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Strategic game 

q  Def: a game in strategic form is a triple 

 
q        is the set of players (agents) 
q        is the player     strategy space 
q                   is the player    payoff function     

q  Notations  
q                             : the set of all profiles of player strategies 
q                          : profile of strategies 
q                                       : the profile of strategies other 

than player  
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Potential games (atomic) 

❒  Definition: A function                  is a potential function 
for game      if for                                  ,   

   When     exists, the game is called a potential game.  
❒  Definition: A function                 is an ordinal potential 

function for game      if for                                  , 

   When     exists, the game is called an ordinal potential 
game.  
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❒  Example  
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Equilibrium  

❒       is a pure strategy Nash equilibrium for ordinal 
potential game    , iff 

❒  Proof: If      is a potential function  

        is a pure strategy Nash equilibrium, iff 
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❒  If     has a maximum at    , then     is a pure strategy 
Nash equilibrium of the ordinal game.  

❒  Every finite ordinal potential game has a pure 
strategy Nash equilibrium. 

❒  Continuous ordinal potential game has a pure 
strategy Nash equilibrium if the strategy space is 
compact and potential is continuous. 
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Congestion games 

❒  Definition: A congestion model                         is 
defined as  follows 
q       is the set of players 
q       is the set of facilities or resources 
q       is the sets of the resources that player    can use 
q         is the cost to users who use the resource     when     

users are using it 
❒  Definition: A congestion game associated with a 

congestion model is a game                     with cost  
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❒  Every congestion game is a potential game, with 
potential  

❒  Congestion games have many applications 
q  Network design 
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Potential games (nonatomic) 

❒  Nonatomic game: the user number is infinite 
q       classes of “infinitesimal” players 
q       the “mass” of class    players 
q            the fraction of class     players that choose strategy  
q             the payoff for a player of class     with   

❒  Definition:       is an equilibrium if for all                      ,  

❒  Definition: A nonatomic game is a potential game if 
there exists potential function           such that 
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Example: selfish routing 

❒  Consider a multicommodity flow network 
q       source-destination pairs (commodities) 
q  Each commodity     has a total rate    , and can use a set      

of paths 
q  The aggregate traffic among link 

q              link      cost, a nonnegative, continuous, non-
decreasing function of traffic 

q  The cost  
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❒  Wardrop equilibrium: the costs of all the paths 
actually used are equal, and less than those which 
would be experienced by a single user on any 
unused path. 

❒                is a potential game with potential  
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Inefficiency of equilibria 

❒  Equilibria of strategic games are typically inefficient 
❒  Example: Prisoner’s Dilemma 
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❒  Pigou’s example 

 
  One commodity with rate 1 

q  A unique Wardrop equilibrium, with all traffic routed on the 
lower edge 

q  A better flow: route half of the traffic on each of the two 
edges 
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Questions we care 

❒  The existence of equilibrium 
❒  Quantify the inefficiency of equilibrium 
❒  The convergence of equilibrium  
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Quantify the inefficiency  

❒  Price of anarchy: quantify inefficiency with respect to 
some objective function 

❒  <=1 for maximization; >=1 for minimization 
❒  Interested in situations in which we can bound the 

price of anarchy 
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Selfish Routing 

❒  At Wardrop equilibrium 

❒  The above is the KKT optimality condition for 
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❒  A flow     for              is a Wardrop equilibrium if and 
only if it is a global minimum of the potential function 

 
❒  Define the objective function, i.e., the cost of flow as 

❒  Definition: An optimal flow      for             is the flow 
that minimizes        .       
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The price of anarchy 

❒  The price of anarchy is 

❒  Pigou’s example  
❒  Suppose that                         , then          .  
❒  Pigou’s example with degree-d polynomial cost 

q    
q    
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Resource allocation 

❒  Consider a simple network: the sources (users) share 
a link and the network (link) manager wants to 
allocate link rate such that  

❒  Utility functions are not known to the link manager 
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Market-clearing mechanism 

❒  Each user      submits a bid (or willingness to pay)   
❒  the manager seeks to allocate the entire link capacity, 

and sets a price      such that 

q  As if the user has a demand function 

q  The link manager chooses a price to clear the market 
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Price taking users and competitive equilibrium 

❒  The user is a price taker: does not anticipate the 
effect of his payment on the price 

❒  It is rational for the user to maximize the following 
payoff (Kelly ’98) 

❒  A pair           is a competitive equilibrium if  
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❒  Theorem (Kelly ’98): there exist a unique competitive 
equilibrium          such that               solves the 
problem system.  

❒  Proof: consider the Lagrangian 

q  At primal-dual optimal  
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q  Since          , at least one      is positive. So,          . 
q  Thus,              . 
q  Let            , then            is a competitive equilibrium and             

solves the problem System. 
q  In this case, the uniqueness of     follows from the 

uniqueness of    .   
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Price anticipating users and Nash equilibrium 

❒  Price anticipating users realizes that the price is set 
according to                   , and will adjust their bids 
accordingly. 

❒  This makes the model a game, where user payoff is 
(Johari ’04)  

❒  Consider Nash equilibrium     such that  
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❒  Theorem (Hajek, et al): there exists a unique Nash 
equilibrium       . Moreover, the rates               are 
unique solution of the following problem  

26 

0≥w c
w
w

x

s
s

s
s ∑
=

cxts

xU

s
s

s
ssx

≤∑

∑
    ..

)(ˆ  maxGame: 

where 

). )(1()()1()(ˆ
0∫+−=
sx

s
s

s
ss

s
ss dzzU

xc
x

xU
c
x

xU



❒  Proof: 
q  If     is a Nash equilibrium, at least two players have 

nonzero bids. 
q  Then                      is strictly concave and continuously 

differentiable in      .  
q  Then, at equilibrium 

q  The above condition is also sufficient. 
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q  The problem Game has a unique optimal    . Moreover, 
there exist a     such that  

q  Let                and                    . Then          satisfies the 
above optimality condition. 
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The price of anarchy 

❒  Assume               , we have 

❒  Then  
❒  Since                                                           , we have 

❒  Then,   
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❒  Let      and     are the optima of problems System and 
Game,  we have 

❒  The price of anarchy   
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Tight bound 

❒  Define the JT bound     by 

❒  For any        , there is a resource allocation game with 
the price of anarchy at most        . 
q  Proof: first note that we can assume                     .  
q  Define a game with 

q  At optimal, the efficiency is  
q  At equilibrium   
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q  Then,             as the player number goes to infinity. 
q  Thus, the efficiency at equilibrium approaching 

❒  In every resource allocation game, the price of 
anarchy is at least    .  
q  Proof: let      and      are the optimal and equilibrium  
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❒  The bound           .  
q  Proof: setting                                           shows the bound 

is at most 3/4. 
q  Assume               , we have    
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Network design games 

❒  Consider a network         with a nonnegative cost     
for each edge  
q       source-destination pairs (players) 
q  Each player      can choose a path 
q  The total cost is   

q  Let      denote the number of players whose paths are 
using edge    . Each of those players pays a share              
of the cost 

q  The cost for each player     is   
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❒             is a potential game with potential function 

❒  Every network design game has at least one Nash 
equilibrium. 
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       players and         arbitrarily small 
q  Two Nash equilibria: all chooses the upper edges, or all 

choose the lower edge 
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Price of stability 

❒  Price of stability 

❒  Since                                                        , the price of 
stability is at most                    .  
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