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Strategic game

a Def: a game in strategic form is a triple
G = {NaSiezvauiEN}

O N is the set of players (agents)
Q S, is the player 1 strategy space
Q u, :S — R is the playeri payoff function
O Notations
05=Sx8,x---xS,: the set of all profiles of player strategies
Qs =(s;,s,,-,5y) . profile of strategies

Qs =(5,%,,5,5,,5y) . the profile of strategies other
than player |



Potential games (atomic)

3 Definition: A function ®:S — R is a potential function
forgame G if for Vi.Vs_, €5 ,.Vs,.5, €S,

u,(s;,8_;)—u,(s;,5_;) =P(s;,5_,) —P(s;,5_,)
When @ exists, the game is called a potential game.

3 Definition: A function ®:S — R is an ordinal potential
function for game G if for Vi.Vs_, €5_,,Vs,,5, €S,

u,(s;,8_ ;) —u;(s;,5;) >0 <= P(s;,5_;) —P(5;,5_ ;) > 0.

When & exists, the game is called an ordinal potential
game.



7 Example

Game Potential

1,1 3,0 2 |

03 2.2 1 0




Equilibrium

7 s is a pure strategy Nash equilibrium for ordinal
potential game G, iff

D(s;,s )= D(s,,s ), Vi, Vs, ES..
3 Proof: If @ is a potential function
ui(S;kaS:) _ui(SﬂS:') =0<= (I)(S;kaS:‘) - (I)(Sl.,S:.) = 0.
s” is a pure strategy Nash equilibrium, iff
ul.(sj,si.) > ul.(sl.,S:.)

= D(s; ,5..) = P(s,,5_,).



3 If ® has a maximum at s, then s™ is a pure strategy
Nash equilibrium of the ordinal game.

3 Every finite ordinal potential game has a pure
strategy Nash equilibrium.

7 Continuous ordinal potential game has a pure

strategy Nash equilibrium if the strategy space is
compact and potential is continuous.



Congestion games

7 Definition: A congestion model {N,M,S.,,c,}Iis
defined as follows
Q N is the set of players
Q M is the set of facilities or resources
Q S, is the sets of the resources that player ; can use

Q ¢,(k,) is the cost to users who use the resource ; when k,
users are using it

3 Definition: A congestion game associated with a
congestion model is a game {N,S.,,c.,} With cost

Ci(S) = Ecj(kj)

JES;



7 Every congestion game is a potential game, with

potential .

J

D(s) = 2 ch(k).

7 Congestion games have many applications
a Network design



Potential games (nonatomic)

7 Nonatomic game: the user number is infinite
O N classes of “infinitesimal” players
0 7; the “mass” of class i players
Q f(@,s,) the fraction of class | players that choose strategy s,
Q u(s;f) the payoff for a player of class ;i with s,
7 Definition: /" is an equilibrium if for all Vi,Vs,.5, €5,
Ss)>0=u, (s )= u,(5,5 /).
3 Definition: A nonatomic game is a potential game if
there exists potential function @(r» such that

I2(f)
A (is;)

ui(Si;f)=
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Example: selfish routing

7 Consider a multicommodity flow network (V. £)
O N source-destination pairs (commodities)
a Each commodity ; has a total rate 7, and can use a set

of paths P,
QO The aggregate traffic among link e
fo= > SGs)

a ¢ (f,) link e cost, a nonnegative, continuous, non-
decreasing function of traffic f,

Q The cost ¢, (s;;f) = Ece(fe)
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3 Wardrop equilibrium: the costs of all the paths
actually used are equal, and less than those which
would be experienced by a single user on any
unused path.

3 {,E;rc IS a potential game with potential

(/)= [ c.(x)ax.
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Inefficiency of equilibria

3 Equilibria of strategic games are typically inefficient
7 Example: Prisoner’ s Dilemma

D C
D| 33 04

C| 40 1,1




7 Pigou’ s example

|
[

C(X

c(x)=x

One commodity with rate 1

2 A unique Wardrop equilibrium, with all traffic routed on the
lower edge

a A better flow: route half of the traffic on each of the two
edges
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Questions we care

7 The existence of equilibrium
3 Quantify the inefficiency of equilibrium
3 The convergence of equilibrium
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Quantify the inefficiency

3 Price of anarchy: quantify inefficiency with respect to
some objective function

: obj fn value of the worst equilibrium
price of anarchy =

optimal obj fn value

7 <=1 for maximization:; >=1 for minimization

7 Interested in situations in which we can bound the
price of anarchy

16



Selfish Routing

3 At Wardrop equilibrium
S s (s;5/)—¢c,(f)=0
c;(s;5/)—¢c,(f)=0
Ef(iasi) =7

Czl(f) = minci(Si9f)
3 The above is the KKT optimality condition for
min D(f) = EJOJ ¢ (x)dx

v

s.t. Ef(i,si) = 7;
. Zf(iasi) = fe
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3 Aflow 1 for V.Er.c is a Wardrop equilibrium if and
only if it is a global minimum of the potential function

()= [ c.(x)ax.

7 Define the objective function, i.e., the cost of flow as
C(f) = Ef(iﬂsi)ci(si9f) = Efece(fe)

7 Definition: An optimal flow /" for {7,E;r,c} is the flow
that minimizes c(y).
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The price of anarchy

3 The price of anarchy is

vt

7 Pigou’ s example o =4/3

7 Suppose that xc.() =y [c.0)dv, then P =7

7 Pigou’ s example with degree-d polynomial cost
O xe)s@+) [ c()dr

0 po=d+1
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Resource allocation

7 Consider a simple network: the sources (users) share
a link and the network (link) manager wants to
allocate link rate such that

System. max EU (x.)

s.t. Exs =cC

3 Ultility functions are not known to the link manager

20



Market-clearing mechanism

7 Each user s submits a bid (or willingness to pay) w,

7 the manager seeks to allocate the entire link capacity,
and sets a price P such that

WS
e
s P
a As if the user has a demand function
D(p,w,)=w./p
a The link manager chooses a price to clear the market

ED(]?,WS) =C
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Price taking users and competitive equilibrium

3 The user is a price taker: does not anticipate the
effect of his payment on the price

3 Itis rational for the user to maximize the following
payoff (Kelly " 98)

Ws

p

3 A pair (p,w) is a competitive equilibrium if

Ms(p,WS)=US( )_W

S

u (p,w)zu (p,w,) forany w, =0

p=(Sw)lc
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7 Theorem (Kelly " 98): there exist a unique competitive
equilibrium (p,w) such that x=w/p solves the
problem system.

3 Proof: consider the Lagrangian
D(p,x) = EU(XS)—p(Exs - )

a At primal-dual optimal
U (x)=p,if x, >0
U (x)=p,if x, =0
p=0
p(Yx,-c)=0
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Q Since c¢ >0, at least one X; is positive. So, p > (-
a Thus, Exs =C,

0 Let w=px, then (p,w) is a competitive equilibrium and x = w/ p
solves the problem System.

2 In this case, the uniqueness of x follows from the
uniqueness of p.
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Price anticipating

users and Nash equilibrium

3 Price anticipating users realizes that the price is set
according to - (Ew y/c , and will adjust their bids

accordingly.

3 This makes the model a game, where user payoff is

(Johari " 04)

u(w.,w_ )=

U ( s c)-w, 1f w >0
2V
U.(0), ifw =0

3 Consider Nash equilibrium w such that

u (w,w_)zu (w,w_), forall w=0, forall s
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3 Theorem (Hajek, et al): there exists a unique Nash
equilibrium w=0. Moreover, the rates «-<-c are
unique solution of the following problem =

Game: max E U.(x,)

where

U,(x,) = (1-"290,(x)+ 2 (- [ U, () ).
c c X,
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7 Proof:

Q If wis a Nash equilibrium, at least two players have
nonzero bids.

a Then u (w ,w_, ) is strictly concave and continuously
differentiable in w_ .

Q Then, at equilibrium

Wt .
Y o)1 - )=Ef L if w, >0

Etwt Etwt C
U;(O)SEt—Wt, if w =0

C
O The above condition is also sufficient.

U (
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0 The problem Game has a unique optimal x . Moreover,
there exist a 7 such that

U.(x)(1=") = p, if x, >0
C

U(x)=sp,if x, =0
p=0

p(zxs -c)=0

aLet x=w/p and P = Etwt /c. Then(x, p) satisfies the
above optimality condition.
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The price of anarchy

3 Assume U, (0)=0, we have
|
- [[U () =U,(x,)

3 Then U (x)=U.(x,)
7 Since U.(z2)=—U.(x)+(1-—)U.(0), 0=sz=<x. ,we have
X

S S

: X,
[, U@z = =-U (x,)

3 Then, U, (x,)= %Us(xs)
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7 Let x" and x are the optima of problems System and
Game, we have

IS0« S0,60) = 30,6 SU ()
2

3 The price of anarchy »=1/2
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Tight bound

7 Define the JT bound g by
[ =infinf inf U(x) + ﬁ'(x)(x* - X)

U ¢ 0sxx =c U(x* )

3 Forany ¢>0, there is a resource allocation game with
the price of anarchy at most 6 +¢.
0 Proof: first note that we can assume x<x &c=x.
0 Define a game with U, (x,) =U(x,)
U(x)=U(x)x,, s=2
0 At optimal, the efficiency is U,(c) =U(x")
a At equilibrium U, (x,)=U'(x,)=U.(x,) =U'(x)(1-x, /C)
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Q Then, x, — x as the player number goes to infinity.
Q Thus, the efficiency at equilibrium approaching

U,(x)+U'(x)(C=-x)=U(x)+U'(x)(x" - x).
7 In every resource allocation game, the price of
anarchy is at least #.

0 Proof: let x" and x are the optimal and equilibrium

DU =3 W)+ 5= 5 SU,(3)
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3 The bound £ =3/4,

0 Proof: setting U(x) =x&x=1/2&c =x" =1 shows the bound
IS at most 3/4.

0 Assume x<x =c, we have

UX)+U'(x)(x" =x)=Ux)+(=x/x)U'(x)(x" - x)
=U(x)+(1-x/x)Ux")-U(x))
=(x/x)HUX)+(1-x/x)HU(x)
>(x/x YU +(A=-x/x)HU(K)

3 .
>—U(x ).
4()
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Network design games

7 Consider a network (V.£) with a nonnegative cost c,
for each edge ecE

O N source-destination pairs (players)
QO Each player i can choose a path s, €F,

0 The total costis ¢(s) = E c
ecUs;

e

0 Let , denote the number of players whose paths are
using edge e. Each of those players pays a share 7, =c,/n,
of the cost

QO The cost for each player i is

¢;(8:35,) = Ece /n,

e,
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3 V.Eci is a potential game with potential function
JOEBNDY C] .

3 Every network design game has at least one Nash
equilibrium.
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l1+a

k players and a >0 arbitrarily small

2 Two Nash equilibria: all chooses the upper edges, or all
choose the lower edge
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Price of stability

3 Price of stability

obj fn value of the best equilibrium

price of stability = . .
optimal obj fn value

3 Since C(s)=P(s)=A+1/2+---+1/k)C(s) , the price of
stability is at most 1+1/2+--+1/k
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