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Supermodular games

7 Characterized by “strategic complementarities™

3 Supermodular games are remarkable
0O Pure strategy Nash equilibrium exists

a The equilibrium set has an order structure with extreme
elements

0 Many solution concepts yield the same prediction

a2 Analytically appealing

« Have nice comparative statics and behave well under
various learning or adaptive algorithms

0 Encompass many applied models



Monotone comparative statics

3 Def: suppose xcr andr some partially ordered
set. A function s:xx7—R has increasing differ-
ences (supermodular) in .0 if forallx'zxand ¢ =

f(xlat,)_f(xat,) Zf(xlat)_f(xat)'
3 The incremental gain to choose a higher x is
greater when ¢ is higher.

3 The increasing differences is symmetric, i.e.,
if ©'=¢, then s(x.¢)-7(x.n is nondecreasing in x .



3 Lemma: if f is twice continuously differentiable,
then /' has increasing differences iff ">t implies

[ 1) = fL(x,1)
for all x, or alternatively that, for all x,¢,
Ju (1) =0



3 A central question: when x(f)=argmax f(x,t) will be
increasing in ¢ ?

3 Theorem (Topkis): Let xS® be compactand 7 a
partially ordered set. Suppose f:XxT'—=R has
increasing differences in o, and is upper semi-
continuous in x. Then,

a Forall 7, x(r) exists and has a greatest and least
element x() and x(®).

0 x(z) and x(r) are increasingin r .



3 Proof:
0 Existence: x is compact and / is upper semicontinuous

0 Take a sequence{x‘} in x(*). From compactness, there

exists a limit point x =limx" Then for all x,

fGE0 = f(x,t)= f(X,0) = f(x,0).
Thus, x€x(t) and x(?) is therefore closed. It follows that x(?)
has a greatest and least element.

QO Let xex(» and x'€x(t). Then, f(x,¢)- f(min(x,x"),/)= 0,
which implies f(max(x,x"),r) - f(x',1) 20, By the increasing
difference, f(max(x,x),t)- f(x,t)=0. ThUS max(x,x")
maximizes f(.t). Now, pick x=Xx() and x"=Xx(t), it
follows thatx'=x . A similar argument applies to x().



Supermodular games

7 Def: the game G ={N.,S.,,ucy} IS a super-

modular game if for all 7,

0 S:is a compact subset of &

QO “ Is upper semicontinuous in  $;>S-;

O * has increasing differences in  (s,,s_,)

3 Corollary: suppose G ={N,Scy.ucy}IS a SUper-
modular game. Define the best response
function B,(s_,) = argmaxu, (s;,5_,;). Then

1 B,(s_)has greatest and least element B(s.,) and B(s.)
B.(s.) and B,(s,) are increasing in s._



Example: Bertrand game

3 Two firms: form 1 and firm 2 with prices 7.2, €[0.]
A Payoff w«.(p.p,)=p.(1-2p, +p))
3 It is a supermodular game, since

7 Solve by iterated strict dominance

Q Let s° =[01], then s! =[1/4,1/2].
e If p, <1/4, then % >1—4-%+pj =0= p, <%isstrictlyd0minated.

2
0 u,

ap;0p,

> ()

P
. du, : : :
If p,>1/2, then L<1—4-l+p. =0= p, >11sstrlctlyd0mmated.
op, / 2
a Let s+ =[s*,5%7, thert’
s"=1/4+s""/4=1/4+1/16+s"7 /16 =---=1/4+---+1/4" +5° /4%
5 =1/4+5"/4=1/4+1/16+5"7/16 =---=1/4+---+1/4" +5° /4"

a (1/3, 1/3) is the only Nash equilibrium.



7 Theorem:let G={N,S_,,u_,} be a supermodular
game. Then the set of strategies surviving iterated
strict dominance (ISD) has greatest and least
element 5 and ¢ , which are pure strategy Nash
equilibria.

3 Corollary:
a Pure Nash equilibrium exists.

0 The largest and smallest strategies compatible with ISD,
rationalizability, correlated equilibrium and Nash
equilibrium are the same.

Q If a supermodular game has a unique Nash Equilibrium, it
Is dominance solvable.
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3 Proof: let $'-5 ands’=(s.--.sp) be the largest
element of 5. Let =BG and & ={s€ES’ s =s}.
If s.¢s!, i.e.,s.>s, then it is dominated by s'.
0 By increasing differences
w,(s,,8_)—u,(s;,5_)<u,(s,,8°) —u,(s;,s2) <0
0O Also note that ' <°

7 lterate and define s -5("") and st =5 es:s <s"}. Now
If s F st then s =B(s )< B(s5) = s SO s} is a
decreasing sequence and has a limit denoted
by 5. Only the strategies s, <5, are undominated.
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3 Similarly, start withs’ =(s/.---.s3) the smallest
element of S and identify s .
7 Show s and ¢ are Nash equilibria.
a Forall i and s, u(s™ s )2u(s,s")
0 Take the limitas & — o, y (5,5 )2u(s,5.) -
a Similarly, prove s is a Nash equilibrium

12



I[llustrative diagram

smallest element

lBest response

Best response

lBest response

largest element
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Submodular games

7 Def: suppose xcr and 7 some partially ordered
set. A functionr: xx7—r has decreasing differ-
ences (submodular) in .o if for all x'=x and ' =,

f(xlat,)_f(xat,) Sf(x’at)_f(xat)'

7 A game is a submodular game if the payoff
functions are submodular.

3 More generalizations
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Monotonicity

7 Def: let 4 and 5 are two sets. We say 4<s5 if for
any«e4 and »€B, min(a,b)€4 and max(a,h)EB,
0 Component-wise operations
3 For constraint sets S.(s.)CS, | if
s =<5 =8.(s)=<8,(s),
then the set s, possess the descending property.

The ascending property can be defined when the
relation is reversed.
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3 Theorem: for a submodular game with
descending s.¢),
0 An Nash equilibrium exists.
O The best response strategy

B;(s_;) = min{arg min  u;(s;,5_4)}
;€S (s—4)

monotonically converges to an equilibrium.

3 Proof: Follows monotonicity of the best response.

Similar to the proof of former theorem.

7 Similar result exists for a supermodular game
with ascending s.¢) .
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Power control

3 An important component of radio resource
management
0 Meet target BER or SIR while limiting interference
0 Increase capacity by minimizing interference
0 Extend battery life

7 Users assigned utilities that are functions of the
power they consume and the signal-to-
interference ratio (SIR) they attain

3 Try to find a good balance between high SIR (or
meeting target SIR) and low power consumption
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Power control via pricing

3 Consider a single-cell network with a set ~ of users
at uplink

7 Each user i can choose a power p,€[p™.p™]

7 The SIR for user
h; p
yz‘ = 2
where 1, is the channel gain from MS to BS and ¢° is
the noise variance.
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3 Consider payoff u(p,p.)=f()-ap,
3 f() assumed to be increasing
3 When the utilities are supermodular?

azui is M- }/l "
(Pipo) _ L)+ )
dp,9p; hp

3 Requires 7,f'(7,)+f(7,)<0
0 Example: some concave functions
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3 Power control algorithm
0 Attime t=0 |, let p(0)=p™
0 At each time 1=k, set user i power
p; (k) = min{argmax u,(p;, p_;(k = 1))j
7 The above algorithm clonverges to a Nash
equilibrium that is the smallest equilibrium.
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A general framework for distributed
power control

7 Consider a set ¥ of users and a set of ¥ base
stations

7 User juses power 7,
3 Denote by #, the gain of user j at base station «

7 The SIR of user j at base station ¢ is ru; with
hk]’

2
Ei;éjpihki + 0y

lulg'=
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Different power control schemes

7 Fixed assignment: the user; is assigned to BS ¢

with a SIR requirement 7; . The constraints is
/i

p,=1"(p)=

Haj\P) . .
3 Minimum power assignment, limited diversity and
multiple reception are have the constraints of the

same form
p;z1(p)
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Standard interference function

7 The standard interference function 1(p) satisfies
the following properties
a Positivity: 1(p)>0
0 Monotonicity: if »r=p =1(p)=1(p)
0O Scalability: for a>1, al(p) = I(ap)
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7 Define a submodular game
a Payoff u;(p)=p,
0 Constraintset S,(p_,))={p,:p,=21,(p), O0<p, <p}}
with 2" a feasible solution to p = I(p)

I Theorem: if a feasible solution p’ exists, then
0 There is a fixed point to equation 7 =1(p)

O The best response strategy converges to an
equilibrium.
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