Optimization and Control of Networks

S-modular Games and Power Control

Lijun Chen 03/01/2016

<u>Agenda</u>

- S-modular games
 - Supermodular games
 - Submodular games
- Power control
 - Power control via pricing
 - A general framework for distributed power control

Supermodular games

- Characterized by "strategic complementarities"
- Supermodular games are remarkable
 - Pure strategy Nash equilibrium exists
 - The equilibrium set has an order structure with extreme elements
 - Many solution concepts yield the same prediction
 - Analytically appealing
 - Have nice comparative statics and behave well under various learning or adaptive algorithms
 - Encompass many applied models

Monotone comparative statics

- □ Def: suppose $X \subseteq R$ and T some partially ordered set. A function $f: X \times T \rightarrow R$ has increasing differences (supermodular) in (x,t) if for all $x' \ge x$ and $t' \ge t$, $f(x',t') - f(x,t') \ge f(x',t) - f(x,t)$.
- **The incremental gain to choose a higher** x is greater when t is higher.
- The increasing differences is symmetric, i.e., if $t' \ge t$, then f(x,t') - f(x,t) is nondecreasing in x.

□ Lemma: if *f* is twice continuously differentiable, then *f* has increasing differences iff $t' \ge t$ implies $f_x(x,t') \ge f_x(x,t)$

for all x, or alternatively that, for all x, t, $f_{xt}(x,t) \ge 0$

- □ A central question: when $x(t) = \arg \max_{x \in X} f(x,t)$ will be increasing in *t* ?
- Theorem (Topkis): Let $X \subseteq R$ be compact and T a partially ordered set. Suppose $f: X \times T \rightarrow R$ has increasing differences in (x,t), and is upper semicontinuous in x. Then,
 - □ For all *t*, x(t) exists and has a greatest and least element $\overline{x}(t)$ and $\underline{x}(t)$.
 - $\Box \bar{x}(t)$ and $\underline{x}(t)$ are increasing in t.

Proof:

- □ Existence: *x* is compact and *f* is upper semicontinuous
- □ Take a sequence $\{x^k\}$ in x(t). From compactness, there exists a limit point $\bar{x} = \lim_{k \to \infty} x^k$. Then for all x,

 $f(x^k,t) \ge f(x,t) \Longrightarrow f(\bar{x},t) \ge f(x,t).$

Thus, $\bar{x} \in x(t)$ and x(t) is therefore closed. It follows that x(t) has a greatest and least element.

□ Let $x \in x(t)$ and $x' \in x(t')$. Then, $f(x,t) - f(\min(x,x'),t) \ge 0$, which implies $f(\max(x,x'),t) - f(x',t) \ge 0$. By the increasing difference, $f(\max(x,x'),t') - f(x',t') \ge 0$. Thus $\max(x,x')$ maximizes $f(\cdot,t')$. Now, pick $x = \overline{x}(t)$ and $x' = \overline{x}(t')$, it follows that $x' \ge x$. A similar argument applies to x(t).

Supermodular games

□ Def: the game $G = \{N, S_{i \in N}, u_{i \in N}\}$ is a supermodular game if for all i,

- \Box S_i is a compact subset of R
- \Box u_i is upper semicontinuous in s_i, s_{-i}
- \Box u_i has increasing differences in (s_i, s_{-i})
- □ Corollary: suppose G = {N, S_{i∈N}, u_{i∈N}} is a supermodular game. Define the best response function B_i(s_{-i}) = arg max u_i(s_i, s_{-i}). Then
 □ B_i(s_{-i}) has greatest and least element B_i(s_{-i}) and B_i(s_{-i})
 □ B_i(s_{-i}) and B_i(s_{-i}) are increasing in s_{-i}

Example: Bertrand game

Two firms: form 1 and firm 2 with prices $p_1, p_2 \in [0,1]$

Payoff
$$u_i(p_i, p_j) = p_i(1 - 2p_i + p_j)$$

- ☐ It is a supermodular game, since $\frac{\partial^2 u_i}{\partial p_i \partial p_i} > 0$.
- Solve by iterated strict dominance

Let S_i⁰ = [0,1], then S_i¹ = [1/4,1/2].
If p_i < 1/4, then ∂u_i/∂p_i > 1-4 · 1/4 + p_j ≥ 0 ⇒ p_i < 1/4 is strictly dominated.
If p_i > 1/2, then ∂u_i/∂p_i < 1-4 · 1/2 + p_j ≤ 0 ⇒ p_i > 1/2 is strictly dominated.
Let S_i^k = [s^k, s^k], then
s^k = 1/4 + s^{k-1}/4 = 1/4 + 1/16 + s^{k-2}/16 = ··· = 1/4 + ··· + 1/4^k + s⁰/4^k
s^k = 1/4 + s^{k-1}/4 = 1/4 + 1/16 + s^{k-2}/16 = ··· = 1/4 + ··· + 1/4^k + s⁰/4^k
(1/3, 1/3) is the only Nash equilibrium.

- □ Theorem: let $G = \{N, S_{i \in N}, u_{i \in N}\}$ be a supermodular game. Then the set of strategies surviving iterated strict dominance (ISD) has greatest and least element \bar{s} and \bar{s} , which are pure strategy Nash equilibria.
- **Corollary**:
 - Pure Nash equilibrium exists.
 - The largest and smallest strategies compatible with ISD, rationalizability, correlated equilibrium and Nash equilibrium are the same.
 - If a supermodular game has a unique Nash Equilibrium, it is dominance solvable.

■ Proof: let $S^0 = S$ and $s^0 = (s_1^0, \dots, s_{|N|}^0)$ be the largest element of *S*. Let $s_i^1 = \overline{B}_i(s_{-i}^0)$ and $S_i^1 = \{s_i \in S_i^0 : s_i \le s_i^1\}$. If $s_i \notin S_i^1$, i.e., $s_i > s_i^1$, then it is dominated by s_i^1 . By increasing differences

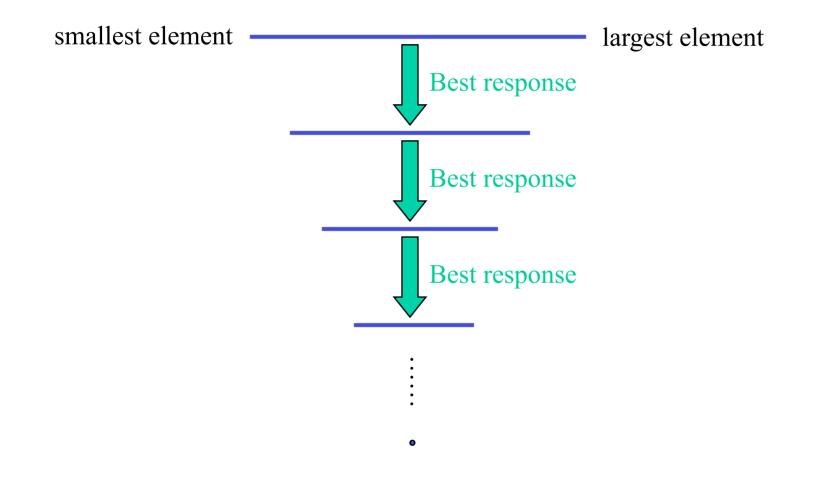
$$u_i(s_i, s_{-i}) - u_i(s_i^1, s_{-i}) \le u_i(s_i, s_{-i}^0) - u_i(s_i^1, s_{-i}^0) < 0$$

□ Also note that $s^1 \leq s^0$

□ Iterate and define $s_i^k = \overline{B}_i(s_{-i}^{k-1})$ and $S_i^k = \{s_i \in S_i^{k-1} : s_i \leq s_i^k\}$. Now if $s^k \leq s^{k-1}$, then $s_i^{k+1} = \overline{B}_i(s_{-i}^k) \leq \overline{B}_i(s_{-i}^{k-1}) = s_i^k$. So, $\{s^k\}$ is a decreasing sequence and has a limit denoted by \overline{s} . Only the strategies $s_i \leq \overline{s}_i$ are undominated.

- □ Similarly, start with $s^0 = (s_1^0, \dots, s_{|N|}^0)$ the smallest element of *S* and identify $\frac{s}{2}$.
- **T** Show \bar{s} and \underline{s} are Nash equilibria.
 - **□** For all *i* and s_i , $u_i(s_i^{k+1}, s_{-i}^k) \ge u_i(s_i, s_{-i}^k)$
 - □ Take the limit as $k \to \infty$, $u_i(\bar{s}_i, \bar{s}_{-i}) \ge u_i(s_i, \bar{s}_{-i})$.
 - □ Similarly, prove *s* is a Nash equilibrium

Illustrative diagram



Submodular games

- □ Def: suppose $X \subseteq R$ and T some partially ordered set. A function $f: X \times T \rightarrow R$ has decreasing differences (submodular) in (x,t) if for all $x' \ge x$ and $t' \ge t$, $f(x',t') - f(x,t') \le f(x',t) - f(x,t)$.
- A game is a submodular game if the payoff functions are submodular.
- More generalizations

<u>Monotonicity</u>

□ Def: let *A* and *B* are two sets. We say $A \prec B$ if for any $a \in A$ and $b \in B$, $\min(a,b) \in A$ and $\max(a,b) \in B$.

Component-wise operations

¬ For constraint sets $S_i(s_{-i}) \subseteq S_i$, if

 $s_{-i} \leq s'_{-i} \Longrightarrow S_i(s'_{-i}) \prec S_i(s_{-i}),$

then the set S_i possess the descending property. The ascending property can be defined when the relation is reversed.

- Theorem: for a submodular game with descending $S_i(\cdot)$,
 - An Nash equilibrium exists.

The best response strategy

$$B_i(s_{-i}) = \min\{\arg\min_{s_i \in S_i(s_{-i})} u_i(s_i, s_{-i})\}\$$

monotonically converges to an equilibrium.

- Proof: Follows monotonicity of the best response. Similar to the proof of former theorem.
- Similar result exists for a supermodular game with ascending $S_i(\cdot)$.

Power control

An important component of radio resource management

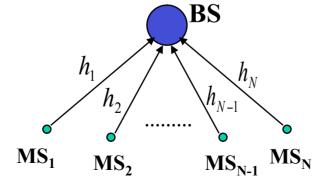
- □ Meet target BER or SIR while limiting interference
- Increase capacity by minimizing interference
- Extend battery life
- Users assigned utilities that are functions of the power they consume and the signal-tointerference ratio (SIR) they attain
- Try to find a good balance between high SIR (or meeting target SIR) and low power consumption

Power control via pricing

- Consider a single-cell network with a set N of users at uplink
- **T** Each user *i* can choose a power $p_i \in [p_i^{\min}, p_i^{\max}]$
- **The SIR for user** *i*

$$\gamma_i = \frac{h_i p_i}{\sum_{j \neq i} h_j p_j + \sigma^2}$$

where h_i is the channel gain from MS to BS and σ^2 is the noise variance.



Consider payoff u_i(p_i, p_{-i}) = f(γ_i) - α_ip_i
 f(·) assumed to be increasing
 When the utilities are supermodular?

$$\frac{\partial u_i(p_i, p_{-i})}{\partial p_i} = f'(\gamma_i) \frac{\gamma_i}{p_i} - c$$
$$\frac{\partial^2 u_i(p_i, p_{-i})}{\partial p_i \partial p_j} = -\frac{\gamma_i^2 h_j}{h_i p_i^2} (\gamma_i f''(\gamma_i) + f'(\gamma_i)), \ j \neq i$$

Requires $\gamma_i f''(\gamma_i) + f'(\gamma_i) < 0$

Example: some concave functions

Power control algorithm

• At time t = 0, let $p(0) = p^{\min}$.

□ At each time t = k, set user *i* power

 $p_i(k) = \min\{\arg\max_{n} u_i(p_i, p_{-i}(k-1))\}$

The above algorithm converges to a Nash equilibrium that is the smallest equilibrium.

<u>A general framework for distributed</u> <u>power control</u>

- Consider a set N of users and a set of M base stations
- \Box User *j* uses power p_j
- **Denote by** h_{kj} the gain of user *j* at base station *k*
- **The SIR of user** *j* at base station *k* is $p_j \mu_{kj}$ with

$$\mu_{kj} = \frac{h_{kj}}{\sum_{i \neq j} p_i h_{ki} + \sigma_k^2}$$

Different power control schemes

Fixed assignment: the user j is assigned to BS a_j with a SIR requirement y_j. The constraints is

$$p_j \ge I^{FA}(p) = \frac{\gamma_i}{\mu_{a_ij}(p)}$$

Minimum power assignment, limited diversity and multiple reception are have the constraints of the same form

$$p_j \ge I(p)$$

Standard interference function

- The standard interference function I(p) satisfies the following properties
 - **D Positivity:** I(p) > 0
 - □ Monotonicity: if $p \ge p' \Rightarrow I(p) \ge I(p')$
 - □ Scalability: for a > 1, $aI(p) \ge I(ap)$

Define a submodular game

D Payoff $u_j(p) = p_j$

□ Constraint set $S_j(p_{-j}) = \{p_j : p_j \ge I_j(p), 0 \le p_j \le p'_j\}$ with p' a feasible solution to $p \ge I(p)$

- **Theorem:** if a feasible solution p' exists, then
 - □ There is a fixed point to equation p = I(p)
 - The best response strategy converges to an equilibrium.