (Use
the fact that both �A(�)6� and �6�A(�) are equivalent to saying that � contains
all 1; �-snags.) The �nal statement follows from the fact that for each prime quotient
〈�; �〉 we have that �=� is strongly abelian if and only if it is strongly nilpotent.
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4. Finite algebras of �nite complexity

The purpose of the preceding sections was to build up machinery concerning rect-
angular and strong centrality. In this section we come to our �rst main application,
which is the determination of which �nite algebras have �nite complexity.
Let A be a �nite algebra in a �nite language. In the Introduction we de�ned the

complexity of a term as the depth of its composition tree, and the complexity of
a term operation of A to be the minimum of the complexities of all terms which
interpret as that operation. The complexity of A was de�ned to be the ordinal which is
the supremum of the complexities of all of its term operations. We have seen that the
complexity of A is �nite if and only if there exists an integer K such that each term
operation of A can be obtained as an interpretation of a term of at most K variables.
For an operation f(x; z) on a set A we say that f is independent of x if

f(x; z) = f(y; z)

holds for every x, y, z in A. Otherwise f(x; z) depends on x. We can de�ne dependence=
independence for each individual variable, and then we say that the essential arity of
the operation f is the number of individual variables on which f depends. We say
that an algebra A is of �nite essential arity if there is an integer K which bounds the
essential arity of all term operations of A. By the remarks above, an algebra in a �nite
language has �nite complexity if and only if it is of �nite essential arity.
As we shall prove, an algebra in a �nite language is strongly nilpotent if and only

if it has �nite essential arity. This statement does not hold for in�nite languages, as
the following example shows.

Example 4.1. Let A denote the algebra whose universe is Z4 (integers modulo 4), and
whose basic operation symbols are all operations⊕

n

(x1; : : : ; xn):=2x1 + · · ·+ 2xn:

This algebra is strongly nilpotent, but it has no bound on the essential arity of its term
(or basic) operations. However, any reduct of A to operations of arity less than some
�nite number K is an algebra whose essential arity is no more than K .

The previous example motivates the following de�nition.

De�nition 4.2. Say that an algebra A is of locally �nite essential arity if for each
�nite set F of basic operation symbols, the reduct AF of A to the operations in F is
of �nite essential arity.

We shall prove that this property is equivalent to strong nilpotence for every �nite
algebra, even in in�nite languages.
The above de�nition of �nite complexity is also problematic if we allow in�nite

languages. A contrary demon could trivialize this concept in the following way. Given
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any algebra A, the demon could construct a new algebra A′ of small complexity which
is term equivalent to A simply by adding a new basic operation symbol to the language
of A′ for each term operation of A. Then A′ would have the property that all of its term
operations have complexity 1, and yet A′ has the same term operations as the arbitrarily
chosen algebra A. However, the arguments in this section do say something nontrivial
about the complexity of term operations for �nite algebras in in�nite languages. For this
reason we choose to de�ne a slightly di�erent measure of complexity in this section.
It is more complicated to state, but it better explains what we prove. For algebras in
�nite languages we will show that the two notions of ‘�nite complexity’ coincide.
To de�ne ‘essential complexity’ we need the concept of ‘inessential reduction’. As-

sume that an algebra A has a term of the form r(s(t(x); x); x) where r; s and t are
terms. If

A |= r(s(t(x); x); x) = r(t(x); x) ;

then an inessential reduction of the term on the left hand side of the equality is the act
of replacing it by the term on the right hand side of the equality. Thus an inessential
reduction of a term R= r ◦ s◦ t is a modi�cation of R by pruning o� a subterm S= s◦ t
and then replacing S with a subterm t of S. This is a way of replacing a term by an
equivalent one of smaller complexity which does not introduce new operation symbols.
If A is an algebra and t is a term of A, then we de�ne the essential complexity

of t to be the minimum complexity among terms which can be obtained from t by a
sequence of inessential reductions. We de�ne the essential complexity of A to be the
ordinal which is the supremum of the essential complexities of the terms of A. Having
‘�nite essential complexity’ is a more restrictive notion than having ‘�nite complexity’.
It is a more complicated notion too, but it is less sensitive to the di�erence between
�nite and in�nite languages.

Example 4.3. Let A be a �nite algebra whose basic operation symbols are the unary
symbols �1; �2; : : : , etc. Then any term of A has the form

�iN · · · �i2�i1 (x) :

Fix such an expression. Now, if one considers the terms

f1(x) := �i1 (x)
f2(x) := �i2�i1 (x)

...
fN (x) := �iN · · · �i2�i1 (x);

then the fi cannot all represent di�erent term operations unless N6|A||A|, since there
are only |A||A| functions from A to A. Therefore, if N ¿ |A||A|, then there is some j¡k
such that A |= fj(x)=fk(x). Letting t(x)=fj(x)=�ij · · ·◦�i2�i1 (x), s(x)=�ik · · · �ij+1(x)
and r(x)=�iN · · · �ik+1(x), we have that t(x)=fj(x) and s ◦ t(x)=fk(x). Therefore we
have

A |= r ◦ s ◦ t(x) = r ◦ t(x) :
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This implies that it is always possible to perform an inessential reduction on a term
whose composition tree has depth ¿ |A||A|. The essential complexity of any term (hence
the essential complexity of A) is at most |A||A|.

Our goal in this section is to prove the following theorem.

Theorem 4.4. Let A be a �nite algebra. The following are equivalent.
(1) A has �nite essential complexity.
(2) A is of locally �nite essential arity.
(3) A is strongly nilpotent.

The part of the proof of Theorem 4.4 that is di�cult to prove is that (3) ⇒ (1), so
we postpone that part of the argument. We explain the easy parts of the proof now.

Proof. (1) ⇒ (2). Note that if the algebra A from (1) has essential complexity less
than some positive number K , then so does any reduct of A to �nitely many of its
basic operation symbols. Therefore it su�ces to prove that when A has only �nitely
many basic operation symbols, if A has �nite essential complexity, then A has �nite
essential arity. Fixing K as a �nite essential complexity bound for A, let N be a �nite
bound on the arities of the basic operation symbols of A. Any composition tree of
depth 6K built from 6N -ary operations has at most NK leaves. Any term operation
of A is equivalent to a term with such a composition tree, so it cannot depend on more
than NK of its variables.
(2) ⇒ (3). An algebra satis�es (2) or (3) if and only if every reduct to �nitely

many basic operation symbols satis�es the same condition. Therefore, we may assume
that A is de�ned with �nitely many basic operations symbols. We only need to show
that if A is not strongly nilpotent, then it is not of �nite essential arity. By Lemma 3.4
(2), if A is not strongly nilpotent, then there are twin unary polynomials e2 = e and
f and an a ∈ A such that efe(a) 6= e(a). As e and f are twins, there exists a term t
and tuples u and C of A such that e(x) = t(x; u) and f(x) = t(x; C). Let

p(x; y1; : : : ; yK) = t(t(: : : (t(t(x; y1); y2); : : :); yK−1); yK) :

We show that p depends on yi for every 1¡i¡K (so p depends on at least K − 2
variables). Indeed, let x=a and yj=u for every j 6= i. If yi is set to u, then p evaluates
to eK (a) = e(a), since e is idempotent. On the other hand, if yi is set to C, then p
evaluates to eK−ifei−1(a) = efe(a) 6= e(a). Thus p indeed depends on yi. This shows
that (2) ⇒ (3).

We now prove the di�cult implication in Theorem 4. From here until the end of the
proof of Lemma 4.6 we will assume that A is a �nite algebra which does not have �nite
essential complexity. We want to prove that A is not strongly nilpotent. We shall take a
term of A having large essential complexity, modify its composition tree suitably, and
then employ a Ramsey argument. In this modi�cation process it would be convenient
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to label nodes with terms rather than basic operation symbols. Instead of extending the
de�nition of a composition tree in this way, we simply enrich the language of A with
new basic operation symbols for all terms. This cannot a�ect the strong nilpotence of
A. It also cannot create new opportunities to make inessential reductions in the terms
that previously existed, since inessential reductions in pre-existing terms cannot take
advantage of the new symbols. Therefore these modi�cations cannot change A from
an algebra of in�nite essential complexity to an algebra of �nite essential complexity.

Lemma 4.5. For arbitrarily large integers K¿1 one can �nd K nonunary basic
operation symbols q1; : : : ; qK such that the composition

p(x; y1; : : : ; yK) := qK (· · · q2(q1(x; y1); y2) · · · ; yK)
depends on every yi in A.

Proof. Let f(z) be a term whose essential complexity is a very large number N —
how large we need N to be will become clear during the course of the argument.
The composition tree for f is deep and we assume, as we may, that there are no
inessential reductions possible. Fixing a node n in the composition tree for f, which is
labelled with a variable zj or a basic operation symbol b, we can express f as s(zj; z)
or s(b(t1(z); : : : ; tk(z)); z) for some terms s; t1; : : : ; tk . We will call the node n a fertile
node if the term operation represented by s(x; z) depends on the (new) variable x in
A. Otherwise it will be called sterile. Only fertile nodes can have children, for if n is
an internal sterile node then the transformation

s(b(t1(z); : : : ; tk(z)); z) 7→ s(zi; z)

is an inessential reduction, provided that zi is one of the variables in z which labels a
descendant of n. Therefore, all internal nodes (nodes that are not labelled by variables)
of the composition tree for f must be fertile. We shall modify the composition tree to
that of an operation where all nodes are fertile.
We have seen that each sterile node is a leaf. By identi�cation of variables in

the operations which label the parent node of a sterile node, we can produce a new
composition tree for an equivalent term, of essential complexity N , where there are no
sterile nodes except possibly some leaves which are ‘only children’ of a fertile parent.
Pruning away all such leaves, and relabelling their parents by new variables, produces
a new composition tree for an equivalent term whose essential complexity is at least
N − 1, and which has no sterile nodes. By making all variables distinct, introducing
new variables if necessary, we get a term which depends on all of its variables.
By permuting variables in operations, we may assume that the leftmost descending

path L is the longest descending path in the composition tree. This path has length at
least N − 1. The nodes which are children of a node in L (including the bottom-most
node in L) will be called the children of L. Now, successively remove all subtrees
rooted at one of the children of L, and then replace these subtrees with a single node.
We label the replaced nodes with new variables. We end up with a composition tree
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Fig. 3. All nodes are fertile, no inessential reductions.

for a term which looks like the one in Fig. 3. One can check that this pruning process
does not introduce sterile nodes or produce any new instances where an inessential
reduction might be employed.
We have arranged the names of the new variables to suggest how the proof will

be �nished. The composition tree in Fig. 3 is almost that of the kind claimed in the
lemma, since the term represented has large essential complexity and it depends on all
variables. However, many of the Qi’s could be unary basic operation symbols, as Q2
is in Fig. 3, and so the possibility remains that there are only few blocks of variables
yi = (yi

1; : : : ; y
i
m) on which this term depends. To �nish the proof, we will show that

there must be a large number of blocks yi on which the term depends.
Starting at x and traveling up L toward the root node, we cannot pass by any

sequence of more than |A||A| consecutive nodes which are labelled with unary term
operations. The reason for this is explained by the argument in Example 4.3: any com-
position of more than |A||A| unary terms admits an inessential reduction. This implies
that at least [(N − 1)=|A||A|] − 1 nodes are labelled with nonunary basic operation
symbols of A, so there are at least this many blocks of yi on which the term depends.
We perform one last modi�cation to our composition tree. If there are consecutive

internal nodes (necessarily on L) labelled Qi and Qi+1, and at least one of them is
labelled with a unary basic operation symbol, then we delete the node labelled by the
unary symbol and relabel the other node by an operation symbol corresponding to the
composite term Qi+1Qi. (Such an operation symbol exists, since we have enriched the
language of A so that all term operations are represented by basic operation symbols).
For example, in Fig. 3 we might be considering Q1 and Q2; we delete the node
labelled by Q2 and relabel the node which had label Q1 with a basic operation symbol
representing the composite Q2Q1. There may be multiple ways to do this, but if one
does this as many times as possible, then one obtains a term whose composition tree
looks like that in Fig. 3, except that there are no occurrences of unary basic operation
symbols among the labels. If the labels that occur on internal nodes are now q1; : : : ; qK ,
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then the resulting term is of the form

p(x; y1; : : : ; yK):=qK (· · · q2(q1(x; y1); y2) · · · ; yK):
By construction, this term depends on all of its variables. The depth K of the com-
position tree for this term is at least [(N − 1)=|A||A|] − 1. Since we can choose N as
large as we like, we can guarantee that K is arbitrarily large.

The proof that (3)⇒ (1) in Theorem 4.4 is completed with the following lemma.

Lemma 4.6. Let A be a �nite algebra. Suppose that there are arbitrarily large in-
tegers K¿1 for which one can �nd K nonunary basic operation symbols q1; : : : ; qK

such that the composition

p(x; y1; : : : ; yK):=qK (· · · q2(q1(x; y1); y2) · · · ; yK)
depends on every yi in A. Then A is not strongly nilpotent.

Proof. If t(x; y) is a term, then let U (t) denote the set of all unary polynomials
t(x; u) : A → A, where u runs over all tuples of A, that is, U (t) is the set of all unary
twins of t acting in its �rst variable. Call two terms t(x; y) and s(x; z) equivalent, if
U (t) =U (s). Clearly, this is an equivalence relation on the set of all terms of A. The
number of equivalence classes is at most 2|A|

|A|
, since each U (t) is a set of functions

from A to A.
Now use the assumption of the lemma for a large integer K , which will be speci�ed

in the course of the proof, to get a term p(x; y1; : : : ; yK). For 06i¡ j6K denote by
pi;j the ‘subcomposition’

pi;j(x; yi+1; : : : ; yj) = qj(qj−1(: : : (qi+2(qi+1(x; yi+1); yi+2); : : :); yj−1); yj):

Color each two-element set {i; j}⊆{1; 2; : : : ; K} by U (pi;j). There is a bounded number
of colors, so if K is su�ciently large, then, by Ramsey’s Theorem, there exists an
arbitrarily large homogeneous subset I ⊆{1; 2; : : : ; K}. Fix m ∈ I ‘in the middle’ of I ,
that is, in such a way that the set of elements of I smaller than m and the set of
elements of I bigger than m are both as large as we need to make the rest of the
argument work.
Since p depends on the tuple of variables ym, there exist tuples ui for 16i6K , and

a tuple C such that for some a ∈ A we have

p(a; u1; : : : ; um; : : : ; uK) 6=p(a; u1; : : : ; C; : : : ; uK)

(the arguments di�er only at the mth tuple). Consider the elements

ai = p0; i(a; u1; : : : ; ui);

and let bi be de�ned analogously, with the mth tuple being C in place of um. The
above inequality says that aK 6= bK . For every i¿m we have that ai+1 = qi(ai; ui) and
bi+1=qi(bi; ui). Therefore aK 6= bK implies that ai 6= bi for every i¿m. Obviously, ai=bi

for i¡m.
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Since the number of elements of I smaller than m can be made arbitrarily large, we
can assume that it is bigger than |A|. So, there exist elements i1¡i2¡m of I such
that ai1 = ai2 . Similarly, as the number of elements of I bigger than m can be made
arbitrarily large, we can assume that it is bigger than |A|2. Then there exist elements
m¡i3¡i4 of I such that ai3 = ai4 and bi3 = bi4 . Now set

g(x) = pi1 ;i2 (x; u
i1+1; : : : ; ui2 );

f(x) = pi2 ;i3 (x; u
i2+1; : : : ; um; : : : ; ui3 );

f′(x) = pi2 ;i3 (x; u
i2+1; : : : ; C; : : : ; ui3 ; )

e(x) = pi3 ;i4 (x; u
i3+1; : : : ; ui4 ):

So, letting b= ai1 = ai2 ; c = ai3 = ai4 ; d= bi3 = bi4 , we have that

c 6=d; g(b) = b; f(b) = c; f′(b) = d; e(c) = c; e(d) = d:

We show that the four unary functions e; f; f′; g are simultaneous 1A-twins with
respect to the term pi2 ;i3 . This is clear for f and f′. We know that i1; i2; i3; i4 ∈ I ,
and as I is homogeneous, we see that {i1; i2} and {i2; i3} have the same color. The
function g(x) is an element of U (pi1 ;i2 )=U (pi2 ;i3 ), and therefore g(x) can be obtained
by substituting appropriate parameters into pi2 ;i3 . A similar argument shows that e is
also a member of this family of twins.
If h : A → A is any function, then an easy and well known argument shows that for

k:=(|A|)! we have hk(hk(x)) = hk(x). Replace g by gk ; e by ek , f by ek−1f, and f′

by ek−1f′. The new e; f; f′; g are still simultaneous twins, and they still satisfy the
set (∗) of equations above, but now we have in addition that e and g are idempotent.
If A is strongly nilpotent, then from Lemma 3.4(3) we have that efg = eg and

ef′g=eg. This forces efg=ef′g, which is not the case, because applied to the element
b, by (∗), we get efg(b) = ef(b) = e(c) = c, which is not the same as ef′g(b) = d.
This completes the proof of the lemma, and also the proof of Theorem 4.4.

The next corollary shows that the complexity measure de�ned in the Introduction
agrees with that of this section for �nite algebras in a �nite language.

Corollary 4.7. If A is a �nite algebra in a �nite language; then the following are
equivalent.
(1) A has �nite essential complexity.
(2) A has �nite complexity.
(3) A has �nite essential arity.
(4) A is strongly nilpotent.

Proof. (1) ⇔ (3) ⇔ (4) follows from Theorem 4.4. Since the de�nition of ‘�nite
essential complexity’ is a restriction of that of ‘�nite complexity’, we have (1)⇒ (2).
The proof that (2)⇔ (3) is given in the opening paragraphs of this section.
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A slight rephrasing of part of this corollary, which is worth writing down, is the
characterization of �nite algebras of �nite essential arity.

Corollary 4.8. A �nite algebra A has �nite essential arity if and only if the following
two conditions hold.
(1) A has a �nite bound on the essential arity of its basic operations; and
(2) A is strongly nilpotent.

It has long been known that a �nite strongly abelian algebra has �nite essential arity.
Consequently, any algebra representable as a homomorphic image of a strongly abelian
algebra has �nite essential arity. We do not know whether, conversely, every algebra
of �nite essential arity has such a representation. We pose this as a problem.

Problem 4.9. Is it true that every �nite algebra of �nite essential arity is a homomor-
phic image of a �nite strongly abelian algebra?

From the results of the next section, we will see that it may be possible to solve this
problem by solving two possibly easier subproblems: one might �rst prove that every
�nite algebra of �nite essential arity is a homomorphic image of a �nite rectangular
algebra, and then prove that every �nite rectangular algebra is a homomorphic image
of a �nite strongly abelian algebra.

5. The essential arity of a rectangular algebra

Since the abelian concept associated with rectangular centrality is rectangularity, the
algebras satisfying this condition deserve the closest scrutiny. Of course, any rectangular
algebra is strongly nilpotent, and so from the previous section we know that any
�nite rectangular algebra has locally �nite essential arity. However, we prove more
about the essential arity of a rectangular algebra in this section. We prove that a
�nite rectangular algebra has �nite essential arity whether or not its language is �nite.
Moreover, the bound we obtain on the essential arity is sharp: the essential arity of
any k-element rectangular algebra is no more than k − 1, and equality occurs for
some k-element rectangular algebra. To prove this statement, we shall investigate a
combinatorial problem about partitioning rectangles into rectangular subsets.

De�nition 5.1. A rectangle is a set of the form A = A1 × · · · × AK where A1; : : : ; AK

are nonempty sets. A rectangular subset of A is a nonempty subset of the form
B=B1× · · · ×BK with Bi ⊆Ai for each i. We say that a rectangular subset B has full
extent in direction i if Bi = Ai.

Lemma 5.2. Let A1; : : : ; AK be nonempty sets. If the rectangle A = A1 × · · · × AK is
partitioned into at most K rectangular subsets; then there exists an 16i6K such
that each of the rectangular subsets has full extent in direction i.
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Proof. Let B be a partition of A into exactly l rectangular subsets, where l6K .
For B ∈ B we shall denote the components of B by B1; : : : ; BK , which means that
B = B1 × · · · × BK .
The lemma is obvious for K = 1. We proceed by induction on K . Suppose that

x ∈ Aj is such that there is a rectangular subset B ∈ B with x 6∈ Bj. Then consider

A′ = A1 × · · · × Aj−1 × {x} × Aj+1 × · · · × AK :

This can be identi�ed with the product of K−1 sets which one obtains by deleting the
jth coordinate. If we intersect A′ with any member of B, then we get a rectangular
subset of A′, or the empty set. In the case of B we get the empty set, because x 6∈ Bj.
This produces a partition of A′ into at most K−1 rectangular subsets. By the induction
assumption, there exists an i 6= j such that each rectangular subset in B which intersects
A′ has full extent in direction i. Draw an arrow of color x from j to every such i.
Thus

j x→ i ⇔


i 6= j; x ∈ Aj;

(∃B ∈ B)(x 6∈ Bj);

(∀B′ ∈ B)(x ∈ B′
j ⇒B′

i = Ai):

If direction j is not a direction of full extent for all rectangular subsets in B, then
there exists a B ∈ B, and an x ∈ Aj such that x 6∈ Bj, which means that there is an
arrow of color x starting out from j. Thus if the statement of the lemma is false, then
there is a colored arrow starting out from every 16j6K .
Suppose, to get a contradiction, that this is the case. Then there is a directed cycle

formed by arrows. We may assume, by rearranging the coordinates, that this cycle is

1 x1→ 2 x2→· · · xm−1→ m
xm→ 1:

The �rst arrow of the cycle shows that there is a rectangular subset B ∈ B such that
x1 6∈ B1. Choose an arbitrary element (y1; : : : ; yK) ∈ B, and let B′ be the rectangular
subset containing (x1; y2; : : : ; yK). Then by using the arrows above we have

x1 ∈ B′
1⇒B′

2 = A2⇒ x2 ∈ B′
2⇒B′

3 = A′
3⇒ · · · ⇒ xm ∈ B′

m ⇒B′
1 = A1:

But then (y1; : : : ; yK) ∈ B ∩ B′. This is a contradiction, since B is a partition and yet
B′ contains a point in B and a point not in B.

Theorem 5.3. Let A be a rectangular algebra. Then each term operation of A depends
on fewer than |A| variables.

Proof. Suppose instead that t(x1; : : : ; xK) is a term operation of A depending on all
variables and that K¿|A|. Let R denote the range of the function t : AK → A, and
set l = |R|6|A|6K . For each r ∈ R de�ne Br:=t−1(r). By Lemma 2.2 (9), each
Br is a rectangular subset of AK . Hence, B = {Br | r ∈ R} is a partition of AK into
l6K rectangular subsets. Lemma 5.2 proves that there is an i which is a direction
of full extent for all rectangular subsets in B, that is, Br

i = A for every r ∈ R. We
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shall get a contradiction by showing that t does not depend on xi. Indeed, choose any
a1; : : : ; aK ∈ A and let r = t(a1; : : : ; aK). Then aj ∈ Br

j for all j and, since Br
i = A, we

get that

t(a1; : : : ; ai−1; b; ai+1; : : : ; aK) = r = t(a1; : : : ; ai−1; c; ai+1; : : : ; aK)

for every b; c ∈ A. This proves that t does not depend on xi.

Example 5.4. The bound in Theorem 5.3 is sharp, as we now show. De�ne an algebra
A on the set {0; 1; : : : ; n} to have exactly one n-ary basic operation symbol f, whose
interpretation in A is

fA(a1; : : : ; an) =

{
i if ai = n; but aj 6= n for j¿ i

0 if ai 6= n for every i:

Clearly, fA depends on all n of its variables. Identities of the form

f(x1; : : : ; xi−1; f(y1; : : : ; yn); xi+1; : : : ; xn) = f(x1; : : : ; xi−1; yn; xi+1; : : : ; xn)

hold in A, and can be used to prove that each term operation of this algebra can be
obtained from f by permuting and identifying variables. Therefore, to prove that A is
rectangular it su�ces to show only that fA itself has a ‘rectangular’ operation table.
That is, it su�ces to observe that for each i6n the set (fA)−1(i) is a rectangular
subset of An. From the de�nition of fA we get that (fA)−1(i) equals

{0; : : : ; n} × · · · × {0; : : : ; n} × {n} × {0; : : : ; n− 1} × · · · × {0; : : : ; n− 1}:
Therefore, the algebra A is rectangular, and it has essential arity |A| − 1.

There is a combinatorial problem suggested by Lemma 5.2 which appears to be
completely unrelated to any of the algebraic questions we are considering, yet which
seems worth including here.

Problem 5.5. Let A1; : : : ; AK be nonempty sets. If the rectangle A = A1 × : : : × AK

is partitioned into less than 2K rectangular subsets, does it follow that there exists a
rectangular subset in this partition which has full extent in some direction i?

6. A representation theorem for rectangular algebras

Assume that B is an algebra and that 〈B;∨〉 is a semilattice on the same universe.
We say that ∨ is a compatible semilattice operation of B if ∨ :B2 → B is a homo-
morphism. Our purpose in this section is to characterize rectangular algebras as those
algebras A for which there is an algebra B in the same language which has a compat-
ible semilattice operation ∨ such that A is representable as a subalgebra of B which is
an antichain in the ∨ order. The proof we give can easily be localized to rectangular
tolerances, and we explain how to do this after proving the theorem for rectangular
algebras.
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Theorem 6.1. An algebra A is rectangular if and only if there is an algebra B in
the same language and a compatible join semilattice operation ∨ of B such that A
is isomorphic to the subalgebra of minimal elements of B under the ∨ order.

Proof. We �rst prove the easy direction, which is that if A is the subalgebra of minimal
elements of B then A is rectangular. Assume that[

t(a; c) t(a; d)
t(b; c) t(b; d)

]
=
[
u v
w z

]
is a 1A; 1A-matrix of elements from A where u=z. Then, as ∨ is a compatible operation
of B, we calculate in B to �nd that

u= z = u ∨ z = t(a; c) ∨ t(b; d) = t(a ∨ b; c ∨ d)¿t(a; d) = v; t(b; c) = w:

But if u = z¿v; w, and all are minimal elements, then u = z = v = w. Thus A is
rectangular.
For the other direction, let C be the algebra of nonempty subsets of A under the

complex operations of A. By complex operations we mean that if f(x1; : : : ; xn) is a
basic operation of A and S1; : : : ; Sn are nonempty subsets of A, then in C we have

f(S1; : : : ; Sn):={f(s1; : : : ; sn) | si ∈ Si}:
Observe �rst that C is an algebra in the same language as A which can be equipped
with a semilattice operation – the union operation ∪ on subsets of A. Observe next
that ’ : A → C de�ned by a 7→ {a} is an isomorphism of A onto the subalgebra of
singleton subsets, which is the subalgebra of minimal elements of C . The algebra C
may or may not be the one we seek; the only remaining di�culty is that we do not
know if ∪ is a compatible semilattice operation of C .
The idea to complete the proof will be to de�ne a congruence � on C which is

compatible with ∪ so that the composite homomorphism

A
’
,→C → C =�=:B

is injective. Moreover, we want to de�ne � so that ∪ is a compatible semilattice
operation of B.
Let C∗ = 〈C ;∪〉. Since all we lack at present is to have ∪ commute with the

operations of C , we de�ne � to be the congruence on C∗ generated by all failures of
commutativity between ∪ and operations of C . Speci�cally, we let � be generated by
all pairs of the form

〈f(S1; : : : ; Sn) ∪ f(T1; : : : ; Tn); f(S1 ∪ T1; : : : ; Sn ∪ Tn)〉;
where f is a basic operation of A. Since � is de�ned to be a congruence of C∗, it
follows that � is a congruence of C which is compatible with ∪. Therefore, B:=C =�
has a semilattice operation, and from the de�nition of � it must be a compatible
semilattice operation. We need only to check now that the induced homomorphism
from A into B is an embedding. This is established by the following claim.
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Claim 6.2. If 〈U; V 〉 ∈ � and U = {a}; then V = {a}.

Proof. To see that this is so, it su�ces to check the claim only in the case where
〈U; V 〉 is a polynomial image of a generating pair for �. Here, by a polynomial, we
mean a unary polynomial of C∗, however it su�ces to consider only unary polynomials
p of the forms
(g) p(x) = g(x;W1; : : : ; Wk) where g is the complex operation associated with some

term of A and each Wi ⊆A, and also
(∪) p(x) = x ∪ Z where Z ⊆A.
Since the generating pairs for � are comparable, the operations of C∗ are monotone

and U = {a} is minimal, we can assume that
{a}= U = p(f(S1; : : : ; Sn) ∪ f(T1; : : : ; Tn))

6p(f(S1 ∪ T1; : : : ; Sn ∪ Tn)) = V:

Assume that there is some b ∈ V −U . Then, in Case (g), after reordering the variables
of f, we have that there are elements si ∈ Si (16i6j), ti ∈ Ti (j + 16i6n), wi ∈
Wi (16i6k) such that

b= g(f(s1; : : : ; sj; tj+1; : : : ; tn); w1; : : : ; wk) = g(f(s; t);w):

However, the fact that

{a}= U = p(f(S1; : : : ; Sn) ∪ f(T1; : : : ; Tn))

implies that there are tuples s′ and t′ such that with the previous s; t and w we have[
g(f(s; s′);w) g(f(s; t);w)
g(f(t′; s′);w) g(f(t′; t);w)

]
=
[
a b
∗ a

]
:

This is a failure of rectangularity. Therefore V = U = {a} in Case (g). The argument
for Case (∪) is essentially the same, but a tri
e easier, so we omit it.

Now that the claim has been proven, we see that � restricts trivially to the minimal
elements of C , and therefore the induced homomorphism of A into B = C =� is an
embedding. This completes the argument.

One can localize the above proof to describe the structure on a rectangular tolerance,
although it is not as easy to state the �nal result. What one can show (with the same
argument as above) is that T is a rectangular tolerance of A if and only if there is an
algebra B in the same language as A such that
(1) A is a subalgebra of B;
(2) B has a rectangular tolerance S for which S|A = T ;
(3) There is a homomorphism ∨ : S → B from the subalgebra S6B2 to B which

satis�es x ∨ x = x, x ∨ y = y ∨ x and x ∨ (y ∨ z) = (x ∨ y) ∨ z; and
(4) any block of T is an antichain with respect to the ∨-ordering.

For the proof of this local version one begins by de�ning C to be the algebra of those
nonempty subsets U ⊆A for which (U ×U )⊆T under the complex operations. Let S ′
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be the tolerance on C de�ned by US ′V if and only if (U × V )⊆T . If U and V are
S ′-related, then (U ∪V ) ∈ C and (U ∪V ) is S ′-related to U and V . Thus any S ′-block
is closed under ∪. One next de�nes � as we did in the proof of the theorem: it is
the least congruence on C compatible with the partial operation ∪ modulo which ∪
commutes with the operations of C on any product of S ′-blocks. We de�ne B =C =�,
S = S ′=� and ∨ = ∪=�. Veri�cation of items (1)–(4) can be accomplished using the
same arguments as in the theorem.

7. The clone of a rectangular variety

The four centralizer concepts described in the Introduction each have their own
model of what an ‘abelian’ algebra is (or more speci�cally, what a ‘self-centralizing’
algebra is). In all instances, whether we are considering the abelian, strongly abelian,
weakly abelian or rectangular property, the property is equivalent to the satisfaction
of a family of universal Horn formulas, but not equivalent to a set of equations. This
implies that there are algebras which centralize themselves in one of the senses, but
which generate varieties containing algebras which are not self-centralizing in the same
sense. For each type of centrality this is a situation which demands investigation.
We believe that an adequate solution to the question of which �nite algebras generate

strongly abelian varieties or (normally) abelian varieties is provided by the papers
[7,8], respectively. These papers include Klukovits-type characterizations of the clones
of locally �nite strongly abelian and abelian varieties. In this section we prove an
analogous characterization theorem for locally �nite rectangular varieties. We expect
that a similar result holds for locally �nite weakly abelian varieties, but we do not
know of one.
To explain what we intend to do here, it is best to begin by describing the results

in the literature which directly precede the results of this section. We begin with the
following de�nition.

De�nition 7.1. Let t(y; z) be an (m + n)-ary term of a variety V. We say that y,
considered as an unordered set, is a klukovits subset of variables for t if there is a
(2m+ 1)-ary term k(x; y; u) such that

V |= k(x; y; t(y; z)) = t(x; z):

If this happens then k is called a klukovits term for t(y; z) in the variables y. We call
y a strong klukovits subset if there is an (m+ 1)-ary term k(x; u) such that

V |= k(x; t(y; z)) = t(x; z);

and if this happens then k is called a strong klukovits term for t in x.
The importance of klukovits terms is that they give one a way to change the values

substituted in a term operation t(a; b) — values which appear ‘on the inside’ — by
operating on the result ‘from the outside’. In particular, if a term t(x; y) has a klukovits
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term in x, then it must satisfy the ‘term condition’ (described in Chapter 3 of [4])
with respect to the variables x. The term condition asserts that for all terms t(x; y) the
following implication holds:

t(x; y) = t(x; y′)⇒ t(x′; y) = t(x′; y′) :

To see how a klukovits term in x helps to establish the term condition in the variables
x, assume that

t(a; c) = t(a; d)

and that k is a klukovits term for t(x; y) in x. Then

t(b; c) = k(b; a; t(a; c)) = k(b; a; t(a; d)) = t(b; d):

Thus, if every subset of variables of every term of V is a klukovits subset, then every
algebra in V satis�es the term condition, and so is abelian. It is rather straightforward
to show, in the same way, that if every subset of variables of every term of V is a
strong klukovits subset, then every algebra in V is strongly abelian.
The usefulness of klukovits terms was �rst noticed in Klukovits’ paper [9], which

contains the observation that a variety V has the hamiltonian property (that for every
A ∈ V all subalgebras of A are congruence blocks) if and only if every subset of
variables of every term of V is what we are calling a klukovits subset. In particular,
hamiltonian varieties are abelian. For locally �nite varieties the converse statement is
true, and is proved in [8]. The most important consequence of this is the following
characterization of locally �nite abelian varieties:

A locally �nite variety V is abelian if and only if every subset of variables of
every term of V is a klukovits subset.

The corresponding result for locally �nite strongly abelian varieties appears in [7]:

A locally �nite variety V is strongly abelian if and only if every subset of variables
of every term of V is a strong klukovits subset.

Our aim in this section is to prove a similar statement, which we roughly state now
as:

A locally �nite variety V is rectangular if and only if there are enough terms
of V which have enough strong klukovits subsets of variables.

To make sense of this we need to explain the emphasized words. If V is a locally
�nite rectangular variety, we will de�ne a set of terms of V called the ‘maximal
terms’ which will have the property that every term is equivalent to one derived from
a maximal term by identi�cation of variables. Where we say above that ‘: : : there are
enough terms of V which have : : :’ we mean that ‘: : : the maximal terms of V have
: : :’. We will learn that in a rectangular variety, if m(x) is a maximal term, then it is
possible to reorder the variables of m so that x= (x1; : : : ; xn) and each of the subsets

∅⊆{x1}⊆{x1; x2}⊆ · · · ⊆{x1; : : : ; xn−1}⊆{x1; x2; : : : ; xn}
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is a strong klukovits subset of m. This is what we mean by having ‘: : : enough strong
klukovits subsets of variables’.
In fact, the subset system determined by the collection of strong klukovits subsets

of variables of a maximal term is a fascinating combinatorial object, and we shall
completely describe the structure of such subset systems in this section.
An intriguing question which we leave the reader to ponder is whether or not the

pattern of ideas described in the previous paragraphs of this section can be made
complete by proving that locally �nite weakly abelian varieties are precisely those
locally �nite varieties where enough terms have enough (ordinary) klukovits subsets.

Problem 7.2. Give a Klukovits-type characterization of locally �nite weakly abelian
varieties.

We begin by introducing an easy combinatorial concept which we shall refer to
frequently in this section.

De�nition 7.3. Let X be a �nite set and let K be a collection of subsets of X . We
say that K is a system of subsets of X if K has the following properties.
(i) ∅; X ∈ K; and
(ii) if U; V ∈ K, then U ∪ V ∈ K.

We say that a system K is a separating system of subsets if it has the following
separation property:
(iii) if V ∈ K and i; j ∈ V are distinct, then there is a W ∈ K such that W ⊆V and

W separates i and j, meaning that W contains exactly one of i and j.

Strictly speaking, the following concepts from lattice theory are not needed to under-
stand the material of this section. However we think they help to understand separating
subset systems.

De�nition 7.4. A lattice L is locally distributive if whenever x ∈ L and y is the join of
the covers of x, then the interval [x; y] is distributive. A lattice is meet semidistributive
if it satis�es the implication

x ∧ y = x ∧ z⇒ x ∧ y = x ∧ (y ∨ z):

A lattice is semimodular if it satis�es the implication

x ∧ y ≺ x⇒y ≺ x ∨ y:

Lemma 7.5. Let X be a �nite set and let K be a collection subsets of X . Let K
denote the poset which is K under the inclusion order. The following are equivalent.
(1) K is a separating subset system on X .
(2) The poset K is a locally distributive lattice of height |X |.
(3) The poset K is a meet semidistributive; semimodular lattice of height |X |.
(3′) The poset K is a semimodular lattice of height |X |.
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If these conditions hold; then there is a sequence of subsets from K of the form

∅⊆{x1}⊆{x1; x2}⊆ · · · ⊆{x1; : : : ; xn−1}⊆{x1; x2; : : : ; xn}= X:

Proof. The proof of this lemma is not di�cult, nor is the result of the lemma central
to the material in this section. Therefore we choose to sketch the proof only, by listing
a sequence of easily veri�ed claims which taken together justify the lemma.
(I) For (1)⇒ (2).

• If (1) holds, then K is a lattice.
• If (1) holds and U; V ∈ K with U ≺ V , then |V −U |= 1. (Otherwise, if i and j
are distinct elements in V − U , then choose a W ∈ K such that W ⊆V and W
separates i and j. Then U ∪W ∈ K and U ⊂U ∪W ⊂V , contradicting U ≺ V .)
In particular, the height of K is |X |.

• If (1) holds, U ∈ K, and V is the join (= union) of the upper covers of U , then
the interval [U; V ] in K is the Boolean lattice of all W such that U ⊆W ⊆V .
Thus (2) holds.

(II) For (2)⇔ (3).
• A �nite lattice is locally distributive if and only if it is meet semidistributive and
semimodular. (Help for this claim can be found in Chapter 7 of [2].)

(III) For (3′)⇒ (1).
• If K is a �nite semimodular lattice, and U; V ∈ K with U ⊆V , then all maximal
chains in K from U to V have the same length.

• If (3′) holds, then for U; V ∈ K with U ⊆V all maximal chains from U to V are
of length |V −U |. In particular, the natural rank function of the lattice, given by
the height, evaluates as rank(U ) = |U |.

• Consequently, if (3′) holds, then ∅; X ∈ K and K is closed under union.
• If (3′) holds, then K is separating. (To see this, assume that V ∈ K contains
distinct i and j. To �nd a separating W , let V ′ ∈ K be minimal among subsets
of V in K which contain i. If V ′ does not contain j let W =V ′. Otherwise, if V ′

contains both i and j, let W be any subset which is a lower cover of V ′ in K .
Then |V ′|= |W |+ 1 and W does not contain i; therefore W contains j.)

The last statement of the lemma follows from the claims in (III).

The previous lemma shows that if K is a separating system of subsets of a �nite set
X , then under inclusion the sets in K form a locally distributive lattice of height |X |.
Conversely, given any locally distributive lattice L of �nite height k, then L can be
realized as the lattice of sets in a separating system of subsets of a k-element set. The
idea for how to do this is to let X be the set of meet irreducibles of L (di�erent from
1L) and de�ne K to be the system of subsets of X which have the following form:
U ∈ K if and only if there is an x ∈ L such that U is the set of meet irreducibles not
above x. Using local distributivity it is easy to prove that K is a separating system of
subsets of L, and that if K is the lattice of sets in K under inclusion then K ∼= L in
a natural way.
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Turning from combinatorics back to algebra, let A be an algebra. If t(x1; : : : ; xn) is
a term in the language of A, let X (t)={x1; : : : ; xn} and let K(t) be the subsets of X (t)
which are strong klukovits subsets of t. If, after possibly reordering the variables, K(t)
contains a sequence of subsets of the form

∅⊆{x1}⊆{x1; x2}⊆ · · · ⊆{x1; : : : ; xn−1}⊆{x1; x2; : : : ; xn}= X (t);

then we will say that t has enough strong klukovits subsets. Even when A is a �nite
algebra in a rectangular variety it can happen that not all terms of A have enough
strong klukovits subsets, as we show in Example 7.9. However, a certain class of
terms do. We proceed with the de�nition of these terms.

De�nition 7.6. A term m(x) of A is a maximal term if
(i) mA(x) depends on all of its variables; and
(ii) there is no way to obtain m from a term t by identi�cation of variables if tA

has larger essential arity than mA.

If A does not have �nite essential arity, then it may have no maximal terms. But if
A has �nite essential arity, then clearly every term operation of A which depends on
all of its variables is the interpretation of some term obtained from a maximal term
by identi�cation of variables.
The principal result of this section is the following theorem. (A slight generalization

of this result appears as Corollary 7.11.)

Theorem 7.7. Let A be a �nite algebra of �nite essential arity. The following are
equivalent.
(1) Every maximal term for A has enough strong klukovits subsets.
(2) If m(x; u; z) is a maximal term for A; then

V(A) |= (m(x; u; z) = m(y; v; z)⇒m(x; v; z) = m(x; u; z) = m(y; u; z)):

(3) V(A) is rectangular.
(4) For any maximal term m; the collection K(m) of all strong klukovits subsets

of X (m) is a separating subset system.

Proof. (1)⇒ (2). Assume instead that (1) holds and that (2) fails. Then, because of the
symmetry of the implication in (2) with respect to the �rst two sequences of variables
of m, there is a maximal term m(x; y; u) for A and an algebra B ∈ V(A) which has
tuples a; b; c; d ; e such that

m(a; c; e) = m(b; d ; e) 6=m(b; c; e):

To any such failure we associate the positive integer l which is the sum of the lengths
of the sequences x and u in m(x; u; z). We assume that the partition (x|u|z) has been
chosen so that we have a failure of (2) in which l is minimal for this term m. (Of
course, to have a failure, both x and u must be nonempty, so we must have l¿2.) To
obtain a contradiction, we shall produce another failure where l is smaller.
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A consequence of (1) is that m(x; u; z) has a strong klukovits subset which contains
exactly one variable from the sequence xu. We choose such a subset, and assume that
the variable it has in common with xu is un, the last variable in the sequence u. (The
argument in all other cases is similar.) This strong klukovits subset may contain many
or no variables from z, but we can split z into z1 and z2, with z1 possibly empty, such
that

• z = z1z2;
• u = u1un; and
• unz1 is a strong klukovits subset of m.

If k(un; z1; u) is the corresponding strong klukovits term, then from our assumption that

m(a; c1; cn; e1; e2) = m(b; d1; dn; e1; e2) 6=m(b; c1; cn; e1; e2)

we have
m(a; c1; cne) = m(a; c1; cn; e1; e2) =k(cn; e1; m(a; c1; cn; e1; e2))

=k(cn; e1; m(b; d1; dn; e1; e2))

=m(b; d1; cn; e1; e2) = m(b; d1; cne)

6=m(b; c1; cn; e1; e2) = m(b; c1; cne):

Hence, if we repartition the variables of m as (x|u1|unz) rather than (x|u1un|z), then
we have constructed a new failure of condition (2) in B which has a smaller value of
l associated to it.
(2)⇒ (3). Condition (2) can be restated as follows: If B is any algebra in V(A)

which has tuples a; b; c; d and e, and if t(x; y) is a polynomial of B of the form
m(x; y; e) for some maximal term m, then for the 1B ; 1B-matrix[

u v
w z

]
:=

[
t(a; c) t(a; d)
t(b; c) t(b; d)

]
we have (u= z)⇒ (u= v=w= z). That is, we have the rectangularity implication for
certain of the 1B ; 1B-matrices related to maximal terms.
If we have the rectangularity implication for matrices related to maximal terms, then

it is not too hard to see that we also have it for all terms obtainable from maximal
terms by identi�cation of variables. Since every term operation is the interpretation of
such a term (by the de�nition of ‘maximal term’) we get the rectangularity implication
for all 1B ; 1B-matrices. Thus R(1B ; 1B ; 0) holds for every B in V(A).
(3)⇒ (4). First we explain why it is that if t is any term of any algebra, then K(t)

is a subset system. To see that ∅ ∈ K(t) we have to produce a strong klukovits term
for the empty set, i.e., a term k(u) such that

k(t(y)) = t(y):
Just take k(u) = u. To see that X (t) ∈ K(t) we have to produce a term k(x; u) such
that

k(x; t(y)) = t(x):
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Fig. 4. The Mal’tsev chain.

Just take k(x; u) = t(x). To see that K(t) is closed under union, we must show that if
t(w; x; y; z) has a strong klukovits term k(w; x; u) for t in the variables wx, and a strong
klukovits term k ′(x; y; u) for t in the variables xy, then there is a term k ′′(w; x; y; u)
which is a strong klukovits term for t in wxy. Such a k ′′ is

k ′′(w; x; y; u):=k(w; x; k ′(x; y; u)):

What remains to show is that if A is a �nite algebra which generates a rectangular
variety and m is a maximal term for A, then the subset system K(m) separates the
points of X (m). This is the hard part of the proof of this theorem.
Fix a maximal term m and arrange the variables in the order m(w; x; y; z) where

wxy is a strong klukovits subset of the variables and we wish to separate the variables
w and x. If k(w; x; y; u) is the strong klukovits term for m in wxy, then we have the
klukovits identity

k(w′; x′; y′; m(w; x; y; z)) = m(w′; x′; y′; z):

Let F be the free algebra in V generated by the set of variables {a; b; c; d; y; u}. Let

 be the congruence of F generated by the pair 〈g; h〉= 〈k(a; c; y; u); k(b; d; y; u)〉. We
have k(a; d; y; u)
k(b; d; y; u), since F=
 is rectangular, so there is a Mal’tsev chain in
F connecting these elements by polynomial images of 〈g; h〉. By putting in trivial links
if necessary we may assume that this chain has the form shown in Fig. 4.
This Mal’tsev chain gives us a sequence of identities that hold in V(A): each

polynomial pi(x) is of the form si(x; a; b; c; d; y; u), where si is a term, and the chain
forces

V(A) |= si(k(a; c; y; u); a; b; c; d; y; u) = si+1(k(a; c; y; u); a; b; c; d; y; u)

when i is odd, and a similar identity with the �rst a and c replaced by b and d when
i is even. Now we substitute m(a′; d′; y′; z) for every occurrence of u in each of the
identities determined by this chain. At the beginning of the chain this substitution gives
us

k(a; d; y; m(a′; d′; y′; z)) = m(a; d; y; z):

In the middle of the chain, at a typical point, we get

si(k(a; c; y; m(a′; d′; y′; z)); a; b; c; d; y; m(a′; d′; y′; z))
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(or the same expression, with b; d instead of a; c at the beginning) which simpli�es to

si(m(a; c; y; z); a; b; c; d; y; m(a′; d′; y′; z))

using the klukovits identity. At the end of the chain we get

k(b; d; y; m(a′; d′; y′; z)) = m(b; d; y; z) :

Since m depends on all variables, A 6|= m(a; d; y; z)=m(b; d; y; z), so the beginning and
end of the chain are di�erent. There is a �rst place in the chain where the substitution
of m(a′; d′; y′; z) into u does not yield m(a; d; y; z), and this implies the existence of
some s= si such that

m(a; d; y; z) = s(m(a; c; y; z); a; b; c; d; y; m(a′; d′; y′; z))

6= s(m(b; d; y; z); a; b; c; d; y; m(a′; d′; y′; z)); (7.1)

or else the same conclusion with the long expressions on the right interchanged. The
argument forks now depending on which case we are in. Let us assume �rst that we
are in the case displayed, and not in the case where we interchange the expressions.
The equality in (7.1) tells us that the maximal term m(a; d; y; z) can be obtained by
identi�cation of the double primed variables with their unprimed counterparts in the
term

s(m(a; c; y; z); a′′; b′′; c′′; d′′; y′′; m(a′; d′; y′; z′′)): (7.2)

By the maximality of m, this term cannot depend on more variables than m; but since
we obtain m(a; d; y; z) when we replace each double primed element by its unprimed
mate, it follows that the term (7.2) depends on at least one of {a; a′′}, on d′′, on at
least one variable from each set {yi; y′′

i }, and at least one of each {zi; z′′i }. But this
already accounts for the total number of variables on which this term can depend.
Therefore the term (7.2) does not depend on c; c′′; b′′; a′; d′; y′, and in every instance
where we said ‘at least one’ in the last sentence we have ‘exactly one’. Moreover,
since the term (7.2) does not depend on c or c′′, one can use the inequality from (7.1)
to prove that s(m(x; c; y; z); a; b; c; d; y; m(a′; d′; y′; z)) depends on x. Therefore, when
choosing between a and a′′, we see that the term (7.2) depends on a and not on a′′.
Since the term (7.2) depends on exactly one of {yi; y′′

i } for each i, it is possible to
partition both y and y′′ in the same way so that y=y1y2; y′′=y′′1 y

′′
2 and the term (7.2)

depends on y2 and y′′1 but not on y1 and y
′′
2 . The same kind of partitioning can be

done for z and z′′. (To maintain uniformity of notation, we also partition y′ in (7.2)
into y′1y

′
2 in the same way as y and y

′′ even though (7.2) does not depend on y′.)
This allows us to write the term in (7.2) as

s(m(a; c; y1y2; z1z2); a′′; b′′; c′′; d′′; y′′1 y
′′
2 ; m(a

′; d′; y′1y
′
2; z

′′
1 z

′′
2 )) (7.3)

where this term depends only on the underlined variables. Let x̂ = (x; x; : : : ; x) be a
sequence of copies of x of the same length as y2, and de�ne

K(x; y1; u):=s(u; x; x; x; x; y1x̂; u):



126 K.A. Kearnes, E.W. Kiss / Discrete Mathematics 207 (1999) 89–135

With this de�nition, and using our understanding of which variables the term (7.3)
depends on, we calculate that K(x′; y′1; m(w; x; y1y2; z1z2)) is equal to

s(m(w; x; y1y2; z1z2); x′; x′; x′; x′; y′1 x̂′; m(w; x; y1y2; z1z2))

=s(m(w; c; y′1y2; z1z2); w; b; c; x′; y′1y2; m(a
′; d′; y′1y

′
2; z1z2)):

Using the equation in (7.1), we see that the second of these expressions simpli�es to
m(w; x′; y′1y2; z1z2). Therefore K(x; y1; u) is a strong klukovits term for m(w; x; y1y2; z1z2)
in the variables xy1. The strong klukovits subset xy1 is contained in wxy1y2 =wxy and
it separates w and x.
Now, regarding the fork in the argument that took place earlier, if we had pursued

the alternate fork with the same arguments as above, then we would have obtained a
strong klukovits subset contained in wxy which contained w and not x instead of one
that contained x and not w.
(4)⇒ (1). This follows from the �nal remark in the statement of Lemma 7.5.

Is Theorem 7.7 more complicated than it has to be? The next example shows that
it is not, and in fact shows that the theorem gives the best information possible about
the strong klukovits structure of terms in a rectangular variety.

Example 7.8. Theorem 7.7 shows that if A generates a rectangular variety, then the
strong klukovits subsets K(m) of a maximal term m is a separating system of subsets
of X (m). We now show that if K is any separating system of subsets of a �nite set
X , then there is a �nite algebra A which generates a rectangular variety and has a
maximal term m(x1; : : : ; xn) such that K(m) = K.
First we construct a semigroup S on the disjoint union K∪X ∪{0}. All products in

this semigroup are de�ned to be zero, with the following exceptions: For U ∈ K and
v 6∈ U de�ne the product Uv to be v. For U; V ∈ K de�ne the product UV = U ∪ V .
It is easy to check that S is a semigroup with zero. Let R denote the semigroup ring
over the two-element �eld obtained from S . Thus the elements of R are the formal
sums of nonzero elements of S, with the empty sum corresponding to the zero element
of R which we identify with the element 0 ∈ S .
Let M be the free R-module on |X | + 1 generators. M is �nite. We de�ne an

algebra A, which is a reduct of M , and which generates a rectangular variety. The
universe of A is M and the basic operations of A will consist of the linear operations
s0x0 + · · ·+ skxk , where 06k6|X |, which have the properties that
(i) at most one coe�cient is from K, the rest are distinct elements from X ; and
(ii) if si = U ∈ K, then all sj, for j 6= i, are elements of U .

With these provisions it is easy to show that all nonzero term operations of A are
represented by terms obtained from basic operations by identifying variables. The ar-
gument is as follows: call a term a linear term if the variables which label the leaves
of its composition tree are distinct. Every term is derivable from a linear term by iden-
ti�cation of variables, clearly. Therefore it su�ces to show that every linear term is a
basic operation. Equations that can be used to prove this are equations which reduce
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expressions like
(1) Ux0 + u1x1 + · · ·+ ui−1xi−1 + ui(s0y0 + · · ·+ slyl) + ui+1xi+1 + · · ·+ ukxk ;
(2) U (Vy0 + v1y1 + · · ·+ vlyl) + u1x1 + · · ·+ ukxk ; and
(3) U (v1y1 + · · ·+ vlyl) + u1x1 + · · ·+ ukxk

to
(1)′ Ux0 + u1x1 + · · ·+ ui−1xi−1 + ui+1xi+1 + · · ·+ ukxk ;
(2)′ (U ∪ V )y0 + vi1yi1 + · · ·+ viryir + u1x1 + · · ·+ ukxk ; and
(3)′ vi1yi1 + · · ·+ viryir + u1x1 + · · ·+ ukxk ,
respectively, where in the latter two reductions (vi1 ; : : : ; vir ) is the subsequence of

(v1; : : : ; vl) of elements not in U .
The claims made above imply that |X | + 1 is a bound on the essential arity of

A. In particular, every term operation which depends on all of its variables is the
interpretation of a term obtained from a maximal term by identi�cation of variables,
and the maximal terms represent basic operations. Now it is not very hard to show
that every maximal term has enough strong klukovits subsets. For example, consider a
maximal term of the form

Ux0 + u1x1 + · · ·+ ukxk ;

with U ′:={u1; : : : ; uk}⊆U . Since K is a separating system of subsets, there exist

V1⊆V2⊆ · · ·⊆Vk ⊆U

with Vi ∈ K such that, after reordering the ui’s, we have U ′ ∩ Vi = {ui; : : : ; uk}. Then
the following subsets of {x0; : : : ; xk} are strong klukovits subsets:

∅⊆{xk}⊆{xk−1; xk}⊆ · · · ⊆{x0; x1; : : : ; xk}:
A strong klukovits term in the last k − i variables, for 06i6k, is

k(xi; : : : ; xk ; u) = Viu+ uixi + · · ·+ ukxk :

The case where the maximal term has no coe�cient in K is handled similarly.
We now know that A generates a rectangular variety. If X = {m1; m2; : : : ; mn}, then

the term m(x):=m1x1 + m2x2 + · · · + mnxn is a maximal term which the reader can
check has {xi1 ; : : : ; xij} as a strong klukovits subset if and only if {mi1 ; : : : ; mij} ∈ K.
Therefore, the set K(m) can be identi�ed naturally with K.

Example 7.9. We have seen that the maximal terms in a rectangular variety have
enough strong klukovits subsets. The purpose of this example is to show that non-
maximal terms may not have enough strong klukovits subsets. This example is a special
case of the previous one. We take X = {a; b; c} and K= {∅; {a}; {a; b}; {a; b; c}}. Then
m(x; y; z):=ax + by + cz is a maximal term of the algebra A constructed above. What
we want to point out here is that the term m(x; y; x) = (a + c)x + by has no strong
klukovits subset of size one, so it is an example of a term of a rectangular variety
which does not have enough strong klukovits subsets.
If (a + c)x + by did have a one-element strong klukovits subset, then it could not

be {x}, because the klukovits identity for the corresponding strong klukovits term
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k(x′; u) = rx′ + su would require s(a+ c) = 0 and sb= b. These equalities force s ∈ K,
a; c ∈ s and b 6∈ s. However K has no such set s. If {y} was a strong klukovits subset
and k(y′; u) = ry′ + su was the corresponding strong klukovits term, then we would
have to have sb= 0 and s(a+ c) = a+ c. This forces s ∈ K and b ∈ s while a; c 6∈ s.
There is no element of this type in K, either.

The following theorem will be used to complete the proof of our Klukovits-type
characterization theorem of locally �nite rectangular varieties. But, at the same time,
it is a nontrivial application of the strong klukovits terms which a rectangular variety
possesses!

Theorem 7.10. Let V be a locally �nite rectangular variety. No algebra in V has a
term operation of essential arity ¿|FV(2)|. Therefore V is generated by the �nite
algebra FV(|FV(2)| − 1).

Proof. Suppose, to get a contradiction, that n¿|FV(2)| and that t(x1; : : : ; xn) is a term
such that tB depends on all variables in some algebra B ∈ V. The variety V(B) is
rectangular, and �nitely generated, and so we can apply Theorem 7.7 to it. The term
t can be obtained from a maximal term for B by identifying variables. This maximal
term still depends on at least n variables, and so by changing notation we may assume
that t is actually a maximal term for B.
Since K(t) is separating, we can rearrange the variables of t so that

∅⊆{x1}⊆{x1; x2}⊆ · · · ⊆{x1; : : : ; xn−1}⊆{x1; x2; : : : ; xn}
are strong klukovits subsets of t. Thus, for every 06i6n we have a term ki such that
B satis�es the identity

ki(x1; : : : ; xi; t(y1; : : : ; yn)) = t(x1; : : : ; xi; yi+1; : : : ; yn):

Consider the binary terms k ′i (x; y)= ki(x; : : : ; x; y). These n+1 terms may be identi�ed
with elements of FV(B)(2), which is a homomorphic image of FV(2). Therefore at
most n of these binary terms are distinct. There must exist 06i¡ j6n such that
k ′i (x; y) = k ′j(x; y) is an identity of B. We shall get a contradiction by showing that
t(x1; : : : ; xn) does not depend on the variables xi+1; : : : ; xj.
To simplify notation, we shall write the term t(x1; x2; : : : ; xn) as t(x; y; z), where x=

(x1; : : : ; xi), y=(xi+1; : : : ; xj), z=(xj+1; : : : ; xn). Here x and z may be empty sequences.
For a variable u let û denote any sequence of the form (u; : : : ; u). With this new
notation we have

ki(x′; t(x; y; z)) = t(x′; y; z);

kj(x′; y′; t(x; y; z)) = t(x′; y′; z):

By substituting u in every component of x′ we get that

k ′i (u; t(x; y; z)) = t(û; y; z);
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and similarly,

k ′j(u; t(x; y; z)) = t(û; û; z):

From B |= k ′i = k ′j , we see that B |= t(û; y; z) = t(û; û; z). Now apply ki again to get

B |= t(x; y; z) = ki(x; t(û; y; z)) = ki(x; t(û; û; z)) = t(x; û; z):

This equation shows that t(x; y; z) does not depend on y, which is a contradiction since
t is a maximal term for B.
The last statement of the theorem follows from the �rst, since the �rst statement

shows that any subvariety of V which satis�es the same (|FV(2)| − 1)-variable equa-
tions as V must equal V.

Corollary 7.11. A locally �nite variety V is rectangular if and only if

• no algebra in V has a term operation of essential arity ¿|FV(2)|; and
• every maximal term has enough strong klukovits subsets.

Proof. Theorem 7.10 shows that locally �nite rectangular varieties have the �rst prop-
erty and are �nitely generated, while Theorem 7.7 proves that �nitely generated rectan-
gular varieties have the second property. Conversely, any variety with the �rst property
is generated by the �nite algebra A:=FV(|FV(2)| − 1), and Theorem 7.7 applied to
this algebra proves that the second property is a necessary and su�cient condition for
V to be rectangular.

Corollary 7.12. The class of �nite algebras in a �xed �nite language which generate
a rectangular variety is recursive.

Proof. If a �nite algebra A in a �nite language is given, then one can check if it is
rectangular. This involves generating the subalgebra of all 1A; 1A-matrices in A4. If A
is rectangular, then according to Theorem 5.3 the essential arity of any term operation
of A is at most |A| − 1, and all term operations of A can be calculated. Once this is
done it is easy to verify whether the conditions of Corollary 7.11 hold.

8. Residually small strongly nilpotent varieties

A variety is said to be residually large if it has a proper class of subdirectly irre-
ducible members, and otherwise it is residually small. Residual smallness is a highly
desirable property for a variety to have, and it seems to be an important requirement
for any kind of structure theory.
In [15], Jacob Shapiro proved that every �nitely generated strongly abelian variety of

algebras has only �nitely many subdirectly irreducible algebras, each of which is �nite.
In the same paper he pointed out that there are �nite strongly abelian algebras which
generate residually large varieties. The strongly abelian algebras he produced were



130 K.A. Kearnes, E.W. Kiss / Discrete Mathematics 207 (1999) 89–135

(and had to be, according to his theorem) algebras which did not generate strongly
abelian varieties. But one can easily construct strongly abelian algebras which do not
generate strongly abelian varieties, yet which generate residually small varieties. The
situation concerning the residual character of varieties generated by strongly abelian
algebras has remained mysterious and unresolved for a long time. An essential feature
of Shapiro’s argument is the use of the fact that strongly abelian varieties have a
bound on the essential arities of their terms. In fact, one might view his argument as a
generalization of the natural proof that essentially unary varieties are residually small.
The material from the preceding seven sections of this paper gives us a great deal of
insight into the structure of varieties which have a bound on their essential arity, and
in this section we intend to present the ‘limiting version’ of the Shapiro argument: we
describe all locally �nite, residually small varieties which have a bound on the essential
arity of their term operations.
If V is a locally �nite variety which has a bound on its essential arity, then every

�nite algebra in V must be strongly nilpotent, according to Theorem 4:8. A variety
whose �nitely generated members are strongly nilpotent is said to be locally strongly
nilpotent. We shall prove local results about residual smallness which entail the fol-
lowing theorem.

Theorem 8.1. Let V be a locally �nite variety which is locally strongly nilpotent.
ThenV is residually small if and only if it is rectangular. Moreover; ifV is residually
small; then it has �nitely many subdirectly irreducible algebras; all of which are �nite.

We point out that this theorem, coupled with Corollary 7.12, yields an algorithm to
decide if a �nite, strongly nilpotent algebra in a �nite language generates a residually
small variety. This fact contrasts with the main result of [10], which states that there is
no algorithm to decide if an arbitrary �nite algebra generates a residually small variety.
To prove this theorem we have two tasks. One task is to show that a locally �nite

variety which is locally strongly nilpotent but not rectangular is residually large. The
other task, which we attend to immediately, is to show that a locally �nite rectangular
variety is residually small.

De�nition 8.2. Let A be a set, and � an equivalence relation on A. We shall say that
a function f : An → A does not depend on its �rst variable on �, if

f(a; u) = f(b; u)

holds for every (a; b) ∈ �; and u ∈ An−1.

By permuting the variables of f we can speak of f depending on any given variable
on �, and about the essential arity of f on � as well.

Lemma 8.3. Let S be a subdirectly irreducible algebra; and � a rectangular congru-
ence of S . Suppose that every term operation of S depends on at most r variables
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on �. Let m= |S=�|; and M = |FV(S)(r)|. Then

|S|6m · 2M ·mr−1
:

Proof. Let � be the monolith of S and choose (a; b) ∈ � − 0S . Let C be an arbitrary
�-class. For each pair (c; d) ∈ C2 − 0S there is a Mal’tsev chain witnessing that a
and b are congruent modulo the congruence generated by c and d. By looking at the
�rst nontrivial link in this chain starting from a we see that S has a unary polynomial
p(x; u), where p is a term, such that one of p(c; u) and p(d; u) is equal to a and the
other is not. For the undirected pair {c; d} in C de�ne the set L{c; d} to contain, for
every such term p and parameter sequence u, the pair (p; u). We may, and do, assume
that p depends on all of its variables on �.
Consider the union U of all sets of labels L{c; d}, where c 6=d ∈ C. Call two

elements (p; u) and (q; v) of U equivalent, if p=q is an identity of S , and u � C holds
componentwise. Pick a system R of representatives from each equivalence class. We
show that |C|62|R|.
Indeed, consider, for each element c ∈ C, the set

Pc = {(p; C) ∈ R |p(c; C) = a}:

It is su�cient to show that if c 6=d, then Pc 6=Pd. Pick an element (p; u) ∈ L{c; d},
and let its representative in R be (p; u′). We show that (p; u′) is contained in exactly
one of the sets Pc and Pd. The pair (p; u′) ∈ R⊆U , so there exist c′ 6=d′ ∈ C such
that (p; u′) ∈ L{c′; d′}. Interchanging c with d and c′ with d′ if necessary we get that

p(d; u) 6=p(c; u) = a= p(c′; u′) 6=p(d′; u′):

By the rectangularity of � we get that p(c; u′) = a, and so it is su�cient to show that
p(d; u′) 6= a. Suppose instead that p(d; u′)=a=p(c; u). Then by rectangularity we get
that p(d; u) = a, which is false.
It remains to count the elements of R. Each element is determined by a term p, and

a parameter sequence u. Since p depends on all of its variables on �, its arity is at
most r. The number of such terms is at most M = |FV(S)(r)|. The length of u is at
most r − 1, and each component can take at most |S=�|=m values. Thus, the number
of such u is at most mr−1, showing that |R|6M · mr−1. Since � has m classes, from
this estimate on |C| we get the formula to be proved.

Corollary 8.4. A locally �nite rectangular variety is residually small.

Proof. Let V be a locally �nite rectangular variety which contains the subdirectly
irreducible algebra S . In the previous lemma we can take �=1S , in which case m=1.
Furthermore, if N = |FV(2)|, then by Theorem 7.10 we can take r=N −1. This yields
that M = |FV(N − 1)|. Thus, Lemma 8.3 gives a �nite cardinality bound on S valid
for all subdirectly irreducible algebras in V.
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Since the bound on the cardinality of the subdirectly irreducible algebras in V is
a �nite bound which is determined by the free spectrum of V, it follows that V has
only �nitely many subdirectly irreducible algebras and all are �nite.
We prove in Theorem 8.6 that a locally strongly nilpotent variety which is not

rectangular is residually large. In fact we shall prove that if a �nite algebra has a
strongly nilpotent tolerance which is not rectangular, then it generates a residually
large variety. This result will be derived from the following lemma which describes a
method for constructing large subdirectly irreducibles.
For a binary relation T on a set A, and a �nite or in�nite cardinal � set

T [�] = {x ∈ A� | (xi; xj) ∈ T for all i¡ j¡�}:

Lemma 8.5. Let
(1) A be a �nite algebra;
(2) � a minimal congruence of A;
(3) N a 〈0A; �〉-trace;
(4) u; v; w ∈ N; which are not all equal;
(5) T a tolerance of A;
(6) (a‘; b‘) ∈ T for 16‘6m.

Suppose that
(7) R(T; N 2; 0A) holds;
(8) (u; v; w) ∈ T [3];
(9) The congruence of T [3] generated by collapsing (b‘; a‘; a‘) with (a‘; a‘; b‘) for

every 16‘6m collapses (v; v; v) with (u; v; w).
Then V(A) is residually large.

Proof. Let � be an in�nite cardinal. Let B be the subalgebra of A� whose universe is
B = T [�]. For each polynomial operation p of A let p̂ be the polynomial of B which
is p in each coordinate; for each a ∈ A let â be the element of B which is a in every
coordinate. Let M = N� ∩ B. The fact that u; v and w are T -related, in N and not
all equal implies that M contains an element z which is not of the form â. Also, by
conditions (7); (8) and Lemma 2.3 we know that the type of N is 1.
Let (fi | i¡�) be an induced operation of B|M . Each fi is an operation of A|N , so

it is an essentially unary operation. If one of these is nonconstant, then, since the fi are
T -twin polynomials, Lemma 2.4(7) and our hypothesis (7) guarantee that the fi are
all equal permutations of N . This means that (fi | i¡�) is constant or it agrees with
some �̂, where � is a unary polynomial permutation of A|N . From this one deduces
that B|M is polynomially equivalent to a G-set which is a diagonal subdirect power of
the G-set A|N . The diagonal is an orbit of the G-set structure, so B|M has a congruence
which partitions M into two classes: the diagonal and the o�-diagonal. Since M is an
E-trace, this congruence can be extended to a congruence  of B (see Lemma 2.4
in [4]).
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Let  0 be a maximal congruence of B containing  that separates v̂ and z. Then
B= 0 is a a subdirectly irreducible factor of B, let � denote its cardinality. To �nish
the proof it is su�cient to show that �¿�.
Let id‘ be the element of B whose every component is a‘ except that the ith

component is b‘. We show that for each i 6= j¡� there exists an 16‘6m such that
(id‘;j d‘) 6∈  0. Indeed, suppose that this fails for some i 6= j. Let C be the subalgebra
of B consisting of those functions that are constant on the set �−{i; j}. C is a retract of
B which is isomorphic to T [3]. To see this, choose k 6∈ {i; j}. A retraction � : B → C
is given by de�ning �(b)x= bx if x ∈ {i; j} and �(b)x= bk otherwise. An isomorphism
’ : C → t[3] is given by ’(c) = (ci; ck ; cj).
Observe that for all ‘ the elements id‘ and jd‘ are in C and correspond under ’

to the elements (b‘; a‘; a‘) and (a‘; a‘; b‘) ∈ T [3], respectively. Condition (9) of the
lemma and the observations of the last paragraph imply that the congruence of C
generated by all pairs (id‘;j d‘) contains the pair (v̂; z′) where z′ denotes the element
of C which is u in the ith coordinate, w in the jth coordinate and v elsewhere. Since
C6B and all pairs of the form (id‘;j d‘) belong to  0, by assumption, we must have
(v̂; z′) ∈  0. But z′ ∈ M is outside the diagonal, hence z′ z. Therefore v̂ 0z, which
is contrary to the de�nition of  0. This proves our claim that for each i 6= j¡� there
exists an 16‘6m such that (id‘;j d‘) 6∈  0.
To �nish the proof, de�ne a mapping g : � → (B= 0)m by g(i)= (id1; : : : ;i dm). What

we have just proved means exactly that g is injective. Therefore �6�m = �, proving
the statement of the lemma.

Theorem 8.6. If A is a �nite algebra in a residually small variety; then every strongly
nilpotent tolerance of A is rectangular.

Proof. Choose A to be a counterexample of minimal cardinality, and let � be a minimal
congruence of A. Our aim is to �nd a failure of R(T; T ; 0A) such that the corresponding
T; T -matrix is contained in a single 〈0A; �〉-trace, and then to apply Lemma 8.5 with
u; v; w being the entries of this matrix.
Since T is not rectangular, there exists a polynomial t and T -related pairs of vectors

(a; b), and (c; d) in A such that

t(a; c) = t(b; d) 6= t(a; d):

By Lemma 3.5 (4), the tolerance T=� of A=� is strongly nilpotent, and so it must be
rectangular by the minimality of A. Therefore all four entries of the T; T -matrix[

v u
w v

]
:=

[
t(a; c) t(a; d)
t(b; c) t(b; d)

]
are �-related. Choose a unary polynomial p that maps the �-class containing u; v and
w into a 〈0A; �〉-trace N , and separates u and v. Then p(w) ∈ N as well. Now replace
t by p ◦ t. This gives a new failure of R(T; T ; 0A), where the entries are already in N .
By changing notation we shall assume that t has already been pre�xed by p, and so
u; v; w ∈ N .
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We now show that the conditions of Lemma 8.5 are satis�ed. The elements a‘ and
b‘ will be the components of a and b, respectively. From the fact that T is strongly
nilpotent we get that R(T; N 2; 0A) holds. Therefore the only condition to be checked
is (9). We de�ne an m-ary polynomial on T [3] by

q((x1; y1; z1); : : : ; (xm; ym; zm)) = (t(x; d); t(y; c); t(z; c)):

Then

q((b1; a1; a1); : : : ; (bm; am; am)) = (v; v; v);

q((a1; a1; b1); : : : ; (am; am; bm)) = (u; v; w);

hence (9) is satis�ed.

This theorem supplies the missing direction of Theorem 8.1.

Example 8.7. We apply the results of the last two sections to demonstrate the existence
of a surprising example: we will show that there is a �nite, simple, strongly abelian
algebra that generates a residually large variety.
To construct the example, let U = {0; 1; : : : ; n}, where n¿3. Suppose that f is the

unary operation on U de�ned by f(i)= i− 1 for all i¿ 0 and f(0)=0. Let A be the
algebra with universe U 2 (whose elements we write as columns), and with three types
of de�ning operations. First, we equip A with all unary operations h of the form

h
([

x
y

])
=
[
r(x)
s(y)

]
;

where r and s are unary operations on U with |r(U )|; |s(U )|62. Next we add all
unary operations h′ of the form

h′
([

x
y

])
=
[
r(y)
s(x)

]
;

where again r and s are unary operations on U with |r(U )|; |s(U )|62. Finally we add
the binary operation g, de�ned by

g
([

x
y

]
;
[
u
v

])
=
[
f(y)
f(u)

]
:

It is easy to verify that A is simple and strongly abelian. In particular, it is strongly
nilpotent. By Theorem 8.1, to show that A generates a residually large variety it su�ces
to prove that the generated variety fails to be rectangular. For this we must exhibit a
maximal term which does not have enough strong Klukovits subsets.
It is obvious that g(x; y) is a maximal term since it depends on both variables and

(it can be argued that) no term of A depends on more than two variables. If g(x; y)
had a one-element strong Klukovits subset, then there would have to be a strong
Klukovits term k such that k(z; g(x; y)) = g(z; y) or g(x; z). The term k would have to
be essentially binary and the range of k would have to contain the range of g, which
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is (U −{n})× (U −{n}). Analyzing the possibilities, one �nds that up to equivalence
the only essentially binary terms of A whose range contains (U − {n}) × (U − {n})
are g(x; y), and g(y; x). An easy computation shows that neither of these are strong
Klukovits terms for g in either variable. According to Theorem 7.7 the variety V(A)
is not rectangular.

9. For further reading

The following references are also of interest to the reader: [11], [13] and [14].
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[1] J. Berman, E.W. Kiss, P. Prőhle, A. Szendrei, The set of types of a �nitely generated variety, Discrete
Math. 112 (1993) 1–20.

[2] P. Crawley, R.P. Dilworth, Algebraic Theory of Lattices, Prentice-Hall, Englewood Cli�s, NJ, 1973.
[3] G. Higman, The orders of relatively free groups, Proc. Internat. Conf. Theory of Groups, Austral. Nat.

Univ. Canberra, 1965, pp. 153–165.
[4] D. Hobby, R. McKenzie, The Structure of Finite Algebras, Contemporary Mathematics, vol. 76,

American Mathematical Society, Providence RI, 1988.
[5] K. Kearnes, An order-theoretic property of the commutator, Internat. J. Algebra Comput. 3 (1993)

491–533.
[6] E.W. Kiss, An easy way to minimal algebras, Internat. J. Algebra Comput. 7 (1997) 55–75.
[7] E.W. Kiss, M. Valeriote, Strongly Abelian varieties and the Hamiltonian property, Canad. J. Math. 43

(1991) 331–346.
[8] E.W. Kiss, M. Valeriote, Abelian varieties and the Hamiltonian property, J. Pure Appl. Algebra 87

(1993) 37–49.
[9] L. Klukovits, Hamiltonian varieties of universal algebras, Acta. Sci. Math. 37 (1975) 11–15.
[10] R. McKenzie, The residual bound of a �nite algebra is not computable, Internat. J. Algebra Comput. 6

(1996) 29–48.
[11] R. McKenzie, G. McNulty, W. Taylor, Algebras, Lattices, Varieties, vol. 1, Wadsworth and Brooks=Cole,

Monterey, CA, 1987.
[12] P.M. Neumann, Some indecomposable varieties of groups, Quart. J. Math. Oxford 14 (1963) 46–50.
[13] J. Plonka, Diagonal algebras, Fund. Math. 58 (1966) 309–321.
[14] R.P�oschel, M. Reichel, Projection algebras and rectangular algebras, in: General Algebra and

Applications, Research and Exposition in Math., vol. 20, Heldermann Verlag, Berlin, 1993, pp.
180–194.

[15] J. Shapiro, Finite algebras with Abelian properties, Algebra Universalis. 25 (1988) 334–364.


