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Abstract. Let P be a property of topological spaces. Let [P ] be the class

of all varieties V having the property that any topological algebra in V has

underlying space satisfying property P . We show that if P is preserved by

finite products, and if ¬P is preserved by ultraproducts, then [P ] is a class of

varieties that is definable by a Maltsev condition.

The property that all T0 topological algebras in V are j-step Hausdorff (Hj)

is preserved by finite products, and its negation is preserved by ultraproducts.

We partially characterize the Maltsev condition associated to T0 ⇒ Hj by
showing that this topological implication holds in every (2j + 1)-permutable
variety, but not in every (2j + 2)-permutable variety.

Finally, we show that the topological implication T0 ⇒ T2 holds in every
k-permutable, congruence modular variety.

1. Introduction

A topological space X is T0 if whenever a and b are distinct points of X there is
a closed subset of X containing one of the points that does not contain the other.
X is T1 if for each a ∈ X the singleton set {a} is closed. X is T2, or Hausdorff,
if for each a ∈ X the intersection of the closures of the neighborhoods of a is
⋂

cl(N) = {a}. The implications T2 =⇒ T1 and T1 =⇒ T0 follow immediately

from these (nonstandard) definitions: if X is T2 then each singleton set {a} is the
intersection of closed sets, hence is closed (so T2 =⇒ T1); if X is T1 and a, b ∈ X
are distinct then {a} is a closed set containing one of the points and not containing
the other (so T1 =⇒ T0). This paper is one of a series of papers concerned with
determining when the converse implications (and related implications) hold for
topological algebras.

The significance of investigations of this type resides in the following observation:
the class of all topological algebras in any variety is determined by its T0 members.
That is, if A is a topological algebra in V, and

θ = {(a, b) ∈ A×A | a ∈ cl(b) & b ∈ cl(a)},

then θ is a congruence on A, A/θ endowed with the quotient topology is a T0 topo-
logical algebra in V, and the topology on A consists of the sets of the form ν−1(U)
where U is open in A/θ and ν is the natural homomorphism from A to A/θ. (See
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[5] for details.) Thus, the T0 topological algebras in a variety are of fundamental in-
terest, and it seems important to understand when they satisfy stronger topological
properties.

It is a classical result that any T0 topological group is T2. W. Taylor extended
this result with the following theorem.

Theorem 1. [19] If V is congruence permutable, then any topological algebra in V
satisfies

T0 =⇒ T2.

H. P. Gumm then generalized Taylor’s result with:

Theorem 2. [10]

(1) If V is k-permutable, then any topological algebra in V satisfies

T0 =⇒ T1.

(2) If V is 3-permutable, then any topological algebra in V satisfies

T0 =⇒ T2.

Gumm’s results were sharpened in J. P. Coleman’s papers [4, 5]. Among other
things, Coleman proved the converse of the first claim in Theorem 2 thereby showing
that the implication T0 =⇒ T1 for all topological algebras in a variety is equivalent
to k-permutable for some k.

In this paper we show that if P is a topological property that is preserved by finite
products and whose negation is preserved by ultraproducts, then the satisfaction of
P by all topological algebras in a variety is characterizable by a Maltsev condition.
This result applies to either of the properties T0 =⇒ T1 or T0 =⇒ T2.

In order to understand the topological consequences of k-permutability for a
fixed k, Coleman defined new separation conditions called j-step Hausdorffness for
each j ≥ 1 (Hj for short). The relative strengths of the Ti conditions and the Hj

conditions are indicated by

T0 ⇐= T1 ⇐= · · · ⇐= H4 ⇐= H3 ⇐= H2 ⇐= H1 ⇐⇒ T2,

where none of the unidirectional arrows are reversible. Coleman showed

Theorem 3. [4, Theorem 3.2] If k ≥ 3, then for every topological algebra in a
k-permutable variety,

T0 =⇒ Hk−2

Coleman also showed that, in a sense, Theorem 3 is sharp for k = 4. Specifically,
he showed that T0 topological algebras in 4-permutable varieties must be H2 but
there exist T0 topological algebras in 4-permutable varieties that are not H1. While
this does not characterize the Maltsev condition for T0 =⇒ Hj for any j, it does
completely determine the relationship between these Maltsev conditions and the
Maltsev condition for 4-permutability. The question of whether Theorem 3 is sharp
in this sense for larger values of k was left open.

We introduce symmetrized versions of Coleman’s Hj conditions, which we label
sHj . Although each sHj , j > 1, is strictly weaker than the corresponding Hj for
topological spaces, we show that for topological algebras in k-permutable varieties
Hj ⇐⇒ sHj for each j and k (Theorem 19). We use the symmetrized conditions to
prove that T0 =⇒ Hb k

2
c for topological algebras in k-permutable varieties (Theorem

20). This result improves Coleman’s theorem and is the best possible result of this
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type, for we also construct, for each k > 1, a topological algebra in a k-permutable
variety that satisfies Hb k

2
c but not Hb k

2
c−1 (Theorem 21).

Coleman made an interesting suggestion regarding the implication T0 =⇒ T2.
Certainly T0 =⇒ T2 is stronger than T0 =⇒ T1, and the latter implication is
equivalent to k-permutability for some k, so it is natural to wonder what condition
together with k-permutability for some k characterizes T0 =⇒ T2. Coleman sug-
gested that “a reasonable conjecture is that congruence modularity together with
n-permutability is necessary and/or sufficient for T0 =⇒ T2 to hold.” Two par-
tial results regarding this suggestion appear in the paper [2] by W. Bentz. Bentz
proved that the implication T0 =⇒ T2 holds in any k-permutable variety that has
a majority term. Then Bentz introduced, for each k ≥ 2, a k-permutable variety
Wk for which he could prove T0 =⇒ T2 but could not prove modularity. Bentz
raised the question of whether his Wk’s were counterexamples to the necessity part
of Coleman’s conjecture.

In this paper we prove that T0 =⇒ T2 holds in any modular, k-permutable
variety. Then we prove that Bentz’s Wk’s are indeed modular. We leave open the
question of whether modularity is necessary for the implication T0 =⇒ T2, although
we do point out that Polin’s variety fails to satisfy T0 =⇒ T2 and this variety is
considered by some to be “barely nonmodular”.

2. Preliminaries

We assume the reader is familiar with the basics of universal algebra and general
topology. A topological algebra is a structure A = 〈A; τ ;O〉, where 〈A;O〉 is an
algebra and τ is a topology on A, such that each fundamental operation Fi ∈ O is
continuous with regard to the product topology on each power of A.

By definition, a variety V is congruence k-permutable if whenever A ∈ V and α
and β are congruences on A, then the k-fold alternating compositions α◦β ◦α◦ · · ·
and β ◦ α ◦ β ◦ · · · are equal. This definition will play absolutely no role in this
paper. Rather, we will work with the Hagemann-Mitschke terms characterizing this
property:

Theorem 4. [11] A variety V is k-permutable if and only if there exist ternary
V-terms p0, . . . , pk such that the following are identities of V:

p0(x, y, z) ≈ x

pi(x, x, z) ≈ pi+1(x, z, z) for 0 ≤ i ≤ k − 1

pk(x, y, z) ≈ z

By definition, a variety V is congruence modular if all algebras in V have modular
congruence lattices. This definition also plays no role in this paper. We will work
only with the Day terms and the Gumm terms, which each characterize modularity:

Theorem 5. [6] A variety V is modular if and only if there exist quaternary V-
terms m0, . . . ,mn such that the following are identities of V:

m0(x, y, z, w) ≈ x

mi(x, x, w,w) ≈ mi+1(x, x, w,w) 0 ≤ i < n, i even

mi(x, y, y, w) ≈ mi+1(x, y, y, w) 0 ≤ i < n, i odd

mn(x, y, z, w) ≈ w
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Theorem 6. [9] A variety V is modular if and only if there exist ternary V-terms
q0, . . . , qn−1, p such that the following are identities of V:

q0(x, y, z) ≈ x

qi(x, y, x) ≈ x for all i

qi(x, x, y) ≈ qi+1(x, x, y) 0 ≤ i < n− 1, i even

qi(x, y, y) ≈ qi+1(x, y, y) 0 ≤ i < n− 1, i odd

qn−1(x, y, y) ≈ p(x, y, y)

p(x, x, y) ≈ y

Our interest in the properties of k-permutability and modularity is limited to
the fact that the existence of continuous operations satisfying the identities of any
of the last three theorems restricts the topology of a topological algebra.

Now we turn from algebraic preliminaries to topological preliminaries. Recall
from the Introduction that a space X is Hausdorff, or T2, if for each a ∈ X the
intersection of the closures of the neighborhoods of a is {a}. This definition of T2
suggests the following generalization.

Definition 7. Suppose that A is a topological space. For each a ∈ A and n < ω
define ∆n(a) recursively by

∆0(a) = A

∆n+1(a) = { b | ∀ open U, V with a ∈ U, b ∈ V, U ∩ V ∩∆n(a) 6= ∅ }

This definition implies that ∆1(a) is the intersection of the closures of the neigh-
borhoods of a. Thus ∆1(a) is a closed subspace of A containing a. Each ∆n+1(a) is
the intersection of the closures of neighborhoods of a in the subspace ∆n(a) under
the relative topology. In particular, ∆n(a) is closed in A for all a and n. We say
that a point a ∈ A is j-step Hausdorff if ∆j(a) = {a}. We say that a space is
j-step Hausdorff, or Hj , if each of its points is j-step Hausdorff. Clearly, a space is
H1 if and only if it is Hausdorff since both properties say exactly that ∆1(a) = {a}
for all a ∈ A. Since each ∆n(a) is closed, and since Hj asserts that ∆j(a) = {a} for
all a ∈ A, it follows that Hj =⇒ T1. Coleman proved in [4] that all the conditions
Hj are distinct and strictly stronger than T1.

Coleman defined the concept of j-step Hausdorffness in terms of the complement
Γn(a) = A \∆n(a). We prefer to work with ∆n(a) instead of Γn(a) because of the
usefulness of the following extension of the notation.

Definition 8. For each n ≥ 0, let the symbol ∆n denote the binary relation defined
by

a∆n b :⇐⇒ a ∈ ∆n(b)

The usefulness of switching from Γn to ∆n is clear from the next result.

Lemma 9. Let A be a topological space. For each k ≥ 0, ∆k is a reflexive binary
relation on A that is compatible with every continuous map f : An → A, for n ≥ 0.

Proof. The reflexivity is clear. We will prove compatibility by induction on k, the
result being clear for k = 0 (∆0 is the universal relation on A). So, suppose the
result true of k, let f : An → A, and, for 1 ≤ i ≤ n, let ai, bi ∈ A with ai ∆k+1 bi.
We have to show that

f(a1, . . . , an) ∆k+1 f(b1, . . . , bn)
4



Thus, let U , V be open sets such that

f(a1, . . . , an) ∈ U, f(b1, . . . , bn) ∈ V

By continuity, we can find open sets Ai, Bi such that ai ∈ Ai, bi ∈ Bi for each i,
1 ≤ i ≤ n, and

f(A1, . . . , An) ⊆ U, f(B1, . . . , Bn) ⊆ V

Since ai ∆k+1 bi, we can pick

ci ∈ Ai ∩Bi ∩∆k(bi)

so we have

f(c1, . . . , cn) ∈ U ∩ V

and, by the induction hypothesis,

f(c1, . . . , cn) ∆k f(b1, . . . , bn)

Thus

U ∩ V ∩∆k(f(b1, . . . , bn)) 6= ∅

and, since U and V were arbitrary,

f(a1, . . . , an) ∆k+1 f(b1, . . . , bn)

as desired. ¤

Corollary 10. If A is a topological algebra, ∆k is a reflexive and compatible binary
relation on A, for every k ≥ 0.

The relation ∆k need not be symmetric, except of course when k = 0 (since
∆0 = A×A) and when k = 1 (since ∆1 is the closure of the diagonal of A×A).

We will henceforth adopt the following equivalent definition of j-step Hausdorff-
ness.

Definition 11. Let A be a topological space. For each j ≥ 0, we will say that A
is j-step Hausdorff, or Hj , if the following condition holds for all a, b ∈ A:

a∆j b =⇒ a = b (Hj)

In other words, Hj is the assertion that ∆j is the equality relation.

We introduce a new family of separation conditions related to the Hj ’s.

Definition 12. Let A be a topological space. For every j ≥ 0, we will say that A
is j-step Hausdorff up to symmetry, or sHj , if the following condition holds for all
a, b ∈ A:

a∆j b ∧ b∆j a =⇒ a = b (sHj)

Thus sHj asserts that ∆j is antisymmetric.

Remark. All sHj conditions are distinct: Coleman’s examples of spaces which are
Hj but not Hj−1 ([4, Theorem 2.4]) also satisfy sHj but not sHj−1. We will presently
give a construction, generalizing Coleman’s, which yields many more examples.
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3. Topological Properties Definable by Maltsev Conditions

This section, which proves the result mentioned in the first paragraph of the
abstract, can be read independently of the rest of the paper.

For the purposes of this section only, we consider topological algebras to be 2-
sorted first-order structures A = 〈A;B;O,R, ε〉 where A and B are the sorts, O
is a set of operations on A, R is a set {∆n}∞n=0 of binary relations on A, and ε
is a binary relation from A to B. The sort A is intended to represent the set of
elements of the topological algebra, sort B is intended to represent a basis for the
topology, the operations in O are intended to be the operations of the topological
algebra, the relations ∆n ∈ R are intended to be the ones defined in the preceding
section, and ε is intended to denote the relation of membership of elements of A in
elements of B. (N.B.: actual set membership in A or B will be indicated with ∈.)

The class of all 2-sorted structures of the type that we are considering whose
symbols have their intended meanings is a first-order axiomatizable class. Indeed,
the following statements are first-order, and they define the class of all topologi-
cal algebras of a given signature, each with a specified basis B, with the correct
interpretation of the relation symbols.

(1) For all U, V ∈ B, if x ε U ⇐⇒ x ε V for all x ∈ A, then U = V .
(2) There exists a U ∈ B such that x ε U holds for no x ∈ A.
(3) For all U, V ∈ B there exists a W ∈ B such that x ε W if and only if x ε U

and x ε V .
(4) For all x ∈ A there exists a U ∈ B such that x ε U .
(5) For all x1, . . . , xn ∈ A and all U ∈ B, if f(x1, . . . , xn) ε U , then there exist

V1, . . . , Vn ∈ B such that f(y1, . . . , yn) ε U whenever yi ε Vi.
(6) Each symbol ∆n interprets as the relation from Definition 8.

Statement (1) asserts that basis elements U and V may be distinguished by their
“elements”; that is, by their ε-related elements of A. Thus any U ∈ B may be
identified with its subset of ε-related elements. Statements (2)–(4) assert that the
collection of subsets of A that correspond to elements of B under this identification
contains ∅, is closed under finite intersection, and has union equal to A. Thus
(1)–(4) assert that B is a basis for a topology on A. Statement (5) asserts that
the operations of A are continuous in this topology. Statement (6) asserts that the
relation symbols ∆n are names for the relations defined in the preceding section.

Lemma 13. Each of of the statements (1)–(6) is equivalent to a first-order sen-
tence. Statements (2)–(5) are equivalent to Horn sentences. Statement (6) is equiv-
alent to a sentence (∀x, y ∈ A)[y ∆n x⇐⇒ Φn(x, y)] where Φn(x, y) is a factorable
formula.

Proof. Recall that a Horn formula is a formula that in prenex form looks like

Q1x1, . . . , Qkxk

(

∧

Ψi

)

where each Qi is a quantifier and each Ψi is a formula.

Moreover, each Ψi has the form ψ1 ∨ · · · ∨ ψk with each ψj atomic or negated
atomic and at most one ψj atomic in any Ψi. A Horn sentence is a Horn formula
that is a sentence.

A formula Φ(x1, . . . , xm) is factorable if whenever A =
∏

i∈I Ai is a product of
structures, and a1, . . . ,am ∈ A, then

A |= Φ(a1, . . . ,am) ⇐⇒ Ai |= Φ(ai1, . . . , aim) for all i ∈ I.
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(In [13] such formulas are called multiplicative, in [14] they are called filtering, and
in [20] they are called formulas evaluated coordinatewise.) The class of factorable
formulas has the following closure properties (see [20]):

(F1) Any atomic formula is factorable.
(F2) The class of factorable formulas is closed under ∀,∃ and ∧.
(F3) If α(x̄, ȳ) and β(x̄, ȳ) are factorable, then so is

(∃x̄)[α(x̄, ȳ)] ∧ (∀x̄)[α(x̄, ȳ) =⇒ β(x̄, ȳ)].

Now we write (1)–(6) in first-order/Horn/factorable form.
[Sentence (1)] (First-order)

(∀U, V ∈ B) [[(∀x ∈ A)(x ε U ⇔ x ε V )] ⇒ U = V ] .

[Sentence (2)] (Horn)

(∃U ∈ B)(∀x ∈ A) [x6ε U ] .

[Sentence (3)] (Horn)

(∀U, V ∈ B)(∃W ∈ B)(∀x ∈ A) [((x6ε W ) ∨ (x ε U))
∧((x6ε W ) ∨ (x ε V ))
∧((x6ε U) ∨ (x6ε V ) ∨ (x ε W ))].

[Sentence (4)] (Horn)

(∀x ∈ A)(∃U ∈ B) [(x ε U)] .

[Sentence (5)] (Horn)

(∀x̄ ∈ An)(∀U ∈ B)(∃V̄ ∈ Bn)(∀ȳ ∈ An)

[(

n
∧

i=1

Ψn

)

∧Θ

]

where Ψi is the Horn clause [(f(x̄)6ε U) ∨ (xi ε Vi)] and Θ is the Horn clause
[(f(x̄)6ε U) ∨

∨n

i=1(yi 6ε Vi) ∨ (f(ȳ) ε U)].
[Sentence (6)] ((∀x, y ∈ A)[y ∆n x⇔ Φn(x, y)] with Φn(x, y) factorable)
We define Φn inductively. Let Φ0(x, y0) be [x = x]. This is factorable by (F1)

above. Now assume that Φk(x, yk) is factorable, and let Φk+1(x, yk+1) be

(∃U, V ∈ B)[α(U, V, x, yk+1)] ∧ (∀U, V ∈ B)[α(U, V, x, yk+1) =⇒ β(U, V, x, yk+1)]

where
α(U, V, x, yk+1) = [(x ε U) ∧ (yk+1 ε V )]

and
β(U, V, x, yk+1) = (∃yk)[(ykεU) ∧ (ykεV ) ∧ (Φk(x, yk))].

It follows from (F1), (F2) and induction that both α and β are factorable. Since
Φk+1(x, yk+1) has the form described in (F3) it is factorable.

To see that Φn(x, y) defines the relation ∆n from Definition 8 in any topological
algebra, note first that the initial clause (∃U, V ∈ B)[α(U, V, x, yn)] expands to

(∃U, V ∈ B)[(x ε U) ∧ (yk+1 ε V )],

which holds in every topological algebra. Thus, what needs to be verified induc-
tively is that (∀U, V ∈ B)[α(U, V, x, yk+1) =⇒ β(U, V, x, yk+1)] is equivalent to
yk+1 ∆k+1 x. Expanding the formula we are considering,

(∀U, V ∈ B)[((x ε U) ∧ (yk+1 ε V )) =⇒ (∃yk)[(ykεU) ∧ (ykεV ) ∧ (Φk(x, yk))],

we see by inspection that this is a direct translation of Definitions 7 and 8. ¤
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Sentence (1), which expresses extentionality, is not equivalent to a Horn sentence
since it is not preserved by products. Specifically, if A satisfies Sentence (1), U, V
are distinct sets in B, and U is “empty” in the sense that no x ∈ A satisfies x ε U ,
then in A × A the sets U × V, V × U ∈ B × B are different because they are
different coordinatewise. But they are both “empty”. Hence extentionality is not
preserved under products. Throughout this section we shall be concerned with
topological properties that are preserved by products and ultraproducts. Thus, we
now restrict our attention to 2-sorted structures A = 〈A;B;O,R, ε〉 axiomatized
by Sentences (2)–(6). Such structures are precisely those derived from topological
algebras 〈A; τ ;O〉 with all symbols having their intended meanings, except that the
sort B denotes only a set of names for the basis elements of the topology, and we
allow multiple names for any basis element.

Let Ai = 〈Ai;Bi;O,R, ε〉, i ∈ I, be a family of nonempty structures satisfy-
ing Sentences (2)–(6). The product

∏

i∈I Ai =
〈
∏

i∈I Ai;
∏

i∈I Bi;O,R, ε
〉

satisfies
(2)–(5), since these sentences are Horn, hence the product corresponds to a topo-
logical algebra. It is immediate from the well known definition that the topology on
∏

i∈I Ai generated by
∏

i∈I Bi is what is usually called the box topology. For finite
products the box topology is identical with the product topology. Since the topo-
logical relation ∆n is definable by a factorable formula, the symbol ∆n interprets
as the relation introduced in Definition 8 in a product if and only if it interprets as
that relation in each factor.

Now let U be an ultrafilter on I. The ultraproduct (over U) of the sets Ai, i ∈ I,
is the set

∏

U Ai, defined to be the quotient of the product set A =
∏

i∈I Ai by

the equivalence relation θU = {(a,b) ∈ A2 | [[a = b]] ∈ U} where [[a = b]] = {i ∈
I | ai = bi} denotes the set of coordinates where a and b are equal. The ultra-
product

∏

U Ai = 〈
∏

U Ai;
∏

U Bi;O,R, ε〉 satisfies (2)–(5), since these sentences are
first-order and assumed to hold in each coordinate, hence the ultraproduct corre-
sponds to a topological algebra. The topology on

∏

U Ai generated by
∏

U Bi is
called the ultraproduct topology. The ultraproduct topology can be constructed in
a different way, as follows: First give the product

∏

i∈I Ai the box topology (whose
basis is

∏

i∈I Bi). Then give the quotient set
∏

U Ai the quotient topology induced

by the natural map ν :
∏

i∈I Ai →
(
∏

i∈I Ai

)

/θU : a 7→ a/θU .

Lemma 14. Each of the following topological properties is expressible by a first-
order sentence that is preserved by products.

(1) T0, T1, T2.
(2) Hj, sHj, j = 1, 2, . . ..
(3) T0 =⇒ Ti, i = 1, 2.
(4) T0 =⇒ Hj, T0 =⇒ sHj, j = 1, 2, . . ..

Proof. We first show that each property Ti,Hj , or sHj is expressible by a factorable
sentence. First, notice that the relation “x ∈ cl(y)” is expressible by the factorable
formula (∃U ∈ B)[α(U, x, y)] ∧ (∀U ∈ B)[α(U, x, y) ⇒ β(U, x, y)] (an instance of
(F3)) where α(U, x, y) is (x ε U) and β(U, x, y) is (y ε U) (instances of (F1)).
T0 is expressed by the factorable sentence

(∃x, y ∈ A)[α(x, y)] ∧ (∀x, y ∈ A)[α(x, y) =⇒ β(x, y)]

where α(x, y) is the factorable formula (x ∈ cl(y)) ∧ (y ∈ cl(x)), and β(x, y) is
(x = y). T1 is expressed by the factorable sentence that is the same as the one for
T0 except α(x, y) is changed to (x ∈ cl(y)).
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Since T2 = H1, we may now turn to Hj and sHj . Hj is expressible as

(∃x, y ∈ A)[α(x, y)] ∧ (∀x, y ∈ A)[α(x, y) =⇒ β(x, y)]

where α(x, y) is Φj(x, y) and β(x, y) is (x = y). The property sHj is expressible as

(∃x, y ∈ A)[α(x, y)] ∧ (∀x, y ∈ A)[α(x, y) =⇒ β(x, y)]

where α(x, y) is Φj(x, y) ∧ Φj(y, x) and β(x, y) is (x = y). This completes the
proof of parts (1) and (2) of the lemma since factorable sentences are preserved by
products.

If Q and R are factorable sentences, then Q =⇒ R is a sentence that is preserved
by products. To see this, suppose that each Ai satisfies Q =⇒ R, but

∏

i∈I Ai does
not satisfy it. Then the product satisfies Q and does not satisfy R. Since these
sentences are factorable, every factor satisfies Q and some factor fails to satisfy R.
But then the factor that fails R also fails Q =⇒ R, contrary to assumption. Thus,
it follows from what we proved above that the properties in parts (3) and (4) are
expressible by sentences that are preserved by products. ¤

The previous lemma shows that if P denotes one of the implications T0 =⇒ Ti or
T0 =⇒ Hj , then P is preserved by products and (since P is first-order expressible)
¬P is preserved by ultraproducts. This leads us to the main theorem of this section.

Theorem 15. Let P be a property of topological spaces, and let [P ] be the class of
all varieties V having the property that any topological algebra in V has underlying
space satisfying property P . If P is preserved by finite products, and if ¬P is
preserved by ultraproducts, then [P ] is a class of varieties that is definable by a
Maltsev condition.

Remark. Our assumption that P is preserved by finite products includes the preser-
vation of P by the empty product. Hence our assumption implies that P is true for
a 1-element space. Moreover, since products are unique only up to isomorphism,
the assumption that P is preserved by products of one factor is equivalent to the
assumption that P is an isomorphism invariant.

Proof. W. Taylor showed in [18] that a nonempty class K of varieties is definable
by a Maltsev condition if and only if

(1) K is closed under the formation of equivalent varieties;
(2) K is closed under the formation of subvarieties;
(3) K is closed under the formation of finite products of varieties;
(4) if V ∈ K and V is generated by all reducts of members of W to the type of

V, then W ∈ K; and
(5) if the equations Σ define a variety in K of signature σ, then there exist finite

subsets Σ0 ⊆ Σ and σ0 ⊆ σ with Σ0 defining a variety in K of signature σ0.

We apply this result to K = [P ]. This class is nonempty, since our assumption
that P is preserved by finite products implies that any variety of trivial algebras is
in [P ].

The underlying space of a topological algebra in a variety that is:

(1) equivalent to some V ∈ [P ],
(2) is a subvariety of some V ∈ [P ], or
(4) is some W whose reducts to the type of some V ∈ [P ] are V-algebras

9



is also the underlying space of a V-algebra. Thus Taylor’s conditions (1), (2) and
(4) hold for [P ].

If V,V ′ ∈ [P ] and A is a topological algebra in V ×V ′, then according to Propo-
sition 5 of Chapter 1 of [8] there are topological algebras B ∈ V and B′ ∈ V ′ such
that A ∼= B ×B′ as topological algebras. In particular, the underlying space of A is
the product of the underlying spaces of B and B′. Hence if P is a property that is
preserved by finite products, then (1)–(4) of Taylor’s characterization hold for [P ].

We now prove that if ¬P is preserved by ultraproducts, then property (5) of
Taylor’s characterization holds for [P ]. Let V ∈ [P ] be a variety of signature σ that
is axiomatized by the set of equations Σ. Define I to be the set of all pairs (σ0,Σ0)
of finite subsets σ0 ⊆ σ,Σ0 ⊆ Σ. For each i = (σ0,Σ0) ∈ I define

Ui = {(σ′0,Σ
′
0) ∈ I | σ0 ⊆ σ′0,Σ0 ⊆ Σ′0}.

No Ui is empty, since i ∈ Ui. Since

U(σ0,Σ0) ∩ U(σ′
0,Σ

′
0)

= U(σ0∪σ′
0,Σ0∪Σ′

0)
,

the collection of all Ui, i ∈ I, is a filter on I. Let U be an ultrafilter extending
this filter. For each i = (σ0,Σ0) ∈ I let Vi be the variety of signature σ0 that is
axiomatized by Σ0.

We are done if some Vi ∈ [P ], so suppose that no Vi ∈ [P ]. Then for each i we
can find a topological algebra Ai ∈ Vi whose underlying space fails to satisfy P . If
i = (σ0,Σ0), then we can expand Ai to a topological algebra Âi of signature σ by
defining each operation in σ−σ0 to be an arbitrary constant operation on Ai of the
right arity. Since constant operations are continuous, the family Âi, i ∈ I, consists
of topological algebras of signature σ whose underlying spaces fail to have property
P . Since the property of being a topological algebra is first-order (Sentences (2)–(6)
from the beginning of the section), and since we have assumed that ¬P is preserved

by ultraproducts, we get that
∏

U Âi is a topological algebra of signature σ that fails

to have property P . Moreover,
∏

U Âi ∈ V, as we now argue. Choose any equation
ε ∈ Σ. Let σ0 be the set of operation symbols that occur in ε, and let Σ0 = {ε}.
Then (σ0,Σ0) = i for some i ∈ I. According to our definitions, [[ε]] contains Ui ∈ U ,

so [[ε]] ∈ U . By ÃLos’s Theorem
∏

U Âi satisfies ε. Since ε was arbitrary,
∏

U Âi

satisfies Σ, and therefore
∏

U Âi ∈ V. As the underlying space of
∏

U Âi fails to
satisfy P , we conclude that V 6∈ [P ], a contradiction. The assumption that led to
this contradiction is that no Vi ∈ [P ]. Hence (5) is established. ¤

Corollary 16. Let P be one of the implications T0 =⇒ Ti or T0 =⇒ Hj. The class
[P ] is definable by a Maltsev condition.

Remarks. Although we have not defined T2 1
2
, T3, T3 1

2
and T4 in this paper, the

reader can easily locate their definitions. We leave it as an exercise for the in-
terested reader to show that T0 =⇒ T2 1

2
and T0 =⇒ T3 are properties that are

preserved by products and whose negations are preserved by ultraproducts, hence
these topological implications correspond to Maltsev conditions.

The implication T0 =⇒ T4 is not preserved by finite products, nor is its negation
preserved by ultraproducts. Yet for this property P the class [P ] is definable by
a Maltsev condition. This is because any nontrivial variety contains topological
algebras that are T0 but not T4! (Hence [P ] is the Maltsev-definable class of trivial
varieties.) The reason that this is true is that if A ∈ V is any nontrivial algebra

10



equipped with the discrete topology and Aω2 is given the product topology, then
the ultrapower

∏

U A
ω2 where U is a nonprincipal ultrafilter on a countable set is

a T0 topological algebra in V that is not T4. (See the corollary to Theorem 8.2 of
[1] for details.)

The property T0 =⇒ T3 1
2

is preserved by finite products, but its negation is not

preserved by ultraproducts (see [1]). Therefore Theorem 15 does not apply to show
that the class [P ] for this P is definable by a Maltsev condition. However, it is a
classical result due to Pontryagin that T0 =⇒ T3 1

2
holds for the variety of groups

(see [12]). Thus, it may be interesting to determine whether or not this implication
corresponds to a Maltsev condition. We conjecture that it does.

4. k-Permutable Varieties Satisfy T0 =⇒ Hb k
2
c

Lemma 17. Let A be a T0 topological algebra in a k-permutable variety. Let
a, b ∈ A and suppose a ∈ ∆j(b), for some j ≥ 0. Then

p1+j(b, a, a) = b = pk−1−j(a, a, b)

Proof. First note that A is T1, by Theorem 2. We prove the first equality. A
symmetric argument yields the second one. The proof follows by induction on j.
The equality clearly holds for j = 0. Let j > 0, suppose the result holds for j − 1
and let a ∈ ∆j(b). Suppose, by way of contradiction, that p1+j(b, a, a) 6= b; thus

pj(b, b, a) = p1+j(b, a, a) ∈ A \ { b }

By T1, A \ { b } is open, so by continuity there exist open sets V 3 b, U 3 a such
that

pj(b, V, U) ⊆ A \ { b }

Since a ∈ ∆j(b), we can take an element c ∈ U ∩ V ∩∆j−1(b); thus

pj(b, c, c) ∈ A \ { b }

contradicting the induction hypothesis. ¤

Remark. Since ∆j(b) ⊆ ∆l(b) for each l ≤ j, we have, for a ∈ ∆j(b),

p1(b, a, a) = p2(b, a, a) = · · · = p1+j(b, a, a) = b

From this lemma, Coleman’s Theorem 3 follows easily:

New proof of Theorem 3. Suppose k ≥ 3 and A is a T0 topological algebra in a
k-permutable variety V. Choose a, b ∈ A with a ∈ ∆k−2(b). Since k − 2 ≥ 1,
∆k−2 ⊆ ∆1, so a∆1 b and thus also b∆1 a (since ∆1 is symmetric, as noted after
Corollary 10). Using the first equality in Lemma 17 we get

pk−1(b, a, a) = p1+k−2(b, a, a) = b

and using the second equality together with b ∈ ∆1(a) we get

pk−2(b, b, a) = pk−1−1(b, b, a) = a.

Thus

a = pk−2(b, b, a) = pk−1(b, a, a) = b.

This shows that ∆k−2 is the equality relation, so A is Hk−2. ¤

Lemma 18. Let A be an algebra in a k-permutable variety. If θ is a reflexive,
antisymmetric and compatible relation on A, then θ is the identity relation.

11



Proof. Choose a, b ∈ A with a θ b. Clearly, p1(b, a, a) = b. If pi(b, a, a) = b, then

b = pi(b, a, a) θ pi(b, b, a) θ pi(b, b, b) = b

so 〈b, pi(b, b, a)〉 ∈ θ ∩ θ∪, which is the equality relation. Hence b = pi(b, b, a) =
pi+1(b, a, a). By induction, pi(b, a, a) = b holds for all i ≥ 1, and so a = pk(b, a, a) =
b. ¤

Combining Lemma 18 and Corollary 10, we can now easily derive the following

Theorem 19. For topological algebras in a k-permutable variety, the conditions
Hj and sHj coincide.

Proof. Just note that ∆j is a reflexive compatible relation, Hj means ∆j is the
identity relation, and sHj means ∆j is antisymmetric. ¤

We can now state and prove the main theorem of this section.

Theorem 20. Let k ≥ 1. For topological algebras in a k-permutable variety,

T0 =⇒ Hb k
2
c

Proof. Let A be a T0 topological algebra in a k-permutable variety. By the previous
theorem, it is enough to show A is sHb k

2
c. Suppose a, b ∈ A with a∆b k

2
c b and

b∆b k
2
c a. By Lemma 17, we have

b = pb k
2
c(b, a, a) = p1+b k

2
c(b, a, a)

and
a = pk−1−b k

2
c(b, b, a)

Thus, by the Hagemann-Mitschke identities,

a = pk−1−b k
2
c(b, b, a) = pk−b k

2
c(b, a, a) = pd k

2
e(b, a, a) = b

since dk2 e is equal to either b k2 c or 1 + bk2 c (depending on whether k is even or
odd). ¤

We cannot improve the subscript in Theorem 20 since we have:

Theorem 21. For each k ≥ 2, there exists a k-permutable variety containing a
topological algebra which satisfies Hb k

2
c but not Hb k

2
c−1.

The proof of this theorem will occupy the next section.

5. Not All k-Permutable Varieties Satisfy T0 =⇒ Hb k
2
c−1

Definition 22. For each k ≥ 2, Pk denotes the variety defined with k + 1 ternary
fundamental operations p0, . . . , pk obeying the identities of Theorem 4.

From Theorem 4 we have that Pk is k-permutable.
It is sometimes convenient to allow for extra operations pj with j > k: we will

do so, with the assumption that such operations always act as the third projection;
we also allow for pj with j < 0, these always acting as the first projection. Note
that with these conventions the identities pj(x, x, z) = pj+1(x, z, z) still hold for all
j and each Pk may be construed as the subvariety of Pk+1 defined by the extra
identity pk(x, y, z) ≈ z.

We need a few relatively easy syntactic facts about Pk. We do not offer detailed
proofs here, as these can be derived from knowledge about the word problem for
Pk, which is easily solvable.

12



Lemma 23. Let k ≥ 2, let X be a set and let F be a Pk-algebra, freely generated
by X. Let x ∈ X. Then

(i) pi(a, b, c) = x if and only if one of the following conditions holds:
a) i ≤ 0 and a = x;
b) i = 1, b = c and a = x;
c) 1 < i < k − 1 and a = b = c = x;
d) i = k − 1, a = b and c = x;
e) i ≥ k and c = x.

(ii) F \ {x } is a subuniverse of F .

Sketch of proof. (i) can be derived from the study of the word problem for Pk (see,
for example, [3] or [16]). (ii) follows immediately from (i). ¤

We will need the following result of Taylor [19], which is an application of a

previous result of Świerczkowski [17]:

Lemma 24. Let (X, d) be a metric space and V be a nontrivial variety. There

exists a metric d̂ on F = FV(X), extending d and such that the V-operations are

continuous with respect to d̂ (This d̂ is called the Świerczkowski metric on F).

To prove Theorem 21, we will make use of the following construction, which is
also present in [4] (although our definition is slightly different — see [4, Definition
2.3 (1)b]).

Definition 25. Let A and B be topological spaces, and let b ∈ B, such that { b }
is closed in B. We denote by AÃb B the space with underlying set A

.
∪ (B \ { b })

and such that a subset U ⊆ AÃb B is open if and only if:

a) U ∩A is A-open;
b) U ∩B is B-open;
c) if U ∩A 6= ∅, then (U ∩B) ∪ { b } is B-open.

The following lemma is implicit in [4], although it is proved there only for a
particular case.

Lemma 26. Let k ≥ 1. Suppose A is a topological space which satisfies Hk, but
not Hk−1. Suppose B is Hausdorff, and b ∈ B is such that { b } is not open. Then
AÃb B satisfies Hk+1, but not Hk. The same holds if we replace each Hj by sHj.

Proof. Suppose A andB satisfy the hypotheses of the Lemma and letX := AÃb B.
For each j ≥ 0, let ∆A

j denote ∆j as calculated on the space A. Consider any
x ∈ X. If x ∈ B \ { b }, then we have ∆1(x) = {x } and thus, as k + 1 ≥ 1,
also ∆k+1(x) = {x }. If x ∈ A, then ∆1(x) = A = ∆A

0 (x), from which we easily
obtain ∆j+1(x) = ∆A

j (x) for all j ≥ 0. Thus, since A is Hk, ∆k+1(x) = {x } for
all x ∈ A, so X is Hk+1. Also, as A is not Hk−1, there exists x ∈ A ⊆ X such that
∆k(x) = ∆A

k−1(x) 6= {x }, so X is not Hk. ¤

This lemma will be instrumental in our construction. We will use it to prove the
next lemma, from which Theorem 21 easily follows.

Lemma 27. Let j, k ≥ 1, and suppose there exists a topological algebra in Pk,
which satisfies Hj, but not Hj−1. Then there exists a topological algebra in Pk+2
which satisfies Hj+1 but not Hj.
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Proof. Let A be a topological Pk-algebra which satisfies Hj but not Hj−1. Let

B = FPk+2
(R) be endowed with the topology induced by the Świerczkowski metric,

and let b = 0 ∈ B. It is easy to see that the hypotheses of Lemma 26 are satisfied,
and thus that X := AÃ0 B becomes a topological space which satisfies Hj+1 but
not Hj . To complete the proof of the lemma, we will presently define operations
p0, . . . , pk+2 on X, and show them to be continuous and obey the identities of Pk+2.
We will denote by pAi , pBj the operations defined in A and B. We define φ : X → B
by

φ(x) =

{

0 if x ∈ A

x if x ∈ B

and let p0(x, y, z) = x, pk+2(x, y, z) = z, and

p1(x, y, z) =











x if x, y, z ∈ A

x if x ∈ A, y = z ∈ B

pB1 (φ(x), φ(y), φ(z)) otherwise

pk+1(x, y, z) =











z if x, y, z ∈ A

z if z ∈ A, x = y ∈ B

pBk+1(φ(x), φ(y), φ(z)) otherwise

and, for 1 < i < k + 1,

pi(x, y, z) =

{

pAi−1(x, y, z) if x, y, z ∈ A

pBi (φ(x), φ(y), φ(z)) otherwise

Although 0 appears in the definition of these operations, the reader can check, using
lemma 23, that the above definitions never produce 0 as the value of pi(x, y, z), and
thus that the above do indeed define operations on X. To complete the proof of
the lemma, we will establish the following two claims.

Claim 28. The operations p0, . . . , pk+2 defined on X satisfy the identities for Pk+2.

Claim 29. The operations p0, . . . , pk+2 defined on X are continuous.

¤

Proof of Claim 28. • p1(x, z, z) = x: if x ∈ A, this follows from one of the
first two clauses, depending on whether z ∈ A or z ∈ B; if x ∈ B, then
x = φ(x) and the equality follows from the third clause by the identities of
B.

• pk+1(x, x, z) = z: this is entirely analogous to the previous identity.
• pi(x, x, z) = pi+1(x, z, z): again, this is clear in case x and z both belong

to A or to B; in the other two possible cases, we always have

pi(x, x, z) = pBi (φ(x), φ(x), φ(z)) = pBi+1(φ(x), φ(z), φ(z)) = pi+1(x, z, z)

¤

Proof of Claim 29. We will adhere to the following notations throughout this proof:
for an (X-)open set U , we will let UA denote U ∩ A, UB denote U ∩ B and U0B
denote UB ∪ { 0 }.

• p0 and pk+2 are continuous.
14



• p1 is continuous: suppose first that x1, x2, x3 ∈ A; let U be open such that
x1 = p1(x1, x2, x3) ∈ U . Choose A-open sets Ai 3 xi and B-open sets
B′i 3 0 such that

A1 ⊆ UA

pB1 (B′1, B
′
2, B

′
3) ⊆ U0B

Define Bi := B′i \ { 0 }; note that since 0 is one of the free generators of the
free algebra B, it follows from Lemma 23 that

pB1 (B1, B2, B3) ⊆ UB

Define Ui := Ai ∪ Bi. Then p1(U1, U2, U3) ⊆ U . Thus p1 is continuous on
A3.
Next, suppose x1 ∈ A, x2 = x3 ∈ B and U is open such that

x1 = p1(x1, x2, x3) ∈ U

Take A1 := UA and choose B-open sets B′i such that 0 ∈ B′1, x2 =
x3 ∈ B′2, B

′
3 and pB1 (B′1, B

′
2, B

′
3) ⊆ U0B (we’re just using the continuity

of pB1 at (0, x2, x3)). Letting Bi := B′i \ { 0 }, it follows as above that
pB1 (B1, B2, B3) ⊆ UB . Letting U1 := A1 ∪B1, U2 := B2, U3 := B3 we have
p1(U1, U2, U3) ⊆ U . Finally, we prove continuity at those triples where p1 is
defined by the third clause. Take such x1, x2, x3 ∈ X and an open set U such
that p1(x1, x2, x3) = pB1 (φ(x1), φ(x2), φ(x3)) ⊆ U . By continuity of pB1 , we
can choose B-open sets B′i 3 φ(xi) such that pB1 (B′1, B

′
2, B

′
3) ⊆ UB . Since B

is Hausdorff, we may as well require that B′i ∩B
′
j = ∅ when φ(xi) 6= φ(xj).

For each i, let Bi := B′i \ { 0 } and, in case xi ∈ A, choose an A-open set
Ai 3 xi; then let

Ui :=

{

Ai ∪Bi if xi ∈ A

Bi if xi ∈ B

From our assumptions, it is not hard to check that in evaluating p1(U1, U2, U3)
the third clause of the definition is always used and that p1(U1, U2, U3) ⊆ U ,
as required. Thus p1 is continuous.

• pk+1 is continuous: this follows from an entirely analogous argument.
• pj is continuous for each 1 < j < k + 1: first suppose x1, x2, x3 ∈ A, U is

open and pj(x1, x2, x3) = pAj−1(x1, x2, x3) ∈ U . Choose A-open sets Ai 3 xi
and B-open sets B′i 3 0 such that

pAj−1(A1, A2, A3) ⊆ UA

pBj (B′1, B
′
2, B

′
3) ⊆ U0B

Again, let Bi := B′i \ { 0 }; let Ui := Ai ∪ Bi. Then pj(U1, U2, U3) ⊆ U .
Next, we consider those triples (x1, x2, x3) for which pj is defined by the
second clause. Let U be open and

pj(x1, x2, x3) = pBj (φ(x1), φ(x2), φ(x3)) ∈ U

As before, choose open sets B′i 3 φ(xi), let Bi := B′i \ { 0 } and, in case
xi ∈ A, also choose an A-open set Ai 3 xi. Let

Ui :=

{

Ai ∪Bi if xi ∈ A

Bi if xi ∈ B
15



Then pj(U1, U2, U3) ⊆ U . Thus pj is continuous.

¤

Proof of Theorem 21. There certainly exist 1-step Hausdorff algebras in P2 and P3
whose base set has more than one point: take, for example the real numbers with
the usual topology and p1(x, y, z) := x − y + z, p2(x, y, z) := z. Such algebras
therefore satisfy H1 but not H0. The theorem now follows from Lemma 27 by
induction. ¤

6. Congruence Modular, k-Permutable Varieties Satisfy T0 =⇒ T2

Theorem 30. For topological algebras in a congruence modular, k-permutable va-
riety,

T0 =⇒ T2

Proof. We prove the theorem by contradiction. Assume that A ∈ V is a T0 topolog-
ical algebra that is not T2. According to Theorem 20 there is some j > 1 such that
A is Hj but not Hj−1. For this value of j we have that ∆j is the equality relation
on A, but ∆j−1 is different from equality. If θ = ∆j−1 ∩ ∆∪j−1, then Lemma 18
ensures that θ is not the equality relation. Choose distinct a, b ∈ A such that a θ b.
Then (a, b), (b, a) ∈ ∆j−1.

Let q0, . . . , qn−1, p be terms satisfying the conditions of Theorem 6. Without loss
of generality, we may assume n is even (otherwise we could add qn := qn−1). Con-
sider the sequence of elements: q1(a, a, b), q1(a, b, b), q2(a, b, b), q2(a, a, b), q3(a, a, b),
q3(a, b, b), . . . , qn−1(a, a, b), qn−1(a, b, b), p(a, b, b), p(a, a, b). According to Theo-
rem 6, the first element of this sequence is a and the last element of the sequence
is b. Moreover, the last element of the form qi(−,−,−) equals the first element of
the form qi+1(−,−,−), and qn−1(a, b, b) = p(a, b, b). Thus, since a 6= b, one of the
following cases must occur:

(a) a = qi(a, a, b) 6= qi(a, b, b) for some odd i;
(b) a = qi(a, b, b) 6= qi(a, a, b) for some even i; or
(c) a = p(a, b, b) 6= p(a, a, b) = b.

We will explain why each of these cases leads to a contradiction.
Assume that we are in Case (a): a = qi(a, a, b) 6= qi(a, b, b) = q. Since ∆j−1 is

a compatible reflexive relation containing (b, a), it contains qi((a, a), (b, a), (b, b)) =
(q, a), so q ∈ ∆j−1(a) ⊆ ∆1(a). Therefore every open set containing q has nonempty
intersection with every open set containing a. But because q 6∈ ∆j(a) = {a} we can
find open sets U and V such that a ∈ U, q ∈ V , and

U ∩ V ∩∆j−1(a) = ∅.

Since qi(a, a, b) = a ∈ U and qi(a, x, b) is continuous there is an open set U ′ contain-
ing a such that qi(a, U

′, b) ⊆ U . Similarly, since qi(a, b, b) = q ∈ V and qi(a, x, b) is
continuous, there is an open set V ′ containing b such that qi(a, V

′, b) ⊆ V . Since
a ∆1 b there must exist c ∈ U ′∩V ′. For this c we have qi(a, c, b) ∈ U∩V . According
to the last displayed line this forces qi(a, c, b) 6∈ ∆j−1(a). But this is impossible,
since qi(a, c, b) ∆j−1 qi(a, c, a) = a. This contradiction shows that Case (a) cannot
occur.

The argument for Case (b) is essentially the same as Case (a), since both
(a, b), (b, a) ∈ ∆j−1.
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In Case (c) we have a = p(a, b, b) and p(a, a, b) = b. According to Theorem 6
the latter equation can be strengthened to p(x, x, y) ≈ y. Now, since U = A \ {b}
is open, the fact that p(a, b, b) = a 6= b implies that we can find open sets U an V
containing a and b respectively such that p(U, V, V ) ⊆ A \ {b}. Since a ∆1 b there
exists c ∈ U ∩ V , and for this element we have b = p(c, c, b) ∈ p(U, V, V ) ⊆ A \ {b},
which is the contradiction we need for Case (c). ¤

Corollary 31. [5, Theorem 4.4] If V is a weakly regular variety, then the topological
algebras in V satisfy T0 =⇒ T2.

Proof. Weakly regular varieties are congruence modular and k-permutable for some
k. (Refer to [5] for the definition of weakly regular and for Coleman’s proof of this
result.) ¤

We now prove a result that may be viewed as a partial converse to Theorem 30.

Theorem 32. Let ε be a lattice identity and let k ≥ 2 be a fixed integer. If it
is true that all topological algebras in congruence-ε, k-permutable varieties satisfy
T0 =⇒ T2, then either

(1) every congruence-ε variety is congruence modular, or
(2) every k-permutable variety is congruence modular.

In other words, this theorem asserts that if the implication T0 =⇒ T2 can be
characterized by congruence identities and k-permutability for some k, then the
characterization is the one suggested by Theorem 30.

Proof. Assume that the theorem statement is false, and that its falsity is witnessed
by some fixed integer k and some fixed lattice identity ε. The falsity of the theorem
implies that there is some nonmodular, k-permutable, congruence-ε variety. Since
this nonmodular variety is k-permutable, it must be that k ≥ 4. Now, since Polin’s
variety [15] is k-permutable for all k ≥ 4, and satisfies every congruence identity
that fails to entail modularity (see [7]), the falsity of this theorem would force
topological algebras in Polin’s variety satisfy T0 =⇒ T2. But they do not, as we
now show.

First, recall from [7] that a typical algebra P(S,A) in Polin’s variety may be
specified in terms of an “external” Boolean algebraA, a family of “internal” Boolean
algebras S(a) (a ∈ A), and for each pair of elements a, b ∈ A with a ≥ b a Boolean
algebra homomorphism ξab : S(a) → S(b) satisfying

(i) ξbc ◦ ξ
a
b = ξac if a ≥ b ≥ c, and

(ii) ξaa = idS(a).

The universe of P(S,A) = 〈P ;∧, ′,+, 1〉 is

P =
⋃

a∈A

{a} × S(a)

and the operations are defined by:

(i) (a, u) ∧ (b, v) = (a ∧ b, ξaa∧b(u) ∧ ξba∧b(v)),
(ii) (a, u)′ = (a, u′),

(iii) (a, u)+ = (a′, 1),
(iv) 1P = (1A, 1S(1A)),
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where the right hand sides are computed using the operations of the internal and
external Boolean algebras.

In this proof we will work only with the algebra P = P(S,A) where A is an
arbitrary but fixed infinite Boolean algebra, S(a) is the 1-element Boolean algebra
for all a < 1, S(1) is the 2-element Boolean algebra, and ξab is constant whenever
a 6= b. P is subdirectly irreducible, the smallest nonzero congruence µ on P is the
equivalence relation generated by 〈(1, 0), (1, 1)〉, and P/µ is definitionally equivalent
to the Boolean algebra A.
P/µ has a natural Hausdorff topology, which makes it into a topological algebra.

We can describe this topology as follows: since P/µ is definitionally equivalent
to a Boolean algebra it can be embedded in 2X where X is the Stone space of
P/µ. We can give 2 the discrete topology, 2X the product topology, and P/µ the
induced topology. We can now make P a topological algebra using the natural
homomorphism ν : P → P/µ, by letting each ν−1(U) be open in P if U is open in
P/µ. (For an alternate description of the same topology on P, take as a basis of
open sets all classes of congruences of finite index on P.)

The topology we have defined on P is not T0, since cl((1, 0)) = S(1) = cl((1, 1)).
Hence we refine the topology by adding two new subbasis elements: U = P \{(1, 0)}
and V = P \ {(1, 1)}. The open sets of the new topology, τ , are the same as those
of the original topology, except that deleting either (1, 0) or (1, 1) from an open set
leaves it open.

We leave the verification of the following facts to the reader.

(a) 〈P ; τ〉 is T0. (In fact, this space is naturally homeomorphic to {0, 1} Ã1

P/µ where {0, 1} is the 2-element discrete space and P/µ has the Hausdorff
topology described above. Hence 〈P ; τ〉 is even H2.)

(b) P is a topological algebra. (It suffices to check that if f is one of the basic
operations, and f(c, d) ∈ U or f(c, d) ∈ V , then there exist open C,D with
c ∈ C, d ∈ D and f(C,D) ⊆ U or V .)

(c) (1, 0) ∆1 (1, 1).

Once the reader completes these verifications he will see that Polin’s variety fails
the implication T0 =⇒ T2. (It even fails the weaker implication H2 =⇒ T2.) ¤

Definition 33. [2] For each k ≥ 2, let Wk be the variety with ternary operations
d1, d2, d, p1, . . . , pk−1 satisfying the following equations:

x ≈ d1(x, y, y)

d1(x, x, y) ≈ d2(x, x, y)

d2(x, y, x) ≈ x

d2(x, y, y) ≈ d(x, y, y)

d(x, x, y) ≈ y

x ≈ p1(x, y, y)

p1(x, x, y) ≈ p2(x, y, y)

...

pk−2(x, x, y) ≈ pk−1(x, y, y)

pk−1(x, x, y) ≈ y

Bentz [2] showed that all Wk satisfy T0 =⇒ T2. Since W2 and W3 are 2- and
3-permutable respectively, they are modular. The terms d1, d2, d “almost” sat-
isfy the conditions for congruence modularity given by Theorem 6 (the identity
“d1(x, y, x) ≈ x” is missing). Bentz asked whether or not there is a large value of
k such that Wk provides an example of a nonmodular variety satisfying T0 =⇒ T2.
We answer this question in the negative; all Wk are modular. (Hence Theorem 30
provides a second proof that these varieties satisfy T0 =⇒ T2.)
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Theorem 34. For each k ≥ 2, Wk is congruence modular.

Proof. Define the following terms in Wk:

m0(x, y, z, w) := x

m1(x, y, z, w) := x

m2(x, y, z, w) := d1(x, d2(x, z, y), d(x, y, z))

m3(x, y, z, w) := d2(x, y, w)

m4(x, y, z, w) := d2(x, z, w)

m5(x, y, z, w) := d(y, z, w)

m6(x, y, z, w) := w

These terms satisfy the identities of Theorem 5. We check that m2(x, x, w,w) ≈
m3(x, x, w,w) holds. The other required identities can be just as easily verified.

m2(x, x, w,w) = d1(x, d2(x,w, x), d(x, x, w))

= d1(x, x, w)

= d2(x, x, w)

= m3(x, x, w,w)

¤

7. Concluding Remarks

The following diagram describes the relations among the separation conditions
discussed in this paper.

T2 ⇔ H1 ⇒ H2 ⇒ . . . ⇒ Hj ⇒ . . .
m ⇓ ⇓

sH1 ⇒ sH2 ⇒ . . . ⇒ sHj ⇒ . . . ⇒ T1 ⇒ T0

The only implications that need to be justified are those of the form sHj =⇒ T1.
For these implications, note that

(i) (sHj =⇒ T0): If a 6= b either ∆j(a) is a closed set containing a and not b
or ∆j(b) is a closed set containing b and not a.

(ii) (T0 ∧ ¬T1 =⇒ ¬ sHj): A T0 space X that fails to be T1 has a subspace
{ a, b } with induced topology { ∅, { a }, { a, b } }. For these a and b we have
a∆j b and b∆j a for all j, thus X fails to satisfy sHj for any j.

For topological algebras in some k-permutable variety, all vertical arrows may be
reversed (Theorem 19), as can all but a finite number of horizontal arrows (Theorem
20). And for varieties that are k-permutable and modular, then all these conditions
are equivalent, by Theorem 30.

For topological spaces in general, the situation is quite different. In fact, none
of the unidirectional arrows in the above diagram can be reversed. In view of the
remarks after Definition 12, we need only show that sHj does not imply Hj for
j ≥ 2. Take X := R ∪ { p }, for some p /∈ R. Topologize X in the following way:
the open subsets not containing p are just the usual open sets in R; the open sets
containing p are those which are cofinite. Then it is not hard to check that X
satisfies sHj for each j ≥ 2, but does not satisfy Hj , for any j.
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