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❒  An introduction to TCP congestion control 
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Network model 

❒  A network modeled as a set       of links with finite 
capacities  

❒  Shared by a set      of sources 
❒  Each source    uses a subset            of links, 

which defines a routing matrix  
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❒  Each source     attains a utility            when 
transmitting at rate 
q  Non-decreasing function 

❒  Given	the	set						of	possible	alterna1ves,		a	func1on	
	

					is	a	u1lity	func1on	represen1ng	preference	rela1on	
among	alterna1ves,	if	for	all																		,	

																																					
❒  To	use	u1lity	func1on	to	characterize	preferences	is	a	

fundamental	assump1on	in	economics	
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❒  Each source     attains a utility           when 
transmitting at rate 

❒  Utility maximization (Kelly ’98) 
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Fairness 

❒  For elastic traffic,          is assumed to be continuously 
differentiable, increasing and strictly concave 
q  Diminishing return 

❒  Ensure some kind of fairness 
❒  Examples: 

q             ,                        , proportional fairness 
q               , max-min fairness 
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❒  Polynomial-solvable, if all the utility and constraint 
information is provided. But impractical in real networks 

❒  Have to seek decomposition to obtain distributed algorithm  
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Lagrangian dual 

❒  Consider the dual problem (Low ’99) 

q  Congestion control: given end-to-end price 

q  Price update: given aggregate source rate 

q  Prices can be updated and fed back to sources implicitly 
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Agenda 
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TCP/IP protocol stack 

application 
 

transport 
 

network 
 

link 
 

physical 

 
                                   
 
 
 
 
 

 

Does the part of task specific to the particular 
applications 

Provide reliable end-to-end transmission,  
congestion control 

 

Provide end-to-end path between two end nodes 
(routing) 

Provide reliable point-to-point transmission, channel 
access 

 

Provide a link for transmitting bits between two nodes 
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Congestion control 

❒  Effect of congestion 
q  Packet loss, retransmission, reduced throughput even 

congestion collapse 
q  Internet has its first congestion collapse in Oct. 1986  

❒  Congestion control 
q  Achieve high utilization 
q  Avoid congestion 
q  Fair bandwidth sharing 

load 

throughput 
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Window-based flow control 

q  ~ W packets per RTT (round trip time) 
q  Lost packet detected by missing ACK 
q  Source rate ~ W/RTT 
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TCP congestion control 

❒  Source calculates cwnd from indication of 
network congestion 
q  cwnd: congestion window size 

❒  Congestion indications 
q  Packet losses  
q  Delay 
q  Packet marks 

❒  Algorithms to calculate cwnd 
q  Tahoe, Reno, Vegas, … 
q  DropTail, RED, REM, … 
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TCP Reno (Jacobson ‘90) 

SS 
time 

 cwnd 

CA 

SS: Slow Start 
CA: Congestion Avoidance 
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Slow start 

❒  Start with cwnd = 1 (slow start) 
❒  On each successful ACK increment cwnd 

   cwnd ← cnwd + 1 
❒  Exponential growth of cwnd 

  each RTT: cwnd ← 2 x cwnd 
❒  Enter CA when cwnd >= ssthresh 
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cwnd ← cwnd + 1 (for each ACK)  
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Congestion Avoidance 

❒  Starts when cwnd ≥ ssthresh 
❒  On each successful ACK:  
         cwnd ← cwnd + 1/cwnd 
❒  Linear growth of cwnd 

  each RTT: cwnd ← cwnd + 1 



Congestion Avoidance 
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Packet Loss 

❒  Assumption: loss indicates congestion 
❒  Packet loss detected by 

q  Retransmission TimeOuts (RTO timer) 
q  Duplicate ACKs (at least 3) 
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Summary: Reno 

❒  Basic ideas 
q  Gently probe network for spare capacity 
q  Drastically reduce rate on congestion 

 for every ACK { 
     if (W < ssthresh) then W++   (SS) 

     else  W += 1/W    (CA)   

 } 

 for every loss { 
  ssthresh = W/2 

      W  = ssthresh     

 } 
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TCP Vegas (Brakmo & Peterson ‘94) 

time 
SS 

cwnd 

CA 

queue size 

for every RTT 

{   if W/RTTmin – W/RTT < α   then W ++ 

    if W/RTTmin – W/RTT > α   then W --   } 
for every loss 

 W := W/2 

Congestion measure: end-to-end queueing delay 
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Link algorithms (AQM) 

❒  DropTail: drop coming packets when buffer is full 
❒  RED (random early detection): warn sources of 

incipient congestion by probabilistically marking/
dropping packets 
q  Probabilistically drop packets 
q  Probabilistically mark packets 
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TCP & AQM 

xi(t) 

pl(t) 

❒  Two components 
q  A source algorithm: adjust the sending rate based on congestion 

•  Implemented in TCP (Transmission Control Protocol) 
q  A link algorithm: update a congestion measure and send it back to the 

sources 
•  Congestion measure: loss probability and delay 
•  In form of loss/mark or delay 
•  Carried out by AQM (Active Queuing Management) 
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Dynamic model of TCP/AQM 

❒  Notation 
q          : source rate at time  
q                        : aggregate source rate  at link 
q          : link congestion measure 
q                         : end-to-end congestion measure of source 

❒  Source    can observe only        and 
❒  Link    can observe only         and   
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q  Dynamical model 

q  The exact forms of      and       are determined by the specific 
TCP/AQM protocol   

xi(t) 

pl(t) 

))(  ),((       )1(
))(  ),((       )1(
tytpGtp
tqtxFtx

llll

ssss

=+

=+

sF lG



27 

Example: Vegas 

queue size 

for every RTT 

{   if W/RTTmin – W/RTT < α   then W ++ 

    if W/RTTmin – W/RTT > α   then W --   } 

for every loss 

 W := W/2 
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Duality model of TCP/AQM 

❒  Denote by           the equilibrium of the system 

❒  The fixed point equation                          implicitly  
define a relation 
q       is continuously differentiable, and 

❒  Define a utility function for each source  

q  Usually continuous, increasing and strictly concave 
q  Only determined by tcp algorithms 
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Example: Vegas 

❒  At equilibrium  

❒  Utility function 

( ) sssss
s

ss dtxdtw
D

txtx
⎩
⎨
⎧

<−+=+ α)()(   if             1 )(1 2

( ) else                       )(1 txtx ss =+

( ) sssss
s

ss dtxdtw
D

txtx
⎩
⎨
⎧

>−−=+ α)()(   if             1 )(1 2

F: 

****

****

/

)(

ssssssss

ssssssssss

xdqdqx
ddDxdxdw

αα

αα

=⇒=⇒

=−⇒=−

sssss xdxU log)( α=



31 

❒  Define utility maximization 

❒  Dual problem 

❒  Interpret source rate     as primal variable and the 
congestion price    as dual variable      
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❒  The equilibrium            solves the primal and 
dual, if it satisfies KKT condition 

q  The complementary slackness condition is satisfied by any 
AQM that stabilizes the queues 

q  AQM should match input rate to capacity to maximize utilization 
at every bottleneck link 
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Remarks  

❒  Reverse engineering: the network as an 
optimization solver, and different TCP/AQM 
protocols as distributed primal-dual algorithms to 
solve the utility maximization and its dual 

❒  Forward engineering: guide new congestion 
control design 
q  By carefully choosing utility function 
q  By proposing better convergent algorithm 
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❒  Can extend to provide a mathematical theory for 
network architecture and a general approach to 
cross-layer design 

application 
 

transport 
 

network 
 

link 
 

physical 

Minimize response time (web layout)… 

Maximize utility (TCP/AQM)  

Minimize path costs (IP) 

Throughput-maximal scheduling, … 

Minimize SIR, max capacities, … 


