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Agenda 

q  Contention-based medium access control (contention 
control) 

q  A game theoretic approach to contention control 
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Medium access control (MAC) 

❒  Wireless channel is shared medium and 
interference-limited 

❒  Medium access control: coordinate channel 
access 
q  Reduce/avoid interference/collision 
q  Efficient utilization of wireless spectrum 
q  Quality of Service control 

3 

a multiple access network 



Two kinds of methods  

❒  Schedule-based 
q  Establish transmission schedules a priori or dynamically 
q  Usually requires centralized implementation 
q  High complexity, not practical in real networks 

❒  Contention-based 
q  Wireless nodes contend for the channel 
q  Simple, distributed implementation 
q  High statistical multiplexing gain 
q  Aloha, CSMA/CA, 802.11 DCF, … 
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Aloha 

❒  Very simple: if a node has a packet to send, it 
just transmits 

❒  Listen for an amount of time 
q  If an ACK is received, done. 
q  Otherwise, resend the packet 

❒  Low-delay in light-load scenarios 
❒  Low channel utilization (<=18%)  

q  Collision window is equal to transmission time (TT) 
plus propagation delay (PD) 

 

5 

TT PD 
collision window 



Slotted Aloha 

❒  Time is slotted 
q   slot duration is equal to transmission time plus maximum 

propagation delay 
❒  Begin transmission at the slot boundaries  
❒  Higher channel utilization (<=1/e) 

q  Collision window is a point -- the slot boundary  
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Carrier Sensing multiple access (CAMA) 

❒  Infer channel state through carrier sensing 
q  Sense carrier before transmission 
q  If idle, transmit the whole packet 
q  Wait for ACK 

❒  Higher channel utilization 
q  Collision window is equal to maximum propagation 

delay 
❒  When finding a busy channel 

q  Non-persistent: sense the channel again after a 
random amount of time; if idle, send immediately 

q  P-persistent: sense continuously; if idle, send with 
probability p 
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Contention/collision resolution 

❒  What to do upon a collision  
q  If the colliding nodes transmit immediately when the 

channel is idle after a collision, another collision is 
guaranteed 

❒  Two collision resolution mechanisms 
q  Persistence: transmit with a probability p 
q  Backoff: wait for a random amount of time bounded by 

CW before retransmission 
❒  Contention resolution algorithm (i.e., how to 

decide p and CW values dynamically in response 
to contention) is the key 
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Wireless 802.11 DCF (basic) 

❒  DCF stands for distributed coordination function 
❒  A CSMA/CA medium access protocol 

q  CSMA: sense before transmission 
q  CA: random backoff to reduce collision probability 

•  when transmitting a packet, choose a backoff interval in the 
range [0, CW-1] 

q  Count down the backoff interval when medium is idle 
•  count-down is suspended if medium becomes busy 

q  Transmit when backoff interval reaches 0 
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❒  Contention resolution: contention window CW is 
adapted dynamically depending on collision 
occurrence  
q  binary exponential backoff: double CW upon every 

collision 
q  Set to base value (CW=32) after a successful 

transmission  
q  Packet collision is the feedback signal 
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❒  Slotted system: Inter Frame Spacing 
q  SIFS (Short Inter Frame Spacing) 

•  highest priority, for ACK, CTS 
q  DIFS (Distributed Coordination Function IFS) 

•  lowest priority, for asynchronous data service 

direct access if  
medium is free ≥ DIFS 

t 

medium busy SIFS 

DIFS DIFS 

next frame contention 



DCF basic access method 
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Agenda 

q  Contention-based medium access control (contention 
control) 

q  A game theoretic approach to contention control 
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Contention-based MAC  
(contention control) 

❒  Medium access control (MAC): coordinate channel 
access 
q  avoid collision 
q  efficient utilization of wireless spectrum 
q  Quality of Service control 

❒  Contention resolution mechanisms 
q  persistence: transmit with a probability p 
q  backoff: wait a random amount of time bounded by contention 

window CW before transmission 

❒  Contention resolution algorithm is the key 
q  i.e., decide p or CW value in response to network contention 
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Wireless 802.11 distributed 
coordination function (DCF) 

❒  Contention resolution algorithm: Binary exponential 
backoff 

q  respond to  a binary feedback signal - packet collision  

❒  Performance problems 
q  excessive collision and low throughput 
q  poor short-term fairness 
q  cannot distinguish packet collision from corrupted frame 
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DCF throughput 
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Better design 

❒  Many works exist  
q  mostly based on intuition and heuristics and evaluated by 

simulation 
q  optimal design, but with sophisticated methods to estimate 

the number of contending nodes 

❒  Our “theory-based” approach 
q  reverse engineering: see what mathematical problem 

contention control implicitly solves 
q  forward engineering: understand and engineer the underlying 

problem to derive the design in a formal and structured way 
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Contention control: dynamical model 

❒  Two components 
q  contention resolution algorithm:  adjusts channel 

access probability in response to contention 
•  e.g., DCF uses binary exponential backoff 

q  feedback mechanism: updates a contention measure 
and sends it back to wireless nodes 

•  e.g., DCF uses a binary contention measure - packet collision 

)(tpi

)(tqi
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❒  Dynamical model 

q  the exact form of       and       are determined by or can be 
designed for the specific MAC protocol  

❒  Present a game-theoretic model to understand the above 
dynamical system and use it to design new protocols 
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Contention control: dynamical model 
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Random access game 
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fixed point 

q determined by the contention resolution algorithm 
q usually continuous, increasing, and concave 
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Random access game 

   Definition (Chen el al ’06; ’10): A random access game     
is defined as a quadruple 

 
 

q       is a set of players (wireless nodes) 

q  strategy                               with  

q  payoff function                                   with certain contention 
measure  
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Random access game 

    Contention control can be seen as a distributed strategy 
update algorithm solving the random access game 

 
q  the steady state properties can be understood and designed 

through the specification of       and 
•  conditional collision probability                                   as 

contention measure  

q  the adaptation of channel access probability can be specified 
through               , corresponding to different strategies to 
approach the equilibrium 
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❒  Conditional collision probability as contention measure   

❒  Assumptions (single cell wireless LANs): 
q  A0:           is continuously differentiable, strictly concave, and 

with bounded curvature away from zero, i.e.,  

q  A1: let                        and denote the smallest eigenvalue    
of              by        . Then,                .     

q  A2: functions                                    are all strictly increasing 
or all strictly decreasing  
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Equilibrium 

    Theorem: The random access game has a unique Nash 
equilibrium (NE). 

 

q  a channel access probability      is a Nash equilibrium of 
random access game, if 

q  Proof: Equilibrium condition  

     is optimality condition for a strictly convex optimization  
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Symmetric equilibrium 

    Definition: A NE     is said to be symmetric if              for      
wireless nodes       in the same class, and an asymmetric 
equilibrium otherwise. 

 

    Theorem (CLD ’06; CLD ’10): The random access game has 
a unique and symmetric NE. 

 

     Implications: 
q  guarantees fair sharing of wireless channel among the same 

class of wireless nodes 
q  provides service differentiation among different classes of 

wireless nodes 
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Dynamics (learning algorithms) 

❒  Studies how interacting players (wireless node) could 
converge to a NE 

❒  In setting of random access 
q  players (wireless nodes) can observe outcome of others’ 

actions (i.e., to sense the carrier) 
q  players do not have direct knowledge of other players’ 

actions or payoffs 

❒  Consider repeated play of the random access game, and 
look for distributed strategy update mechanism to achieve 
NE 
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Gradient play 

 
 
   Theorem (CLD ’06; CLD ’10): The gradient play converges to 

the unique NE if stepsize                     for any        . 

q  proof by Lyapunov method.  
q  also studied its robust verification to estimation error (CLD 
’10)                          

q  extensions to multi-cell networks (CLD ’10) 
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MAC design 

❒  Design MAC according to distributed strategy update 
algorithm to achieve the equilibrium of random access 
game 
q  by appropriately choosing utility function and contention 

measure, we can achieve different performance objectives 
q  can choose to implement different converging algorithms to the 

same equilibrium 
•  same equilibrium property but different dynamical properties 



Medium access method via gradient play 
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)(tpi

)(tqi

    each wireless node estimates its conditional collision 
probability and updates its channel access probability 
according to the gradient play  

 

q  by appropriately choosing utility functions, we can achieve 
different performance objectives 

q  conditional collision probability can be estimated by sensing 
idle periods 



Medium access method via gradient play 
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After each transmission 
{ 
  /* Wireless node observes  n idle slots before a transmission*/ 
   
 
  if (                                ){ 
       /*compute the estimator*/ 
 
 
       /*update access probability*/ 
 
       /*update contention window*/ 
 
       /*reset variables*/ 
 
 
      } 
} 
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• Adapt to continuous feedback signal 
• Equation-based control 
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A concrete MAC design 

❒  Consider a single-cell network  with     classes of users 

❒  Each class     associated with a weight 

❒  Want to achieve maximal throughput under the weighted 
fairness constraint  

 

L

lφ

.,1 , Lml
T
T

m

l

m

l ≤≤=
φ
φ

l



Utility design 

❒  Let          .  , under the assumption of Poisson arrival, the 
throughput achieves maximum at        that satisfies 

q      the duration of idle slot,     the duration of a collision 
❒  Under the decoupling approximation, to achieve weighted 

fairness requires 

❒  Utility function  
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Equilibrium and dynamics 

   Theorem (Chen el al ’10): Suppose                                          
 

    The random access game has a unique and symmetric 
NE, and the gradient play converges.                  

 
q  allows a very large design space 
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Performance: throughput 
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Performance: collision 
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Performance: short-term fairness 
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Performance: dynamic scenario 
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Performance: service differentiation 
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Game theory based decomposition 

system-wide performance objective 

design agent utility  
  and define game  

 look for distributed  
converging algorithm 

  protocol design:  
distributed strategy update algorithm  

implemented as network protocol 
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