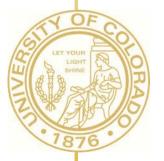
CSCI7000-016: Optimization and Control of Networks

Static Games and Classical Mechanism Design



Lijun Chen 01/12/2016

Outline

- Strategic games and their solution concepts
 - Strategic form games and dominated strategies
 - Nash equilibrium and correlated equilibrium
- Classical mechanism design
 - Incomplete information games
 - Incentive-compatible mechanism
 - VCG mechanism

Strategic game

Def: a game in strategic form is a triple

$$G = \{N, S_{i \in \mathbb{N}}, u_{i \in \mathbb{N}}\}$$

 \square *N* is the set of players (agents)

 \Box S_i is the player *i* strategy space

 $\Box u_i : S \rightarrow R$ is the player *i* payoff function

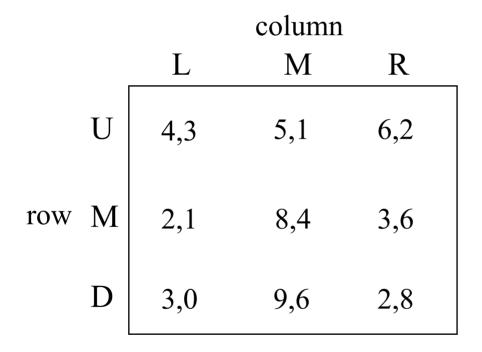
Notations

□ $S = S_1 \times S_2 \times \cdots \times S_N$: the set of all profiles of player strategies □ $s = (s_1, s_2, \cdots, s_N)$: profile of strategies

□ $s_{-i} = (s_1, s_2, \dots, s_{i-1}, s_{i+1}, \dots, s_N)$: the profile of strategies other than player *i*

- Implicitly assume that players have preferences over different outcomes, which can be captured by assigning payoffs to the outcomes
- The basic model of rationality is that of a payoff maximizer
- First consider pure strategy, will consider mixed strategy later

Example: finite game



Example: Continuous strategy game

Cournot competition

- □ Two players: firm 1 and firm2
- □ Strategy $s_i \in [0,\infty]$: the amount of widget that firm *i* produces
- □ The payoff for each firm is the net revenue

$$u_i(s_1, s_2) = s_i p(s_1 + s_2) - c_i s_i$$

where p is the price, c_i is the unit cost for firm i

Dominated strategies

- How to predict the outcome of a game?
- Prisoner' s Dilemma

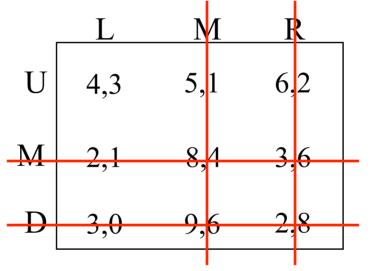
$$\begin{array}{c|ccc} D & C \\ \hline D & -2,-2 & -5,-1 \\ C & -1,-5 & -4,-4 \end{array}$$

- ☐ Two prisoners will play (C,C)
- □ Def: a strategy s_i is (weakly) dominated for player *i* if there exists $s'_i \in S_i$ such that

$$u_i(s'_i, s_{-i}) \ge u_i(s_i, s_{-i}) \text{ for all } s_{-i} \in S_{-i}$$

Iterated elimination of dominated strategies

Iterated elimination of dominated strategies



However, most of games are not solvable by iterated elimination of dominated strategies

Nash equilibrium

□ Def: a strategy profile s^* is a Nash equilibrium, if for all *i*, $u_i(s^*_i, s^*_{-i}) \ge u_i(s_i, s^*_{-i})$ for all $s_i \in S_i$

■ For any $s_{-i} \in S_{-i}$, define best response function $B_i(s_{-i}) = \{s_i \in S_i \mid u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i}) \quad \forall s'_i \in S_i\}.$ Then a strategy profile s^* is a Nash equilibrium iff $s^*_i \in B_i(s^*_{-i}).$

Examples

Battle of the Sexes

	Ballet	Soccer
Ballet	2,1	0,0
Soccer	0,0	1,2

Two Nash equilibria (Ballet, Ballet) and (Soccer, Soccer)

Cournot Competition

- **Suppose a price function** $p(s_1 + s_2) = \max\{0, 1 (s_1 + s_2)\}$
- **Suppose cost** $0 \le c_1 = c_2 = c \le 1$
- Then, the best response function

$$B_1(s_2) = (1 - s_2 - c)/2$$
$$B_2(s_1) = (1 - s_1 - c)/2$$

□ Nash equilibrium satisfies $\begin{cases} s_1 = B_1(s_2) \\ s_2 = B_2(s_1) \end{cases}$ i.e., $\begin{cases} s_1 = (1-c)/3 \\ s_2 = (1-c)/3 \end{cases}$

Second price auction

- $\hfill\blacksquare$ An object to be sold to a player in N
- Each player *i* has a valuation v_i of the object. We further assume $v_1 > v_2 > \cdots > v_N > 0$
- **The players simultaneously submit bids** b_1, \dots, b_N
- The object is given to the player with highest bid. The winner pays the second highest bid.
- The payoff of the winner is his valuation of the object minus the price he pays. All other players' payoff is zero.

 \square $(b_1, \dots, b_N) = (v_1, \dots, v_N)$ is Nash equilibrium

- □ Player 1 receives the object and pay v_2 , and has payoff $v_1 - v_2 > 0$. Player 1 has no incentive to deviate, since his payoff can only decrease
- For other players, the payoff is zero. In order to change his payoff, he needs to bid more than v₁, but that will result in negative payoff. So, no player has incentive to change
- Question: are they more Nash equilibria?

- Not all games have (pure) Nash equilibrium
- Matching Pennies

	Heads	Tails
Heads	1,-1	-1,1
Tails	-1,1	1,-1

Mixed strategies

- □ Let Σ_i denote the set of probability distribution over player *i* strategy space S_i
- □ A mixed strategy $\sigma_i \in \Sigma_i$ is a probability mass function over pure strategies $s_i \in S_i$
- The payoff of a mixed strategy is the expected value of the pure strategy profiles

$$u_i = \sum_{s \in S} (\prod_{j \in N} \sigma_j(s_j)) u_i(s)$$

Mixed strategy Nash equilibrium

Def: a mixed strategy profile σ^* is a (mixed strategy) Nash equilibrium if for all *i*

$$u_i(\sigma^*_i, \sigma^*_{-i}) \ge u_i(\sigma_i, \sigma^*_{-i}) \text{ for all } \sigma_i \in \Sigma_i$$

■ A mixed strategy profile σ^* is a (mixed strategy) Nash equilibrium if for all *i*

$$u_i(\sigma^*_i, \sigma^*_{-i}) \ge u_i(s_i, \sigma^*_{-i}) \text{ for all } s_i \in S_i$$

■ The payoff $u_i(s_i, \sigma^*_{-i})$ is the same for all $s_i \in \text{supp}(\sigma^*_i)$ ■ The payoff $u_i(s_i, \sigma^*_{-i})$ for each $s_i \notin \text{supp}(\sigma^*_i)$ is not larger

Example

BalletSoccerBallet2,10,0Soccer0,01,2

- Assume row (column) player choose "ballet" with probability p(q) and "soccer" with probability 1 p(1-q)
- Mixed strategy Nash equilibrium is

n is
$$\begin{cases} p = 2/3 \\ q = 1/3 \end{cases}$$

$$2 \times q + 0 \times (1 - q) = 0 \times q + 1 \times (1 - q)$$
$$1 \times p + 0 \times (1 - p) = 0 \times p + 2 \times (1 - p)$$

Existence of Nash equilibrium

- Theorem (Nash '50): Every finite strategic game has a mixed strategy Nash equilibrium.
- Example: Matching Pennies game has a mixed strategy Nash equilibrium (1/2, 1/2; 1/2, 1/2)

HeadsTailsHeads1,-1-1,1Tails-1,11,-1

Proof: using Kakutani's fixed point theorem. See section 1.3.1 of the book by Fudenburg & Tirole

Continuous strategy game

- Theorem (Debreu '52; Glicksberg '52; Fan '52): Consider a strategic game $\{N, S_{i \in N}, u_{i \in N}\}$ with continuous strategy space. A pure strategy Nash equilibrium exists if
 - \Box S_i is nonempty compact convex set
 - $\Box u_i$ is continuous in S and quasi-concave in S_i
- Theorem (Glicksberg '52): Consider a strategic game $\{N, S_{i \in N}, u_{i \in N}\}$ with nonempty compact strategy space. A mixed strategy Nash equilibrium exists if u_i is continuous.

Correlated equilibrium

- In Nash equilibrium, players choose strategies independently. How about players observing some common signals?
- Traffic intersection game

-	Stop	Go
Stop	2,2	1,3
Go	3,1	0,0

- Two pure Nash equilibria: (stop, go) and (go, stop)
- One mixed strategy equilibrium: $(\frac{1}{2}, \frac{1}{2}; \frac{1}{2}, \frac{1}{2})$
- If there is a traffic signal such that with probability ½ (red light) players play (stop, go) and with probability ½ (green light) players play (go, stop). This is a correlated equilibrium.

□ Def: correlated equilibrium is a probability distribution $p(\cdot)$ over the pure strategy space such that for all *i*

$$\sum_{s_{-i}} p(s_i, s_{-i}) [u_i(s_i, s_{-i}) - u_i(t_i, s_{-i})] \ge 0 \text{ for all } s_i, t_i \in S_i$$

- A mixed strategy Nash equilibrium is a correlated equilibrium
- The set of correlated equilibria is convex and contains the convex hull of mixed strategy Nash equilibria

Dynamics in games

- Nash equilibrium is a very strong concept. It assumes player strategies, payoffs and rationality are "common knowledge"
- Game theory lacks a general and convincing argument that a Nash outcome will occur"
- One justification is that equilibria arise as a result of adaptation (learning)
 - Consider repeated play of the strategic game
 - Players are myopic, and adjust their strategies based on the strategies of other players in previous rounds.

Best response

$$s_i(t+1) = B_i(s_{-i}(t))$$

- □ Fictitious play, regret-based heuristics, etc
- Many if not most network algorithms are repeated and adaptive, and achieving some equilibria. Will discuss these and networking games later in this course

Classical mechanism design (MD)

- Mechanism: Protocols to implement an outcome (equilibrium) with desired system-wide properties despite the self-interest and private information of agents
- Mechanism design: the design of such mechanisms
- Provide an introduction to game theoretic approach to mechanism design

Game theoretic approach to MD

- Start with a strategic model of agent behavior
- Design rules of a game, so that when agents play as assumed the outcome with desired properties will happen

induce the desired outcome among self-interested agents

Incomplete information games

- **¬** Players have private type $(\theta_1, \theta_2, \dots, \theta_N) \in \Theta$
- □ Strategy $s_i(\theta_i) \in S_i$ is a function of a player's type
 - Players of different types may react differently in face of the same situation
- **¬** Payoff $u_i(s(\theta), \theta_i) \in R$ is a function of player's type
 - Players of different types may have different preferences over the same strategy profile
- All information except actual types of players is common knowledge
 - □ If a player's type is known, its payoff is known

Incomplete information games

- Assume types are drawn from some objective distribution $p(\theta_1, \theta_2, \dots, \theta_N)$
- Definition: a strategy profile s* is a Bayesian-Nash equilibrium if every player i plays a best response to maximize expected payoff given its belief about distribution $p(\theta_{-i} | \theta_i)$, i.e.,

$$s_i^*(\theta_i) \in \arg\max_{s_i} \sum_{\theta_{-i}} p(\theta_{-i} \mid \theta_i) u_i(s_i, s_{-i}^*(\theta_{-i}), \theta_i)$$

Example: Variant of Battle of the Sexes

- Two types: either wants to meet the other or does not
- Assume row player wants to meet column player, but not sure if column player want to meet her or not (assign ½ probability to each case); and column player knows row player's type
- □ If column player want to meet row player, the payoffs are

Ballet	2,1	0,0
Soccer	0,0	1,2

Ballet Soccer

If column player does not want to meet row player, the payoffs are
 Ballet Soccer

Ballet	2,0	0,2
Soccer	0,1	1,0

- The Bayesian-Nash equilibrium? (Ballet, (Ballet, Soccer))
 - \Box E[Ballet, (Ballet, Soccer)]= $\frac{1}{2}x^2 + \frac{1}{2}x^0 = 1$
 - □ E[Soccer, (Ballet, Soccer)]= $\frac{1}{2}x0+\frac{1}{2}x1=\frac{1}{2}$

Stronger solution concepts

Definition: a strategy profile s^{*} is ex post Nash equilibrium if every player *i* 's strategy is best response whatever the type of others

$$s_{i}^{*}(\theta_{i}) \in \arg\max_{s_{i}} u_{i}(s_{i}, s_{-i}^{*}(\theta_{-i}), \theta_{i}) \text{ for all } \theta_{-i}$$

Definition: a strategy profile s^{*} is dominant strategy equilibrium if every player i's strategy is best response whatever the type and whatever the strategy of others

$$s_{i}^{*}(\theta_{i}) \in \arg\max_{s_{i}} u_{i}(s_{i}, s_{-i}(\theta_{-i}), \theta_{i}) \text{ for all } s_{-i}, \theta_{-i}$$

Dominant strategy equilibrium

- Very robust solution concept
- Make no assumption about information availability
- Do not require an agent to believe others will behave rationally
- A dominant strategy implementation is much more desirable than Nash equilibrium

Example: second price auction

- **The type is player valuation** v_i
- **\square** Each player submit bid $b_i(v_i)$
- **A** dominant strategy is to bid $b_i^*(v_i) = v_i$
- Players don't need to know valuations (types), or strategies of others

Model of Mechanism Design

- □ Set of alternative outcomes *O*
- **¬** Player *i* has private information (type) θ_i
- Type defines a value function $v_i(o;\theta_i) \in R$ for outcome $o \in O$ for each player *i*
- Player payoff $u_i(o;\theta_i) = v_i(o;\theta_i) p_i$ for outcome *o* and payment P_i
- The desired properties are encapsulated in the social choice function $f: \Theta \rightarrow O$
 - □ e.g., choose *o* to maximize social welfare, i.e.,

$$f(\theta) = \arg \max_{o \in O} \sum_{i} u_i(o; \theta)$$

The goal is to implement social choice function $f(\theta)$

$$s_{1}(\theta_{1})$$

$$Mechanism$$

$$s_{N}(\theta_{N})$$

$$M = \{g, p\}$$

$$(p_{1}, \dots, p_{N}) = p(s)$$

- □ A mechanism is defined by an outcome rule $g: S \rightarrow O$ and a payment rule $p: S \rightarrow R^n$
- A mechanism *M* implements social choice function $f(\theta)$ if $g(s_1^*(\theta_1), \dots, s_N^*(\theta_N)) = f(\theta)$, where the strategy profile (s_1^*, \dots, s_N^*) is an equilibrium solution of the game induced by *M*

Properties of social choice functions and mechanisms

Pareto optimal:

if for every $a \neq f(\theta)$, $u_i(a,\theta) > u_i(scf(\theta),\theta) \Rightarrow \exists j \ u_j(a,\theta) < u_j(scf(\theta),\theta)$

Efficient: if $f(\theta) \in \underset{a}{\operatorname{arg\,max}} \sum_{i} v_i(a, \theta_i)$

Budget-balance: if
$$\sum_{i} p_i(\theta) = 0$$

A mechanism that implements the corresponding social choice functions is called Pareto optimal, efficient, or budget-balanced mechanisms, respectively

Incentive-compatible mechanism

- Revelation principle: any mechanism can be transformed into an incentive compatible, directrevelation mechanism that implements the same social choice function
- Direct-revelation mechanism is a mechanism in which player strategy space is restricted to their types

$$\begin{array}{c} \theta_{1} \\ \hline \\ \theta_{N} \end{array} \qquad \begin{array}{c} \text{Mechanism} \\ M = \{g, p\} \end{array} \qquad \begin{array}{c} o = g(\theta) \\ \hline \\ (p_{1}, \cdots, p_{N}) = p(\theta) \end{array}$$

- Incentive-compatible means the equilibrium strategy is to report truthful information about their types (truth-revelation)
 - First price auction is not incentive-compatible. In first price auction, the buyer with highest bid gets the object and pays his bid
 - The second price auction is incentive compatible, direct-revelation mechanism
- Captures the essence of designing a mechanism to overcome the self-interest of agents
 - Report its private information truthfully, out of its own self-interest

Truthful mechanism

- Truthful (aka "strategy-proof") mechanism: truthrevelation is a dominant strategy equilibrium.
 - Dominant strategy implementation removes game theoretic complexity from mechanism design
 - Very robust to assumption about agent rationality and information about each other
 - An agent can compute its optimal strategy without modeling the types and strategies of others

Vickrey-Clarke-Groves mechanisms

VCG mechanism:

□ Collect $\theta = (\theta_1, \theta_2, \dots, \theta_N)$ from agents

■
$$g(\theta)$$
: select an outcome $o^* \in \arg \max_{o \in O} \sum_i v_i(o; \theta_i)$
■ $p(\theta)$: agent *i* pays $\sum_{j \neq i} v_j(o^{-i}; \theta_j) - \sum_{j \neq i} v_j(o^*; \theta_j)$, where
 $o^{-i} \in \arg \max_{o \in O} \sum_{j \neq i} v_j(o; \theta_j)$

Theorem: VCG mechanism is efficient and truthful

Proof:
$$u_i(\theta_i, \theta_{-i}) = v_i(o^*; \theta_i) + \sum_{j \neq i} v_j(o^*; \theta_j) - \sum_{j \neq i} v_j(o^{-i}; \theta_j)$$

VCG mechanism is the only mechanism that is efficient and strategy-proof among direct-revelation mechanisms

Combinatorial auction

- **Goods** *P*
- □ Outcomes: allocations $A = (A_1, \dots, A_N)$, where $A_i \subseteq P$ and are not overlapped
- **¬** Agent valuation $v_i(A_i; \theta_i)$ for $A_i \subseteq P$
- **Goal:** allocate goods to maximize $\sum v_i(A_i; \theta_i)$
- Applications: wireless spectrum auction, course scheduling, ...

Two items A and B; 3 agents

Valuation

	А	В	AB
1	5	0	5
2	0	5	5
3	0	0	12

Outcome?

agent 3 wins AB and pays 10-0=10

Another valuation

	А	В	AB
1	5	0	5
2	0	5	5
3	0	0	7

Outcome?

agents 1 and 2 win and each pays 7-5=2

Remarks

- Only consider the incentive issue: to overcome the self-interest of agents
- Not discuss computational and informational issues
 - Tractability (algorithmic MD)
 - Distributed computation (distributed MD)
 - Minimal information revelation
 - Bounded-rational agents

•

Problem features

