On the functional completeness of simple tournaments

KEITH A. KEARNES

ABSTRACT. The theory of multitraces provides a new proof that any simple tournament
with more than two elements is functionally complete.

A tournament is a finite, directed, complete graph (V; E) without multiple edges.
Write z — y to indicate that x,y € V and (x,y) € E. In this paper tournaments
have loops on all vertices, so x — x for all x € V. Associate to a tournament
(V; E) an algebra (V;-) with the same universe and a binary product defined by
xy = yxr = x whenever x — y. Such an algebra is also called a tournament.

In [3], P. P. P4lfy applied Rosenberg’s Completeness Theorem to prove that every
simple tournament is functionally complete. Here we derive the same theorem from
the theory of multitraces, [2], which is a part of tame congruence theory, [1].

A finite algebra A is functionally complete if every finitary operation on its
universe is a polynomial of the algebra. A trace of a finite simple algebra A is a
subset of A that is minimal among subsets T' C A satisfying |T'| > 1 and T = ¢(A)
for some unary polynomial e satisfying e(e(x)) = e(z). A multitrace of a finite
simple algebra A is a subset M C A such that M = p(T,T,...,T) = p(T™) for
some trace T' and some n-ary polynomial p. It is known that if A is a finite simple
algebra and T and T” are traces, then there are unary polynomials f and g such that
f(T)=T"and g(T") = T, so any trace can be used in the definition of “multitrace”.
It is also known that if 7" is a trace and f is a unary polynomial whose restriction
to T is nonconstant, then f(7T) is another trace.

It is possible to construct an algebra on a trace T' = e(A) by equipping T
with (the restrictions to 7' of) all operations of the form e(p(x)), p a polynomial
operation of A. The result is called the algebra induced on T by A, and is denoted
by A|p. It is shown in [1] that the algebras A|p arising from different traces of A
are polynomially equivalent algebras, and that they come in only five types, which
are numbered 1-5. Their polynomial equivalence types are: 1 = simple G-sets,
2 = 1-dimensional vector spaces, 3 = 2-element Boolean algebras, 4 = 2-element
lattices, and 5 = 2-element semilattices.

The following specialization of Theorem 3.12 of [2] provides criteria for estab-
lishing functional completeness.

Theorem 1. A finite algebra S is functionally complete if and only if
(1) S is simple of type 3, and

1991 Mathematics Subject Classification: 08A40.
Key words and phrases: tournament, multitrace, tame congruence theory.



2 KEITH A. KEARNES

(2) S is a multitrace.

Lemma 2. Let S be a simple tournament with more than two elements.

(1) If N is a subset of S and 1 < |N| < |S|, then there exist z,y € N and
z€ S — N such that x — z — y.

(2) S contains a multitrace M and an element z such that M U{z} is strongly
connected and |M U{z}| > 1. Moreover S has type 3.

(3) If M is any multitrace of S and M U{z} is strongly connected, then MU{z}
is also a multitrace.

(4) If M is a strongly connected multitrace and 1 < |M| < |S|, then there is an
element z € S — M such that M U {z} is strongly connected.

Proof. For (1), assume instead that for every z € S— N it is the case that x — z for
allz € N or z — z for all z € N. Then any polynomial of the form p(x) = sz = zs,
s € 8, is either constant on N or maps IV into itself, implying that N is a congruence
class. This is impossible if S is simple and 1 < |N| < |S|. Thus thereisa z € S—N
such that x — z for some z € N and z — y for some y € N.

For (2) start with M equal to some trace. Since the tournament multiplication
is a semilattice operation on any 2-element subset, it follows from the structure
of traces that M has type 3,4 or 5. This implies that M has 2 elements, say
M = {a, b}, where we assume a — b. Since 1 < |[M| =2 < |S|, item (1) guarantees
that there is some z € S — M such that either a — z — b or b — z — a. In the
latter case, M U{z} is strongly connected, establishing the first statement of (2). To
complete the proof of that statement in the former case, observe that if a — z — b
then {a,b}z = {a, z} is a nonsingleton polynomial image of a trace, so is another
trace. Hence the set

N ={seS|a— sand {a,s} is a trace}

has at least 2 elements and does not contain a. By item (1) there exist u,v € N
and 2/ € S — N such that v — 2/ — v. Since a — u — 2z’ we have a # 2.
If @ — 2/, then {a,v}2z’ = {a,2'} is a trace, so 2/ € N, a contradiction. Thus
we must have 2z’ — a, in which case 2/ — a — u — 2’ is a directed triangle
containing a trace M’ = {a,u}. This trace is a multitrace for which there is an
element z’ € S — M’ such that M’ U {z'} is strongly connected, completing the
proof of the first statement in item (2). In either case of our argument we produced
a directed triangle a — b — z — a containing a trace {a, b}, so it is easy to see that
the type of S is 3 (Boolean type). This is because the tournament multiplication
is a semilattice operation on M while the polynomial ¢(x) = ((zz)a)b is Boolean
complementation on M.

For (3), note that if A = p(T™) and B = ¢(T™) are multitraces, then the complex
product AB = {ab | a € A,b € B} is also a multitrace, since AB = r(T™*") for
r(xy) = p(x)-q(y). Moreover, any singleton set is a multitrace, being the image of a
constant unary polynomial. Thus, if M is a multitrace, so are the complex products
M{z}, M(M{z}), M(M(M{z})), etc. We argue that this is an increasing sequence
of sets which terminates at M U {z} whenever M U {z} is strongly connected.
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Since M U{z} is strongly connected, there exists m € M — {z} such that z — m,
equivalently z = mz. Thus, {z} C M{z}. Multiplying both sides of this inclusion
by M repeatedly yields M{z} C M(M{z}) = M?{z}, then M?{z} C M?3{z}, etc.
Thus the multitraces M*{z} increase with i. They are contained in M U {z} since
this set is a subalgebra of S. If X := |J; M*{z}, then X = M7{z} for some large
7, which makes X a multitrace. By construction we have M X = X so there is no
directed edge from M — X into X. Since z € X, there can be no directed edge from
the set (M U{z}) — X = M — X into X. But M U {z} is strongly connected and
X is a nonempty subset, so this forces M U {z} = X = a multitrace.

For (4), apply (1). O

Items (2) and (3) of this lemma produce a nontrivial strongly connected multi-
trace, while items (3) and (4) allow one to grow this multitrace without restriction
until we reach S. Since the type of S is 3, we obtain from Theorem 1 the desired
result.

Theorem 3. A simple tournament with more than two elements is functionally
complete.

However, the advantage of multitraces is that they are a ‘local’ tool; they may be
applied to minimal congruences as easily as to simple algebras. All the arguments
of Lemma 2 apply to the setting of minimal congruences, hence:

Theorem 4. If o is a minimal congruence of a tournament, then every a-class is
a multitrace. If some a-class has at least 3 elements, then the type of (0,a) is 3.

Minimal congruences of type 3 whose classes are multitraces are functionally com-
plete in the sense that, if Uy, Uy, ..., U, are congruence classes, then any function
f:Up x -+ x U, — Uy can be interpolated by a polynomial. (Theorem 3.12 of [2]
proves this when all U; are equal, but it is easy to see that the statement holds
without that assumption.)
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