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Supermodular games 

❒  Characterized by “strategic complementarities”  
❒  Supermodular games are remarkable 

q  Pure strategy Nash equilibrium exists 
q  The equilibrium set has an order structure with extreme 

elements 
q  Many solution concepts yield the same prediction 
q  Analytically appealing 

•  Have nice comparative statics and behave well under 
various learning or adaptive algorithms 

q  Encompass many applied models 
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Monotone comparative statics 

❒  Def: suppose          and    some partially ordered 
set. A function                  has increasing differ-
ences (supermodular) in        if for all        and      ,  

❒  The incremental gain to choose a higher     is 
greater when     is higher.   

❒  The increasing differences is symmetric, i.e., 
if       , then                   is nondecreasing in    . 
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❒  Lemma: if     is twice continuously differentiable, 
then     has increasing differences iff          implies 

 
    for all    , or alternatively that, for all       , 
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❒  A central question: when                           will be 
increasing in    ?  

❒  Theorem (Topkis): Let          be compact and     a 
partially ordered set. Suppose                  has 
increasing differences in       , and is upper semi-
continuous in    . Then, 
q  For all   ,         exists and has a greatest and least 

element        and      . 
q        and        are increasing in     . 
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❒  Proof:  
q  Existence:    is compact and    is upper semicontinuous 
q  Take a sequence       in      . From compactness, there 

exists a limit point             . Then for all   , 

   Thus,           and      is therefore closed. It follows that       
has a greatest and least element. 

q  Let            and            . Then,                                 , 
which implies                                  . By the increasing 
difference,                                    . Thus             
maximizes         . Now, pick           and            , it 
follows that        . A similar argument applies to      .     
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Supermodular games 

❒  Def: the game                           is a super-
modular game if for all    ,  
q      is a compact subset of 
q      is upper semicontinuous in 
q      has increasing differences in 

❒  Corollary: suppose                           is a super-
modular game. Define the best response 
function                                     . Then 
q          has greatest and least element           and 
q          and          are increasing in       
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Example: Bertrand game 

❒  Two firms: form 1 and firm 2 with prices    
❒  Payoff   
❒  It is a supermodular game, since              . 
❒  Solve by iterated strict dominance 

q  Let             , then                   .  
•  If             , then 
•  If             , then 

q  Let                 , then   

q  (1/3, 1/3) is the only Nash equilibrium.   
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❒  Theorem: let                               be a supermodular 
game. Then the set of strategies surviving iterated 
strict dominance (ISD) has greatest and least 
element     and     , which are pure strategy Nash 
equilibria.  

❒  Corollary:  
q  Pure Nash equilibrium exists. 
q  The largest and smallest strategies compatible with ISD, 

rationalizability, correlated equilibrium and Nash 
equilibrium are the same. 

q  If a supermodular game has a unique Nash Equilibrium, it 
is dominance solvable. 
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❒  Proof: let          and                  be the largest 
element of   . Let             and                     .       
If        , i.e.,       , then it is dominated by    .  
q  By increasing differences 

q  Also note that  

❒  Iterate and define             and                      . Now 
if          , then                        . So,      is a 
decreasing sequence and has a limit denoted 
by   . Only the strategies         are undominated. 
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❒  Similarly, start with                 the smallest 
element of    and identify   . 

❒  Show    and    are Nash equilibria. 
q  For all    and    ,      
q  Take the limit as          ,                        .  
q  Similarly, prove     is a Nash equilibrium  
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Illustrative diagram  

Best response 

Best response 

Best response 

…
…

 

largest element smallest element 
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Submodular games   

❒  Def: suppose         and    some partially ordered 
set. A function                has decreasing differ-
ences (submodular) in       if for all        and      ,  

❒  A game is a submodular game if the payoff 
functions are submodular. 

❒  More generalizations 
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Monotonicity 

❒  Def: let    and    are two sets. We say         if for 
any       and       ,                  and                .   
q  Component-wise operations 

❒  For constraint sets               , if   

    then the set      possess the descending property. 
The ascending property can be defined when the 
relation is reversed.                         
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❒  Theorem: for a submodular game with 
descending      ,  
q  An Nash equilibrium exists. 
q  The best response strategy 

    monotonically converges to an equilibrium.  
❒  Proof: Follows monotonicity of the best response. 

Similar to the proof of former theorem.  
❒  Similar result exists for a supermodular game 

with ascending       .  
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Power control 

❒  An important component of radio resource 
management 
q  Meet target BER or SIR while limiting interference 
q  Increase capacity by minimizing interference 
q  Extend battery life 

❒  Users assigned utilities that are functions of the 
power they consume and the signal-to-
interference ratio (SIR) they attain 

❒  Try to find a good balance between high SIR (or 
meeting target SIR) and low power consumption 
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Power control via pricing 

❒  Consider a single-cell network with a set     of users 
at uplink 

❒  Each user   can choose a power 
❒  The SIR for user  

   where     is the channel gain from MS to BS and     is 
the noise variance.  
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❒  Consider payoff 
❒       assumed to be increasing 
❒  When the utilities are supermodular? 

❒  Requires  
q  Example: some concave functions    
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❒  Power control algorithm 
q  At time        , let            . 
q  At each time       , set user    power  

❒  The above algorithm converges to a Nash 
equilibrium that is the smallest equilibrium. 
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A general framework for distributed 
power control 

❒  Consider a set    of users and a set of     base 
stations 

❒  User   uses power  
❒  Denote by     the gain of user   at base station 
❒  The SIR of user    at base station    is        with           
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Different power control schemes 

❒  Fixed assignment: the user    is assigned to BS 
with a SIR requirement     . The constraints is 

❒  Minimum power assignment, limited diversity and 
multiple reception are have the constraints of the 
same form 
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Standard interference function 

❒  The standard interference function        satisfies 
the following properties 
q  Positivity: 
q  Monotonicity: if 
q  Scalability: for       ,      
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❒  Define a submodular game 
q  Payoff 
q  Constraint set  
    with     a feasible solution to 
 

❒  Theorem: if a feasible solution     exists, then 
q  There is a fixed point to equation 
q  The best response strategy converges to an 

equilibrium.   
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