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Convex set

S C'R™ is convex if

r,ye S, A\ u>0, A\+u=1 = Ix+uyes

geometrically: z,y € S = line segment through z,y € S

examples (one convex, two nonconvex sets):
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Hyperplanes and halfspaces

hyperplane: set of the form {z | a2z = b, a # 0}

halfspace: set of the form {z | alx < b, a # 0}

a
afz > b
Io —
alz < b

e «a Is the normal vector

e hyperplanes and halfspaces are convex
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Euclidean balls and ellipsoids

Euclidean ball with center x. and radius r:

B(we,r) = 12 | |z = zclla <7p = {we +ru | flulls < 1}

ellipsoid: set of the form
{z|(z—a)"' Pz =) <1}

with P € S| (i.e., P symmetric positive definite)

other representation: {x.+ Au | ||ul|2 < 1} with A square and nonsingular
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Polyhedra

solution set of finitely many linear inequalities and equalities
Ax < b, Cxr=d

(A e R™" C e RP*" < is componentwise inequality)

aq ao

as
as

0 7]

polyhedron is intersection of finite number of halfspaces and hyperplanes
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Convex functions

f:R"™ — R is convex if dom f is a convex set and

fllz+(1=0)y) <O0f(z)+(1-0)f(y)

forall z,y edom f, 0 <0 <1

(y, f(y))
(z, f(x))

e f is concave if —f is convex

e f is strictly convex if dom f is convex and

fO0x+(1—0)y) <0f(z)+(1-0)f(y)

forxz,ycdomf, x £y, 0<6<1
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Examples on R

CoNnvex:

e affine: ax + b on R, for any a,b € R

e exponential: e**, for any a € R

e powers: z¥on Ry, fora>1ora <0

e powers of absolute value: |z|P on R, for p > 1

e negative entropy: zlogx on R,

concave:
e affine: ax + b on R, for any a,b € R
e powers: ¥ on R4, for0 < a <1

e |ogarithm: logx on Ry
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Examples on R" and R™*"

affine functions are convex and concave; all norms are convex

examples on R"

e affine function f(z) = alz + b

examples on R™*" (m x n matrices)

e affine function

m

1=1 5=1

Review on Convex Optimization



Restriction of a convex function to a line

f:R"™ — R is convex if and only if the function ¢ : R — R,
g(t) = f(z + tv), domg = {t |z +tv € dom f}

is convex (in t) for any x € dom f, v € R".

can check convexity of f by checking convexity of functions of one variable
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First-order condition

f is differentiable if dom f is open and the gradient

o - (4242, 4)

exists at each x € dom f

1st-order condition: differentiable f with convex domain is convex iff

fly) > f(z)+ Vf(x) (y—z) forall z,y € dom f

f(y)
flx) + Vf(x) (y— =)

(z, f(z))

first-order approximation of f is global underestimator
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Second-order conditions

f is twice differentiable if dom f is open and the Hessian V?f(x) € S,

0° f(x)

2 L. —
v f(x)w 85@813’

1,7 =1,...,m,

exists at each x € dom f

2nd-order conditions for twice differentiable f with convex domain

e f is convex if and only if

V2f(z) =0 forall z € dom f

o if V2f(z) = 0 for all z € dom f, then f is strictly convex
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Examples

) = (1/2)at Pz + ¢'x +r (with P € S™)

i

(

quadratic function: f

Px + q,

Viz) =

convex if P >0

| Az — b]3

least-squares objective: f(x)

convex (for any A)

quadratic-over-linear: f(x,y)

.ﬁ.ﬂvﬁ//g’//{y
L7

ZZ7N NN
22

75,

convex for y > 0

12
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Epigraph and sublevel set

a-sublevel set of f: R” — R:
Co = {o € dom f | f(2) < a)

sublevel sets of convex functions are convex (converse is false)

epigraph of f : R" — R:

epif = {(z,t) e R"""' |z € dom f, f(x) <t}

epi f

f is convex if and only if epi f is a convex set
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Jensen’s inequality

basic inequality: if f is convex, then for 0 <6 <1,

fOz+ (1—=0)y) <0f(x)+ (1-0)f(y)

extension: if f is convex, then

f(Ez) < Ef(2)
for any random variable z

basic inequality is special case with discrete distribution

prob(z = x) =0, prob(z=y)=1-—10
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Optimization problem in standard form

minimize  fo(x)
subject to  fi(x) <0, i=1,...,m
= () '

e © € R" is the optimization variable
e fo: R" — R is the objective or cost function
e f,:R" =R, i=1,...,m, are the inequality constraint functions

e h; : R™ — R are the equality constraint functions
optimal value:
p* =inf{fo(x) | fi(zr) <0, i=1,....,m, hi(x) =0, i=1,...,p}

e p* = oo if problem is infeasible (no x satisfies the constraints)

e p* = —oo if problem is unbounded below
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Optimal and locally optimal points

x is feasible if x € dom f; and it satisfies the constraints
a feasible x is optimal if fo(x) = p*; Xopt is the set of optimal points

x is locally optimal if there is an R > 0 such that x is optimal for

minimize (over z) fo(2)

subject to fi(z) <0, i=1,....,m, hi(z)=0, i=1,...

|z —z|2 < R

examples (with n =1, m = p = 0)

e fo(r)=1/x, dom fy = Ry,: p* =0, no optimal point

o fo(x) =—logx, dom fh =R, : p*=—00

o fo(x)= :Ulog:c dom fy =R, : p*=—1/e, x = 1/e is optimal
o fo(z)=2a>—3x, p* = —0o0, local optimum at z =1
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Implicit constraints

the standard form optimization problem has an implicit constraint
m p
x €D = ﬂdomfz- N ﬂdomhi,

e we call D the domain of the problem
e the constraints f;(x) <0, h;(x) = 0 are the explicit constraints

e a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:
minimize fo(x) = — Z,lf:l log(b; — al'x)

is an unconstrained problem with implicit constraints a! z < b;
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Feasibility problem

find x
subject to  fi(x) <0, i=1,....m
hi(x) =0, i=1,...,p

can be considered a special case of the general problem with fo(x)
minimize 0
subject to  fi(x) <0, i=1,....,m
hi(x) =0, 1

e p* = 0 if constraints are feasible; any feasible x is optimal

e p* = oo if constraints are infeasible
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Convex optimization problem

standard form convex optimization problem
minimize  fo(x)

subject to fz(:c) i=1,....,m
a; x—bz, 1=1,...,p

e fo, f1, ..., fm are convex; equality constraints are affine

e problem is quasiconvex if fy is quasiconvex (and f1, ..., fm convex)

often written as

minimize  fo(x)
subject to fz( )<0, i=1,....,m
Ax =0

important property: feasible set of a convex optimization problem is convex
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example

minimize  fo(z) = x7 + 25
subject to  fi(z) =21/(1+235) <0
e fo is convex; feasible set {(z1,x2) | 11 = —x2 < 0} is convex

e not a convex problem (according to our definition): f; is not convex, hy
is not affine

e equivalent (but not identical) to the convex problem
minimize  x% + 13

subjectto 1 <0
x1+x2 =0
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Local and global optima

any locally optimal point of a convex problem is (globally) optimal
proof: suppose x is locally optimal and y is optimal with fo(y) < fo(x)

x locally optimal means there is an R > 0 such that

z feasible, |z—z|o <R = fo(z) > fo(x)

consider z = 0y + (1 — 0)z with 0 = R/(2|ly — z||2)

o |[y—zlla >R, 500 <6 <1/2
e 2 is a convex combination of two feasible points, hence also feasible

e ||z —z|2 = R/2 and

fo(z) < 0fo(z) + (1 —0)foly) < fo(x)

which contradicts our assumption that x is locally optimal
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Optimality criterion for differentiable f

x Is optimal if and only if it is feasible and

Vfolx) (y —x) >0 for all feasible y

if nonzero, V fo(x) defines a supporting hyperplane to feasible set X at z
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e unconstrained problem: z is optimal if and only if

r € dom fj, V fo(x) =0

e equality constrained problem
minimize fo(x) subjectto Ax =10
x is optimal if and only if there exists a v such that

r € dom fo, Ax = b, Vi(x)+Av =0

e minimization over nonnegative orthant
minimize fo(x) subjectto x>0

x is optimal if and only if

r €domfy, =0, { Vio(x)i=0 x;>0
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Linear program (LP)

minimize c¢'z +d
subject to Gx =X h
Ax =b
e convex problem with affine objective and constraint functions

e feasible set is a polyhedron

Review on Convex Optimization
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Examples

diet problem: choose quantities x4, . .., z, of n foods

e one unit of food j costs c;, contains amount a;; of nutrient ¢

e healthy diet requires nutrient 7 in quantity at least b;

to find cheapest healthy diet,

minimize ¢!z

subjectto Ax>b, x>0

piecewise-linear minimization
minimize maxizl,,,,,m(aiT:E + b;)
equivalent to an LP

minimize t
subject to alx +b; <t, i=1,...,m
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Chebyshev center of a polyhedron

Chebyshev center of /«

P={x|alax<b, i=1,...,m}
Is center of largest inscribed ball
B={zc+ulllulls <7}
e al'x <b; for all z € B if and only if

sup{a; (zc +u) | [lull2 <7} = aj zc + rllaill2 < b;

e hence, ., v can be determined by solving the LP

maximize 7
subject to  alx.+7llai2 <b;, i=1,...,m
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Quadratic program (QP)

minimize  (1/2)z' Pz +q¢'a +r
subject to Gax X h
Ax =0

o Pc Sﬁ, so objective is convex quadratic

e minimize a convex quadratic function over a polyhedron

Review on Convex Optimization
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Examples

least-squares
minimize ||Az — b||3

e analytical solution 2* = ATh (AT is pseudo-inverse)

e can add linear constraints, e.g., | 2z X u

linear program with random cost

T

minimize ¢élx +y2lYr = Ecly + yvar(clz)

subject to Gx = h, Ax =0

e c is random vector with mean ¢ and covariance X

T T

e hence, ¢L'x is random variable with mean &% 2 and variance 21Xz

e v > 0 is risk aversion parameter; controls the trade-off between
expected cost and variance (risk)
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Quadratically constrained quadratic program (QCQP)

minimize  (1/2)2! Pox + ¢z + 7
subject to  (1/2)z' Pz +q¢lxz+7; <0, i=1,...,m
Ax =D

e P, € S"'; objective and constraints are convex quadratic

o if P,..., P, €S, feasible region is intersection of m ellipsoids and
an affine set
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Lagrangian
standard form problem (not necessarily convex)

minimize  fo(x)
subject to  fi(x) <0, i=1,...,m
—0

variable x € R", domain D, optimal value p*

Lagrangian: L : R" x R™ x R” — R, with dom L =D x R™ x R?,

p
Lz, A\, v) —|—Z)\ fi(x +ZV¢hz‘($)
i=1

e weighted sum of objective and constraint functions
e )\; is Lagrange multiplier associated with f;(x) <0

e ; is Lagrange multiplier associated with h;(x) =0
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Lagrange dual function

Lagrange dual function: ¢ : R x R? — R,

g(A\,v) = inf L(z,\,v)

x€D
= Inf <f0(55’) + ) Nifil@)+ > Vﬂ%(@)
i=1 i=1

g is concave, can be —oo for some A\, v

*

lower bound property: if A = 0, then g(\,v) <p

proof: if T is feasible and A > 0, then

fol#) > L(#,\,v) > inf Lz, \,v) = g\, v)
xre

minimizing over all feasible & gives p* > g(\, v)
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Least-norm solution of linear equations

minimize 2%z

subject to Az =0b
dual function
e Lagrangianis L(z,v) = 22 + v1(Az —b)

e to minimize L over x, set gradient equal to zero:

Vol(z,v)=204+A'v=0 — z=—-(1/2)A'v

e plug in in L to obtain g:
1
g(v) = L((-1/2)ATv,v) = —ZI/TAATI/ —bly
a concave function of v

lower bound property: p* > —(1/4)vT AATY — bl'v for all v

Review on Convex Optimization
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Standard form LP

minimize ¢!z

subjectto Ax=0b, x>0
dual function
e Lagrangian is
Lz, \v) = cao+vi(Az—b) -z
= b+ (c+ATv Nz
e [ is affine in z, hence

bl ATy —A+¢=0
—00 otherwise

g\, v) =1inf L(z,\,v) = {
g is linear on affine domain {(\,v) | A’v — XA+ ¢ = 0}, hence concave

lower bound property: p* > —blvif ATv+¢>0
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The dual problem

Lagrange dual problem

maximize g(\,v)
subjectto A >0

e finds best lower bound on p*, obtained from Lagrange dual function
e a convex optimization problem; optimal value denoted d*
e )\, v are dual feasible if A = 0, (\,v) € domg

e often simplified by making implicit constraint (A, ) € dom g explicit

example: standard form LP and its dual (page 33)

minimize ¢’z maximize —b'v
subject to Az =0b subject to ATv 4+ ¢ >0
x>0
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Weak and strong duality

weak duality: d* < p*

e always holds (for convex and nonconvex problems)

strong duality: d* = p*

e does not hold in general
e (usually) holds for convex problems

e conditions that guarantee strong duality in convex problems are called
constraint qualifications

Review on Convex Optimization
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Slater’s constraint qualification

strong duality holds for a convex problem
minimize

fo()
subject to  fi(x) <0, i=1,...,m
Ax =10

if it is strictly feasible, i.e.,

dzr € int D : filx) <0, i=1,...,m, Ax =D

e also guarantees that the dual optimum is attained (if p* > —o0)

e can be sharpened: e.g., can replace int D with relint D (interior

relative to affine hull); linear inequalities do not need to hold with strict
inequality, . . .

e there exist many other types of constraint qualifications
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Inequality form LP

primal problem

minimize ¢z

subject to Ax <b

dual function

g\) =inf ((c+ A" Nz —b"\) =

x

{ —bIN ATXA+c=0

—00 otherwise

dual problem
maximize —bl )\
subjectto ATA4+c¢=0, A>0

e from Slater’s condition: p* = d* if Ax < b for some ¥

e in fact, p* = d* except when primal and dual are infeasible

Review on Convex Optimization
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Quadratic program

primal problem (assume P € S% )
minimize ! Px

subject to Az <b

dual function

1
g(\) =inf (z" Pz + X" (Az — b)) = —EATAP”AT)\ —blA

T

dual problem

maximize —(1/4H)NTAP7TATN — b1\
subjectto A >0

e from Slater’s condition: p* = d* if Ax < b for some ¥

e in fact, p* = d* always

Review on Convex Optimization
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Complementary slackness

*

assume strong duality holds, x* is primal optimal, (A*, v*) is dual optimal

inf <fo(fv) T N fil@) + ) v m-(sv))

< fo@)+ Y N fila) + Y vihi(a)
=1 1=1
< fo(z")

fola™) = g\, ")

hence, the two inequalities hold with equality
e x* minimizes L(xz, \*,v*)

e \'fi(x*)=0fori=1,...,m (known as complementary slackness):

)\: > (0= fz(ﬂj*) = 0, fz(ﬂj*) < 0= )\: =0
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable f;, h;):

primal feasibility: f;(z) <0,i=1,...,m, hi(x) =0,i=1,...,p

dual feasibility: A = 0

complementary slackness: \;f;(z) =0,1=1,...,m

= W b =

. first order condition (gradient of Lagrangian with respect to x vanishes):

V.L(z,\v) = Vfo(z +Z)\sz +Zuﬁh

from page 39: if strong duality holds and x, A, v are optimal, then they
must satisfy the KKT conditions
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KKT conditions for convex problem

~

if x, \, U satisfy KKT for a convex problem, then they are optimal:

e from complementary slackness: fo(&) = L(&, \, D)

e from 4th condition (and convexity): g(\,7) = L(&, \, D)

~

hence, fo(7) = g(A,v)

if Slater’s condition is satisfied:

x Is optimal if and only if there exist A, v that satisfy KKT conditions

e recall that Slater implies strong duality, and dual optimum is attained

e generalizes optimality condition V fy(x) = 0 for unconstrained problem
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example: water-filling (assume «; > 0)

minimize —>_ "  log(x; + a;)
subjectto x>0, 1lz=1

z is optimal iff z = 0, 17z = 1, and there exist A € R”, v € R such that

1

—I—)\Z‘:V
T; + Qy

o ifv<l/a;: \y=0and z; =1/v — q
o ifv>1/a;: \j=v—1/a; and z; =0

e determine v from 17z =>"" max{0,1/v — a;} =1

Interpretation

e n patches; level of patch ¢ is at height o L/
14
1

e flood area with unit amount of water

e resulting level is 1/v*
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Solving unconstrained minimization

minimize f(x)

e f convex, twice continuously differentiable (hence dom f open)

e we assume optimal value p* = inf, f(x) is attained (and finite)

unconstrained minimization methods

e produce sequence of points z(*) € dom f, k= 0,1, ... with

f(z®) — p*

e can be interpreted as iterative methods for solving optimality condition

Vfx*)=0
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Initial point and sublevel set

algorithms in this chapter require a starting point z(°) such that
o (9 ¢ dom f
e sublevel set S = {z | f(z) < f(2(?)} is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

e equivalent to condition that epi f is closed
e true if dom f = R"

e true if f(x) — oo as + — bddom f

examples of differentiable functions with closed sublevel sets:

f(x) =log() explajx+b),  flx)=— Z log(b; — a; )

1=1
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Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

V2f(x) = ml for all z € S

implications

o forxz,y €85,
Fy) = f(@)+ V@) (y =) + Sl = yl3

hence, S is bounded

e p* > —o0, and for x € S,

1
F@) = p* < o V)3

useful as stopping criterion (if you know m)
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Descent methods

20D = ) 4R AZR)  ith £(20HD) < f(2(0)

e other notations: 7 =z + tAx, x := x + tAx
e Ax is the step, or search direction; t is the step size, or step length

e from convexity, f(z™) < f(x) implies Vf(z)' Az < 0
(i.e., Az is a descent direction)

General descent method.

given a starting point x € dom f.

repeat
1. Determine a descent direction Ax.
2. Line search. Choose a step size t > 0.
3. Update. © := = + tAx.

until stopping criterion is satisfied.

Review on Convex Optimization

46



Line search types

exact line search: ¢t = argmin,, f(x + tAz)

backtracking line search (with parameters a € (0,1/2), 8 € (0,1))

e starting at t = 1, repeat t := (3t until

flx+tAz) < f(z) + atVf(z)' Ax

e graphical interpretation: backtrack until ¢ < ¢,

f(z + tAx)

Cf@) + V@) A [(@) + otV ()" A
t =0 to
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Gradient descent method

general descent method with Az = —V f(x)

given a starting point x € dom f.
repeat
1. Ax := =V f(x).

2. Line search. Choose step size t via exact or backtracking line search.

3. Update. x := = + tAx.
until stopping criterion is satisfied.

e stopping criterion usually of the form |V f(z)|2 < €

e convergence result: for strongly convex f,

@™y —p* < F(f() —pY)

c € (0,1) depends on m, 29, line search type

e very simple, but often very slow; rarely used in practice
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quadratic problem in R?

flz) = (1/2) (] + ya3) (v > 0)

with exact line search, starting at (%) = (v, 1):

k k
(k) (%*v wm_(7—1>
:El - f}/ ’ :62 — - -
~+ 1 ~+ 1

e veryslowif y>1orvy<1

e example for v = 10:

4,
g 0f .
— 4}
—10 0 10
L1
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nonquadratic example

a:1—|—3:c2—0.1_|_6x1—3x2—0.1_i_ —x1—0.1

f(xlva) =€ €

backtracking line search exact line search
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a problem in R'%Y

10
102
X
Q,
|
~ 1n0
z 10
)
Sy
10_2,
ng |.s.
_4 ‘ ‘ ‘
10775 50 100 150 200

‘linear’ convergence, 1i.e., a straight line on a semilog plot
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