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Abstract— We study incentivized exploration for the multi-
armed bandit (MAB) problem with non-stationary reward
distributions, where players receive compensation for exploring
arms other than the greedy choice and may provide biased
feedback on the reward. We consider two different non-
stationary environments: abruptly-changing and continuously-
changing, and propose respective incentivized exploration algo-
rithms. We show that the proposed algorithms achieve sublinear
regret and compensation over time, thus effectively incentivizing
exploration despite the nonstationarity and the biased or drifted
feedback.

I. INTRODUCTION

The multi-armed bandit (MAB) problem is one of basic
models for sequential decision-making under uncertainty,
with diverse applications in areas such as clinical trials [1]–
[3], financial portfolio design [4], recommendation systems
[5], [6], search engine systems [7], and cognitive radio
networks [8]. In the traditional MAB model, a decision
maker iteratively selects an arm (or action) to pull at each
time step, receives a certain reward from the environment,
and decides on the arm for the next iteration. In the so-called
stochastic MAB model, each arm’s reward distribution is
unknown but remains fixed over time (hence, the ‘stationary’
bandit setting).

The objective of the decision maker (or the MAB algo-
rithm) is to minimize the expected regret over the entire time
horizon, defined as the expectation of the difference between
the total reward obtained by pulling the best arm and the
total reward obtained by the algorithm. Minimizing regret
is achieved by balancing exploitation, the use of acquired
information, with exploration, acquiring new information. If
the decision maker always pulls the arm believed to be the
best (i.e., exploitation only), they may miss the opportunity
to identify another arm with a potentially higher expected
reward. On the other hand, if the decision maker excessively
explores various arms (i.e., exploration only), they will fail
to accumulate as much reward as possible.

In this setup, the decision maker (the principal) and the
player (the agent) who pulls the arm are assumed to be
the same entity striving to balance exploitation and explo-
ration. However, this may not always be the case in the
real world. Many scenarios exist where the principal and
the agent are different entities with different interests. The
agent may select the currently best-performing arm in the
face of uncertain reward (i.e., exploitation only), while the
principal is interested in identifying the best-performing arm
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in the long run (thus, the need to balance exploration and
exploitation). Consider, for instance, an e-commerce system
like Amazon. Amazon (the principal) would like the cus-
tomers (the agents) to buy and try different products (arms)
to identify the revenue-maximizing product (i.e., the best-
performing arm in the long run) for a particular search query.
However, customers are influenced by the current ratings and
reviews of the products and behave myopically, i.e., selecting
the currently highest-rated product (exploitation only). Such
exploitation-only behavior can lead to significantly degraded
performance due to inadequate exploration, as demonstrated
in previous studies [9], [10]. The misaligned interests be-
tween the principal and the agents need to be reconciled to
balance exploration and exploitation optimally.

Incentivized exploration has been introduced to the MAB
problem to reconcile different interests between the principal
and the agents [11]–[14]. The principal provides certain
compensation to the agent to pull an arm other than the
greedy choice currently having the best empirical reward,
aiming to maximize the cumulative reward (or minimize the
expected regret) while minimizing the total compensation to
the agents. Early work on incentivized MAB models [13]–
[17] assumed that the agents provide unbiased feedback or
reward, independent of compensation received. However, this
assumption does not always hold in the real world, and
experimental studies such as [18], [19] show that agents
are inclined to give higher evaluation or reward with an
incentive (such as a coupon, gift card, or discount in the case
of Amazon). The compensation might even be the primary
driver of customer satisfaction [18], [20]. This drift in reward
feedback may negatively impact the exploration-exploitation
tradeoff, as a suboptimal arm can be mistakenly identified as
the optimal one because of the drifted rewards. Liu et al. [21]
investigated such an impact and showed that incentivized
exploration based on their methods achieves optimal regret
and compensation.

The authors in [21] considered the stationary bandit set-
ting, i.e., the reward distribution of the arms does not change
with time. In this paper, we consider the more challenging
setting of nonstationary bandits, corresponding to an evolv-
ing environment where the reward distribution changes over
time. Consider again the Amazon example: In the stationary
setting, a product, say, a snow boot (an arm), is assumed to
have the same value to Amazon (the principal) in terms of
sales throughout the year. However, a snow boot will be more
valuable in winter than the summer. A specific product might
gain sudden popularity due to celebrity endorsement or lose
popularity because of a certain controversy. Such scenarios
are common in the real world and require the consideration
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Fig. 1: Incentivized Exploration

TABLE I: Regret and compensation along with the corresponding theorems for

the abruptly-changing(AC) and continuously-changing (CC) environments.

Env. Algo. Scheme Theorem Regret Compensation

AC Alg. 3 + DUCB 1, 3 ÕpT 1{2q ÕpT 1{2q

AC Alg. 3 + SWUCB 2, 4 ÕpT 1{2q ÕpT 1{4q

CC Alg. 4 + UCB1 5, 6 ÕpT 2{3q ÕpT 2{3q

CC Alg. 4 + ϵ-Greedy 5, 6 ÕpT 2{3q ÕpT 1{3q

CC Alg. 4 + TS 5, 6 ÕpT 2{3q ÕpT 1{3q

of nonstationary bandits. We aim to answer the following
question: Can we achieve effective incentivized exploration,
despite the non-stationarity of the reward and the drift in
reward feedback?

Contributions. Specifically, we consider the incentivized
exploration framework ([21], as illustrated in Fig. 1) where
the agent receives from the principal a compensation that
equals the difference in the estimated rewards between the
principal’s recommended arm and the greedy choice, and
provides biased feedback that is the sum of the true reward
of an arm and a drift term that is a non-decreasing function
of the compensation received for pulling the arm, but with
changing reward distributions over time. We consider two
non-stationary models and study the robustness of the pro-
posed incentivized exploration algorithms in terms of regret
and compensation. The first model assumes an abruptly
changing environment where the rewards of each arm remain
stationary until some breakpoint when they change abruptly.
The second model considers a continuously changing envi-
ronment where the rewards can vary continuously within a
variation budget. We show that the regret and compensation
bounds are sub-linear in time T , see Table I, and thus the
proposed algorithms effectively incentivize exploration in the
non-stationary environment.

Related Work. Early work on incentivized exploration and
learning includes [11], [22], [23] that introduced a Bayesian
incentivized model with discounted regret and compensa-
tion, and [12] that considered the non-discounted case and
proposed an algorithm with Op

?
T q regret. In [13], the

authors analyzed the non-Bayesian and non-discount reward
case and demonstrated Oplog T q regret and compensation. In
[21], the authors considered biased user feedback under the

influence of incentives and showed that despite the reward
drift, the proposed algorithms achieve Oplog T q regret and
compensation. Related work alos includes [12], [24]–[26]
on Bayesian Incentive Compatible (BIC) bandit exploration,
where the principal wishes to persuade the agent to take ac-
tion benefiting the principal, known as Bayesian Persuasion
[27]. Additionally, see [28] for a review of the broad area of
incentivized exploration.

The paper is organized as follows: In Section II, we
introduce some preliminary concepts and results in stationary
(Section II-A) and non-stationary MAB problems (Section II-
B), as well as the incentivized exploration problem (Section
II-C). In Section III, we present the proposed algorithms for
incentivized exploration in abruptly-changing environments
(Section III-A) and continuously changing non-stationary
environments (Section III-B). In Section IV, we present
numerical experiment results for the proposed algorithms.
The proofs of all theoretical results can be found in the
Appendix (Section VI).

II. PRELIMINARIES

A. Standard stochastic (stationary) MAB Problem

At each time step t P t1, 2, ¨ ¨ ¨ , T u, a decision maker
chooses to arm a from a set of K arms based on the
sequence of past arm pulls and received rewards and obtains
a reward Xtpaq. The rewards for each arm are modeled by
a sequence of independent and identically distributed (i.i.d.)
random variables from an unknown distribution. Without loss
of generality, the reward of each arm is assumed to be in
r0, 1s. Denote by µpaq the expectation of the reward of arm a,
and a˚ the optimal arm with the highest expected reward µ˚.
The benchmark (or optimal) performance comprises pulling
the optimal arm a˚ at every time step. The regret RT of an
algorithm is defined as the difference between the benchmark
performance and the total rewards collected by the algorithm:

RT “

T
ÿ

t“1

pµ˚ ´ Xtpatqq , (1)

where at is the arm the algorithm pulls at time t. A stochastic
bandit algorithm’s performance is typically evaluated by how
the expected value of RT scales with the time horizon T , and
the goal is to design algorithms that achieve sub-linear ex-
pected regret in T . The most common algorithms achieving a
sub-linear regret are UCB1 ([29], [30]), Thompson Sampling
([31]), and ϵ-Greedy ([29], [10]).

B. Non-stationary MAB Problem

In the non-stationary setting, the rewards Xtpaq for arm a
are modeled by a sequence of independent random variables
from potentially different distributions that are unknown and
may change across time. Denote by µtpatq the expectation
of the reward Xtpatq for arm at at time step t. Similarly, let
a˚
t be the arm with the highest expected reward, denoted by

µ˚
t , at time t. The benchmark performance of the algorithm

would be achieved by pulling the optimal arm a˚
t at every



time step t. The corresponding regret RT is defined as:

RT “

T
ÿ

t“1

pµ˚
t ´ Xtpatqq . (2)

The goal is to design algorithms that achieve sub-linear
expected regret in T too. In this paper, we consider two
commonly-used models of non-stationarity: (i) abruptly
changing environment ([32], [33]) and (ii) continuously
changing ([34]) environment. The algorithms discussed be-
low for both environments achieve sub-linear expected regret.

a) Abruptly Changing Environment: The reward distri-
butions remain fixed during certain periods and change at
unknown time instants called breakpoints. Denote by βT the
total number of breakpoints that occur before time T . As
shown in [35], standard bandit algorithms are not appropriate
for this environment, and therefore several methods have
been proposed. The most relevant to this paper are the two
extensions of the UCB ([29]) algorithms: Discounted UCB
(DUCB) [32] and Sliding Window UCB (SWUCB) [33].

The DUCB algorithm (Algorithm 1) uses a discount factor
to emphasize recent rewards when calculating their average.
Specifically, the algorithm uses a discount factor γ P p0, 1q

to calculate the average of the observed rewards:

X̄tpγ, aq “
1

Ntpγ, aq

t
ÿ

α“1

γt´α1 paα “ aqXαpaq. (3)

Here, Ntpγ, aq is the discounted frequency of arm a until
time t. The algorithm further constructs an upper confidence
bound X̄tpγ, aq ` ctpγ, aq on the average reward with

ctpγ, aq “ 2
a

ξ log ntpγq{Ntpγ, aq (4)

as the discounted confidence radius (for some constant ξ
tuned based on the context; see [33] for more details). Note
that ntpγq “

řK
i“1 Ntpγ, aq is the sum of the discounted

frequencies for all arms until time t. Notice that for γ “ 1,
DUCB recovers the UCB1 algorithm.

Algorithm 1 Discounted UCB
1: for t from 1 to K, pull arm at “ t;
2: for t from K ` 1 to T , pull arm at which maximizes

the upper confidence bound X̄tpγ, atq ` ctpγ, atq

With the SWUCB algorithm (Algorithm 2), instead of
averaging rewards over the entire history with a discount
factor, averages are computed based on a fixed-size horizon.
At each time step t, SWUCB utilizes a local empirical
average of the most recent τ arm pulls to construct an upper
confidence bound X̄tpτ, aq`ctpτ, aq for the expected reward.
The local empirical average is defined as:

X̄tpτ, aq “
1

Ntpτ, aq

t
ÿ

α“t´τ´1

1 paα “ aqXαpaq

with Ntpτ, aq the frequency of selecting arm a in the last τ
arm pulls. The confidence radius is defined as:

ctpτ, aq “
a

ξ logpminpt, τqq{Ntpτ, aq

with some constant ξ (see [33] for more details). Notably,
in [33] the authors have demonstrated that both DUCB
and SWUCB achieve a regret of Õp

?
βTT q, where Õp¨q

disregards logarithmic terms.

Algorithm 2 Sliding Window UCB
1: for t from 1 to K, pull arm at “ t;
2: for t from K ` 1 to T , pull arm at which maximizes

the upper confidence bound X̄tpτ, atq ` ctpτ, atq

b) Continuously Changing Environment: Here the
number of changes in the mean rewards can potentially be
infinite, but the total variation over a relevant time horizon is
bounded by a variation budget; see, e.g., [34]. Specifically,
for a time horizon of T , we define the variation budget VT

as a non-decreasing sequence of positive numbers tVtu
T
t“1

such that V1 “ 0 and KVt ď t, with K the number of arms.
Recall that µtpaq is the expected regret of arm a at time

t. Denote by µpaq “ tµtpaquTt“1 the sequence of expected
rewards of arm a, and µ “ tµpaquKa“1 the sequence of
expected rewards of all K arms. The set V of permissible
reward sequences for each arm can be written as:

V “

#

µ P r0, 1sKˆT :
T

ÿ

t“1

sup
aPr1,Ks

|µtpaq ´ µt`1paq| ď VT

+

.

(5)

The above set of permissible reward sequences can capture
various scenarios where the expected rewards may change
continuously, in discrete shocks, or adhere to a certain rate
of change.

For different permissible reward sequences, the achievable
regrets may be different. We consider their supremum:

RV
T “ sup

µPV

#

T
ÿ

t“1

µ˚
t ´ E

«

T
ÿ

t“1

Xtpatq

ff+

. (6)

In [34] the authors provided a near-optimal algorithm with
a worst-case regret of O

`

V 1{3T 2{3
˘

.

C. Incentivized Exploration

As mentioned in Section I, the principal and the agents
may have different interests in many real-world scenarios.
The principal would like the agents to select the arms in such
a way as to adequately explore different arms to maximize
the accumulated rewards. An agent, however, influenced by
the feedback of others, behaves myopically in the face of
uncertainty, i.e., pulls the arm with the currently highest
empirical reward (exploitation only).

Similar to [21], we consider a variant of the MAB problem
where a principal aims to incentivize the agents to explore.
At each time step t, an agent pulls one arm at based on
the recommendation of the principal. The agent receives
a reward rt, which is then fed back to the principal and
the agents. The principal uses a certain bandit algorithm
to find the ‘optimal’ arm while balancing exploration and
exploitation. When the principal wants to encourage agents
to explore, they may offer compensation χt to the agents.



This compensation motivates the agents to follow a specific
bandit algorithm that balances exploration and exploitation,
ultimately maximizing their cumulative rewards.

However, because the agent receives compensation, their
feedback from pulling the arm can become biased. This bias
may introduce a deviation δt on top of the "true" reward
Xtpatq. This deviation is influenced by some unknown, non-
decreasing function ft of the compensation χt. This function
is assumed to possess the following characteristics.

Assumption 1 ([21]) The reward drift function ftpxq is non-
decreasing with ftp0q “ 0 and is Lipschitz continuous, i.e.,
there exists a constant lt such that |ftpxq´ftpyq| ď lt|x´y|

for any x and y.

Note that the received reward rt is the biased feedback (i.e.,
equal to the sum Xtpatq ` δt), and the principal and agents
cannot distinguish either Xtpatq or δt from it.

Denote by gt the greedy choice at time t, and note that
the actual arm pulled, at, is the arm recommended by the
principal. Let X̄tpaq be the empirical average of the rewards
of some arm a until time t. Along with the regret, the
principal is also concerned with the total compensation he
has to pay:

CT “

T
ÿ

t“1

`

X̄tpgtq ´ X̄tpatq
˘

. (7)

We will characterize the efficacy of incentivized ex-
ploration in terms of both expected regret and expected
compensation and aim to answer the following question:
if and how can we design algorithms that achieve both
sublinear regret and sublinear compensation? The authors
in [21] have studied this important question in the setting
of a stationary bandits and proposed algorithms that achieve
O plog T q regret and compensation. In contrast, in this paper,
we investigate the more challenging setting of non-stationary
bandits.

III. INCENTIVIZED EXPLORATION IN NON-STATIONARY
BANDITS

In this section, we design algorithms for the incentivized
exploration for nonstationary bandits and show that they
achieve sublinear regret and compensation.

A. Incentivized Exploration in the Abrupty-Changing Envi-
ronment

Algorithm 3 describes a framework of incentivized explo-
ration for the abruptly changing environment. At time t, the
principal recommends an arm at (line 2) based on a non-
stationary bandit algorithm (e.g., DUCB or SWUCB), and
the greedy choice is denoted by gt (line 3). The principal
offers compensation χt (in line 5) to the agents, which is
the difference between the empirical average of rewards from
the greedy choice and the principal’s recommendation when
they differ. This compensation is provided if the principal’s
recommended arm doesn’t align with the greedy choice.
After receiving this compensation, the player’s outcome is

Algorithm 3 Incentivized MAB under Reward Drift
1: for t P r1, T s do
2: at Ð Principal’s Recommendation
3: gt Ð argmaxaPr1,Ks X̄tpaq

4: if at ‰ gt then
5: Principal offers compensation of χt Ð X̄tpgtq ´

X̄tpatq to the agent.
6: Reward for pulling arm at is rt Ð Xtpatq `

δt where reward drift δt Ð fpχtq

7: else
8: rt Ð Xtpatq is the reward with no compensation.
9: end if

10: end for

affected by a bias δt, which is added to the "true" reward
Xtpatq.

With equation (2), the expected regret is defined as

E

«

T
ÿ

t“1

pµ˚ ´ Xtpatqq

ff

“
ÿ

a‰a˚

pµ˚ ´ µpaqqE rNT paqs .

(8)

Since the expected reward of an arm is in the range r0, 1s,
we have pµ˚ ´ µpaqq ď 1 for all a. Therefore, bounding
the expected regret after T pulls essentially amounts to
controlling the expected number of times a sub-optimal arm
is pulled. In Theorem 1, we bound the expected number of
times some sub-optimal arms a ‰ a˚

t are pulled when the
principal uses DUCB algorithm to balance exploration and
exploitation in Algorithm 3 (line 2) until time T .

Theorem 1 (Algorithm 3 + DUCB Regret Bound)
Given the time horizon T and the number of breakpoints
βT , the expected number of times some sub-optimal arms
a ‰ a˚

t are pulled is bounded as follows:

E rNT paqs ď η̃ ¨
a

TβT logpT q (9)

with some constant η̃ ą 0.

See the proof of Theorem 1 in the Appendix for the choice
of the discount factor γ.

The following result is for the case when the principal
uses the SWUCB algorithm instead in Algorithm 3 (line 2).

Theorem 2 (Algorithm 3 + SWUCB Regret Bound)
Given the time horizon T and the number of breakpoints
βT , the expected number of times some sub-optimal arms
a ‰ a˚

t are pulled is bounded as follows:

E rNT paqs ď η̃ ¨
a

βTT logpT q (10)

with some constant η̃ ą 0.

See the proof of Theorem 2 in the Appendix for the choice
of the sliding window τ .

Remark 1 The lower bound of the regret for an algorithm
scheme for the abruptly changing environment is Ωp

?
T q (see

section 4 of [33]). Therefore, the proposed algorithm scheme



is optimal up to some log T powers, besides the dependence
on βT .

Now, let us take a look at the total expected compensation.
Consistent with the definition (7), in the non-stationary
setting the total compensation is defined as follows: CT “
řT

t“1

`

X̄tpγ, gtq ´ X̄tpγ, atq
˘

when using DUCB with dis-
count factor γ, and CT “

řT
t“1

`

X̄tpτ, gtq ´ X̄tpτ, atq
˘

when using SWUCB with sliding window τ .

Theorem 3 (Algorithm 3 + DUCB Compensation)
Given the time horizon T and the number of breakpoints
βT , the total expected compensation contributed by the arm
a when the principal uses the DUCB algorithm is bounded
as follows:

E rCT paqs ď η ¨ β
3{2
T

?
T plogpT qq3{2 (11)

with some constant η ą 0.

Theorem 4 (Algorithm 3 + SWUCB Compensation)
Given the time horizon T and the number of breakpoints
βT , the total expected compensation contributed by the arm
a when the principal uses the SWUCB algorithm is bounded
as follows:

E rCT paqs ď η ¨ pβT q7{4T 1{4plogpT qq3{4 (12)

with some constant η ą 0.

The proofs of the above theorems can be found in the
Appendix.

B. Incentivized Exploration in the Continuously-Changing
Environment

For the continuously changing environment, we divide
the time horizon T into tT {σu batches of certain fixed
size σ. At the start of each batch, the principal restarts a
certain bandit algorithm to recommend arms to the agent. We

Algorithm 4 Restarting technique with a MAB algorithm
Require: σ,K, T
Ensure: j “ 1

1: while j ď
P

T {σ
T

do
2: α Ð pj ´ 1qσ
3: for t “ 1, ..,mintT, α ` σu do
4: at Ð Principal’s recommendation
5: gt Ð argmaxaPr1,Ks X̄tpaq

6: steps 4-9 from Algorithm 3
7: end for
8: Increment j Ð j ` 1 and return at line 1.
9: end while

present Algorithm 4 where for a single batch the principal
employs certain MAB algorithm such as UCB1, ϵ-Greedy or
Thompson Sampling and recommends an arm to the agent
(line 4) to balance exploration and exploitation. Based on
the greedy choice of the agent (line 5), the compensation
scheme is determined according to lines 4-9 of Algorithm 3.
This process is repeated for tT {σu iterations.

Theorem 5 (Algorithm 4 Regret) Given the time horizon
T and the variation budget VT , if the principal employs
UCB1, ϵ-greedy or Thompson Sampling for recommending
arms to the agent in Algorithm 4, then the worst-case regret
over the time horizon T is bounded as follows:

RT
V ď η ¨ V

1{3
T pK logpT qq

1{3
T 2{3 (13)

with some constant η ą 0.

See the proof of Theorem 5 in the Appendix for the choice
of the batch size σ.

The overall compensation CT
V for the entire time horizon

T is calculated by summing up the compensation of each
batch, following the definition (7).

Theorem 6 Given the time horizon T and the variation
budget VT , if the principal employs UCB1 for recommending
arms to agents in Algorithm 4, then the worst-case total
compensation is bounded as follows:

CT
V ď η1 ¨ pKVT logpT qq

1{3
T 2{3 (14)

with some constant η1 ą 0. If the principal employs ϵ-
greedy, then the worst-case total compensation is bounded
as follows:

CT
V ď η2 ¨ pKVT logpT qq

2{3
T 1{3 (15)

with some constant η2 ą 0. If the principal employs
Thompson Sampling, then the worst-case total compensation
is bounded as follows:

CT
V ď η3 ¨ pKVT logpT qq

2{3
T 1{3 (16)

with some constant η3 ą 0.

See the Appendix for the proof of the above theorem.

IV. NUMERICAL EXPERIMENTS

We evaluate the performance of the algorithms proposed
in Section III numerically.

A. Abruptly Changing Environment

Consider a setting of two arms (i.e., K “ 2), indexed
by 1 and 2), with the expected rewards 0.99 and 0.01,
respectively. The expected rewards flip (i.e., swaps values)
at every breakpoint that is evenly located at kT {p for k “

1, 2, ¨ ¨ ¨ , p´1 for some integer p ą 0. For instance, we have
the breakpoints at tT {3u and t2T {3u for p “ 3,

In Algorithm 3, the discount factor γ “ 1´p1{γCq
a

βT {T
for DUCB is chosen according to the analysis of Theorem
1 and the window size τ “ tτC

a

T logpT q{βT u for SWUC
according to Theorem 2. We run a hundred repetitions to
obtain the average values of regret and compensation.

Figures 2 and 3 present the performance of Algorithm 3
with DUCB and SWUCB as submodules with T “ 5000.
Both algorithms outperform the UCB1 with Algorithm 3.
The frequent changes force the UCB1 to make mistakes at
the start of each breakpoint, as it considers the entire history.
However, DUCB considers the decaying history, giving more
importance to the recent past; and SWUCB considers a



Fig. 2: (Upper) Regret and Compensation performance of DUCB with
Algorithm 3 with γC “ 10 (Below) Regret and Compensation performance
of SWUCB with Algorithm 3 with τC “ 0.9, both with T “ 5000 and
βT “ 1

Fig. 3: (Upper) Regret and Compensation performance of DUCB with
Algorithm 3 with γC “ 40 (Below) Regret and Compensation performance
of SWUCB with Algorithm 3 with τC “ 1, both with T “ 5000 and
βT “ 1

sliding window and thus adjusts quickly to changes in the
reward distribution, leading to lower regret.

Table II summarizes the performance of SWUCB and
DUCB with Algorithm 3, respectively, with varying break-
points. We present the corresponding parameters τC and γC ,
which minimize the regrets. All the regret and compensation
values are within the theoretical bounds. Besides, the regret is
consistently lower than the UCB1 counterpart for DUCB and
SWUCB, as all the parameters γ, γC , τ, τC are tuned to min-
imize regret. The values considered are τC “ r10, 20, 30, 40s

and γC “ r0.9, 0.95, 1, 2s through experimentation.
In both cases the regret is growing in the order of

O
`?

βT

˘

with varying breakpoints, as the theoretical analy-
sis suggests. As for compensation, SWUCB increases more
rapidly than DUCB, which explains the higher sensitivity of
SWUCB to the number of breakpoints, which is in the order

TABLE II: The performance of Algorithm 3 with varying number of breakpoints

βT . The subscripts U,D, S stand for UCB1, DUCB, and SWUCB, respectively, with

R as the regret and C as the compensation values.

βT γC τC RU RS RD CU CS CD

1 15 1 275.2 135.1 142.7 42.1 53.2 64.2
2 10 1 364.2 203.5 205.7 42.5 70.7 92.3
3 15 1 430.4 239.5 247.1 41.6 81.2 82.8
4 15 0.95 394.8 264.1 259.7 41.4 95.1 89.2
5 10 1 423.7 288.9 302.4 39.8 100.8 112.3
6 25 1 481.8 330.1 279.1 38.5 107.9 67.6
7 30 0.95 484.2 339.0 299.7 38.6 117.1 59.2

of O
´

β
7{4
T

¯

compared to O
´

β
3{2
T

¯

.

B. Continuously Changing Environment

Consider a setting of two arms, indexed by 1 and 2. The
received (i.e., instantaneous) reward Xtpatq for arm at at
time t is modeled as a Bernoulli random variable with a
changing expectation µtpatq

Xtpatq “

#

1 with prob. µtpatq

0 with prob. 1 ´ µtpatq
(17)

for all t ď T and for any pulled arm at P r1,Ks. We
have two sinusoidal evolution patterns (Fig. 4; inspired by
[34]) with a variation budget VT “ 3 for µtpatq (the green
dotted line is for arm 1 as µ1 and the yellow dotted line
is for arm 2 as µ2 in Fig. 4). They describe different
changing environments under the same variation budget. In
the first (i.e., left half) instance, the variation budget is spent
throughout the whole horizon, while in the second, the same
variation budget is spent only over the first third of the whole
horizon. In this experiment, at each time step t, the following
happens in order: (i) the algorithm selects an arm at P r1,Ks,
(ii) the binary rewards are generated based on (17), and (iii)
the instantaneous reward Xtpatq is observed. We denote by
a˚
t “ argmaxaPr1,Ks µtpaq as the optimal arm at time t. The

instantaneous regret at time t is Xtpa
˚
t q´Xtpatq. We run the

experiment with multiple (in this case 2000 times) repetitions
to obtain average values of regret and compensation.

Fig. 5 presents the performance of Algorithm 4 with
UCB1, ϵ-Greedy and Thompson Sampling with regards to
regret and compensation, whereas Fig. 4 presents the total
rewards accumulated (i.e., averaged over 2000 iterations) for
the same settings. Table III presents more data about the
same performance with varying degrees of variation budget
VT . Note that the regret for all the algorithm schemes varies
(i.e., increase) by a maximum of V

1{3
T as suggested by the

theoretical analysis. compensation increases more quickly for
ϵ-Greedy and Thompson Sampling compared to UCB1, as
UCB1 is comparatively less sensitive to VT . Notice that ϵ-
greedy does not drastically change its compensation values
compared to Thompson Sampling, suggesting that the upper
bound can be tightened.



μ2

μ1

Average Performance (Reward) by the Algorithm

Fig. 4: Algorithm 4 (written as ReMech, shorthand for restarting mecha-
nism, in the diagram) performance with T “ 5000 with 2000 repetitions.
The blue curve traces the total reward accumulated (averaged over all
iterations) with ALGORITHM 4 at various time steps with UCB1, ϵ-greedy,
and Thompson Sampling as respective submodules.

Fig. 5: Algorithm 4 performance with submodules of UCB1, ϵ-greedy,
and Thompson Sampling, for a large horizon with T “ 5000 with 2000
repetitions.

TABLE III: The performance of Algorithm 4 with different variation budgets. The

subscripts U, ϵG, T stand for UCB1, ϵ-Greedy and Thompson Sampling, respectively,

with R as the regret and C as the compensation values.

VT 3 6 9 12 15 18 24

RU 156.1 175.9 185.7 191.4 198.3 207.5 210.3
CU 88.9 107.4 119.8 127.2 135.0 145.6 149.8

RϵG 143.1 164.1 180.2 192.0 202.3 215.0 229.0
CϵG 37.3 52.4 64.1 73.6 80.7 88.7 99.5

RT 125.1 147.2 163.8 177.8 185.9 197.8 211.6
CT 48.4 69.0 84.9 97.5 107.5 118.1 132.2

V. CONCLUSION

We have studied the incentivized exploration for the MAB
problem with non-stationary reward distributions, where the
players receive compensation for exploring arms other than
the greedy choice and may provide biased feedback on the
reward. We consider two different environments that capture
rewards’ non-stationarity, and propose incentivized explo-
ration algorithms accordindingly. We show that the proposed
algorithms achieve sublinear regret and compensation in time
and thus are effective in incentivizing exploration despite the
nonstationarity and the drifted feedback.
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VI. APPENDIX

A. Material for Theorem 1

In this section we discuss the details pertaining to the
incentivized exploration on abruptly changing environment,

specifically Theorem 1 (i.e., regret result for Algorithm 3 +
DUCB). We start with laying out some fundamental results
(i.e., lemma 1 and 2) required for the analysis later. After
that, we present lemma 4 which directly leads to the main
result.

Recall that Ntpγ, aq is the discounted frequency (i.e.,
number of pulls) of arm a till time t and the sum of this
quantity of all the arms is denoted by ntpγq. In the following
lemma we upper bound the same.

Lemma 1 ntpγq ď minpt, 1{p1 ´ γqq, for all t ď T .

Proof: According the definition, we have the following;

ntpγq “

K
ÿ

a“1

Ntpγ, aq

“

K
ÿ

a“1

t
ÿ

s“1

1 pas “ aq γt´s

“

t
ÿ

s“1

γt´s ď

8
ÿ

s“1

γs “
1

1 ´ γ
.

(18)

Notice that ntpγq cannot be more than t, we get the final
upper bound.

Next, we look at the total discounted reward drift Dtpγ, aq

contributed by some arm a till some time t. Note that lt is
the Lipschitz constant corresponding to the drift function, at
any given time t (Refer Assumption 1 in the main paper),
and Ntpaq as the total pulls (i.e., essentially Ntpγ, aq for
γ “ 1) for arm a till time t. We define l “ maxt lt for the
following lemma.

Lemma 2 Dtpγ, aq ď 2lNtpaq
a

ξ logpntpγqq for all arms
a P r1,Ks and t P r1, T s.

Proof:
Notice that there is a drift in the reward from the agent

only when the principal provides some compensation. The
inequalities mentioned below quantify this event, and they
must hold true simultaneously. Since the agent is assumed
to be greedy in nature, the arm gt (i.e., the arm with the
highest empirical average till time t) seems more appealing
than at (i.e., the principal’s recommended arm at time t).
The equality below represent this event.

X̄tpγ, gtq ě X̄tpγ, atq, (19)

However, the principal recommends arm at as per it’s
algorithm which balances exploration and exploitation. The
inequality below quantifies this event.

X̄tpγ, gtq ` ctpγ, gtq ď X̄tpγ, atq ` ctpγ, atq. (20)

The above two inequalities imply X̄tpγ, gtq´X̄tpγ, atq ď

ctpγ, atq ´ ctpγ, gtq. Since the drift function is Lipschitz
smooth (Assumption 1 in the main paper) we can upper
bound the instantaneous drift δtpatq for the pulled arm at
at time t as below,



δtpatq ď lt pctpγ, atq ´ ctpγ, gtqq

ď lt

˜

2

d

ξ logpntpγqq

Ntpγ, atq

¸

“ 2lt

d

ξ logpntpγqq

Ntpγ, atq
.

(21)

Therefore, summing the instantaneous drift till some time
t, for some arm a gives us its total drift contribution till said
t, as shown below.

Dtpγ, aq “

t
ÿ

s“1

1 pas “ aq δspaq

“

t
ÿ

s“1

1 pas “ aq 2ls

d

ξ logpntpγqq

Nspγ, aq

ď 2l
a

ξ logpntpγqq

t
ÿ

s“1

1 pas “ aq
1

a

Nspγ, aq

ď 2l
a

ξp1 ´ γq logpntpγqq

Ntpaq
ÿ

s“1

1

ď 2lNtpaq
a

ξ logpntpγqq

(22)

Recall from section 2-A that since the expected reward
of an arm is in the range r0, 1s, we get pµ˚ ´ µpaqq ď 1
for all arms a P r1,Ks. Therefore, bounding the expected
regret after T pulls essentially amounts to controlling the
expected number of times a sub-optimal arm is pulled. In
the next lemma, we bound that expected number of total
pulls NT paq of some sub-optimal arm a ‰ a˚

t for the entire
horizon t ď T .

Lemma 3 Let ξ ą 1{2, T ą 1 and γ P p0, 1q. For any arm
a P r1,Ks and total number of breakpoints βT , we have

E rNT paqs ď

ˆ

BpγqT p1 ´ γq ` Cpγq
βT

1 ´ γ

˙

log

ˆ

1

1 ´ γ

˙

(23)
where

Bpγq “
16p1 ´ γqξ

F pγq

rT p1 ´ γqs

T p1 ´ γq

`
2

Q

´ logp1 ´ γq{ logp1 ` 4
a

1 ´ 1{2ξq

U

´ logp1 ´ γqp1 ´ γ1{p1´γqq
(24)

and

F pγq “ γ1{p1´γq
´

∆µT
piq

a

1 ´ γ ´ 4l
a

´ξ logp1 ´ γq

¯2

(25)
and

Cpγq “
pγ ´ 1q logpp1 ´ γqξ logpnKpγqq

logp1 ´ γq logpγq
(26)

Proof: Let us denote by ∆µT
patq the minimum of the

difference of the expected reward µtpa
˚
t q of the best arm at

time t and the expected reward µtpatq of the arm at for all
t P r1, T s when at is not the optimal arm, i.e.,

∆µT
patq “ min

tPr1,T s; at‰a˚
t

pµtpa
˚
t q ´ µtpatqq . (27)

The quantity NT paq for some arm a can be represented as
the following.

NT paq “

T
ÿ

t“1

1 pat “ a ‰ a˚
t q “ 1 `

T
ÿ

t“K`1

pat “ a ‰ a˚
t q

“ 1 ` H ` G
(28)

where H “
řT

t“K`1 1 pat “ a ‰ a˚
t ;Ntpγ, aq ă Apγqq

and G “
řT

t“K`1 1 pat “ a ‰ a˚
t ;Ntpγ, aq ě Apγqq and

where

Apγq “
16p1 ´ γqξ logpntpγqq

´

∆µT

?
1 ´ γ ´ 4l

a

p1 ´ γqξ logpntpγqq

¯2 . (29)

The next few steps directly follow from the analysis in
[33]. For the same definitions of Dpγq and T pγq from [33],
we can bound NT paq by:

NT paq ď 1 ` rT p1 ´ γqsApγqγ´1{p1´γq ` βTDpγq`
ÿ

tPT pγq

1 pat “ a ‰ a˚
t ;Ntpγ, aq ě Apγqq (30)

Now, for some time t the event {G :
1 pat “ a ‰ a˚

t ;Ntpγ, aq ě Apγqq} will occur when
the algorithm has the following inequality true, for the arm
a ‰ a˚

t which is labelled as the event Z;

Z : X̄tpγ, aq ` ctpγ, aq ą X̄tpγ, a
˚
t q ` ctpγ, a

˚
t q. (31)

Let us denote by Ȳtpγ, aq the discounted empirical average
of arm a excluding the drift at each time till t (i.e., pure
empirical average, different from X̄tpγ, aq). We have the
following inequalities from Z;

Ȳtpγ, aq`
Dtpγ, aq

Ntpaq
`ctpγ, aq ą Ȳtpγ, a

˚
t q`

Dtpγ, a
˚
t q

Ntpa
˚
t q

`ctpγ, a
˚
t q.

(32)
Therefore, the upper bound for the difference between the

expected reward of the optimal arm a˚
t and the current arm

a is

Ȳtpγ, a
˚
t q ´ Ȳtpγ, aq ă

Dtpγ, aq

Ntpaq
` ctpγ, aq

“ 2
a

ξ logpntpγqq

˜

l `
1

a

Ntpγ, aq

¸

.

(33)

Now, we can decompose the event G as the following: For
Z to happen, at least one of the events Gi

t has to occur:

6 1 pat “ a ‰ a˚
t ;Ntpγ, aq ě Apγqq Ď G1

t Y G2
t Y G3

t ,
(34)



where

G1
t “ tX̄tpγ, aq ą µtpγ, aq ` ctpγ, aqu, (35)

G2
t “ tX̄tpγ, a

˚
t q ă µtpγ, a

˚
t q ´ ctpγ, a

˚
t qu, (36)

and

G3
t “ µ̂tpγ, a

˚
t q ´ µ̂tpγ, aq

ă 2
a

ξ logpntpγqq

˜

l `
1

a

Ntpγ, aq

¸

(37)

The event G1
t occurs when the algorithm overestimates the

average reward the pulled arm a, the event G2
t occurs when

the algorithm underestimates the average reward of the best
arm a˚, and G3

t occurs when the difference between expected
rewards for both the arms a and a˚

t are too small.
Note that for the choice of Apγq and the definition of

∆µT
paq, the event G3

t never occurs, as

Ȳtpγ, a
˚q ´ Ȳtpγ, aq ă 2

a

ξ logpntpγqq

˜

l `
1

a

Ntpγ, aq

¸

ď 2
a

ξ logpntpγqq

˜

l `
1

a

Apγq

¸

“
∆µT

paq

2

Therefore, we have the probability of the event G3
t as

P
“

G3
t

‰

“ 0 and from [33] we get the corresponding
probability for G1

t and G2
t as

P
“

G1
t

‰

“ P
“

G2
t

‰

ď

S

logpntpγqq

logp1 ` ηq

W

ntpγq
´2ξ

´

1´
η2

16

¯

(38)

We have the final bound, by taking ξ ą 1{2 and η “

4
a

1 ´ p1{2ξq, so as to make 2ξp1 “ η2{16q “ 1:

E rNT paqs ď 1 ` rT p1 ´ γqsApγqγ´1{p1´γq ` βTDpγq ` Y

where

Y “
1

1 ´ γ
`

S

log
´

1
1´γ

¯

logp1 ` 4
a

1 ´ p1{2ξqq

W

T p1 ´ γq

1 ´ γp1{p1´γqq

(39)
We obtain the statement of the lemma by substituting the

values of Apγq, Dpγq, and ntpγq.
Note that lemma 4 has done most of the heavy lifting,

and just choosing an appropriate discount factor (i.e., γ “

1´η ¨
a

βT {T ) to minimize the expression gives us the result
for Theorem 1.

B. Material for Theorem 2
In this section, we discuss the details pertaining to the in-

centivized exploration of an abruptly changing environment,
specifically Theorem 2 (i.e., the regret result for Algorithm
3 + SWUCB). We start with laying out a fundamental result
(i.e., Lemma 4) required for the analysis of Lemma 5, which
directly leads to the main result.

To begin, we look at the total reward drift Dtpτ, aq

contributed by some arm a until some time t with a sliding
window of size τ . As mentioned in the analysis of Theorem
1, lt is the Lipschitz constant corresponding to the drift
function at any given time t (Refer Assumption 1 in the main
paper), and Ntpaq as the total pulls (i.e., essentially Ntpτ, aq

for τ “ t) for arm a until time t. We define l “ maxt lt for
the following Lemma.

Lemma 4 Dtpτ, aq ď lNtpaq
a

ξ logpminpt, τqq, for all
arms a P r1,Ks and t P r1, T s.

Proof: The reasoning is similar to the analysis of
Lemma 2. There is a drift in the reward from the agent
only when the principal provides some compensation. The
inequalities mentioned below, quantifying this event, must
hold true simultaneously. Since the agent is assumed to be
greedy in nature, the arm gt (i.e., the arm with the highest
empirical average until time t) seems more appealing than at
(i.e., the principal’s recommended arm at time t). However,
the principal recommends arm at per its algorithm, balancing
exploration and exploitation. The inequalities below repre-
sent the same.

X̄tpτ, gtq ě X̄tpτ, atq (40)

X̄tpτ, gtq ` ctpτ, gtq ď X̄tpτ, atq ` ctpτ, atq (41)

The two inequalities imply X̄tpτ, gtq ´ X̄tpτ, atq ď

ctpτ, atq ´ ctpτ, gtq. Since the drift function is Lipschitz
smooth (Assumption 1 in the main paper), we can upper
bound the instantaneous drift δtpatq for the pulled arm at at
time t as below,

δtpatq ď lt pctpτ, atq ´ ctpτ, gtqq

ď lt

d

ξ logpminpt, τqq

Ntpτ, atq

(42)

Therefore, summing the instantaneous drift δtpaq until
some time t, for some arm a gives us its total drift con-
tribution until said t, as shown below.

Dtpτ, aq “

t
ÿ

s“1

1 pas “ aq δspaq

“

t
ÿ

s“1

1 pas “ aq ls

d

ξ logpminpt, τqq

Nspτ, aq

ď l
a

ξ logpminpt, τqq

Ntpaq
ÿ

s1“1

1
a

Ns1 pτ, aq

ď Ntpaql
a

ξ logpminpt, τqq pSince Ns1 pτ, aq ě 1q

(43)



As discussed in section 2-A, since the expected reward
of an arm is in the range r0, 1s, we get pµ˚ ´ µpaqq ď 1
for all arms a P r1,Ks. Therefore, bounding the expected
regret after T pulls essentially amounts to controlling the
expected number of times a sub-optimal arm is pulled. In
the next lemma, we bound that expected number of total
pulls NT paq of some sub-optimal arm a ‰ a˚

t for the entire
horizon t ď T .

Lemma 5 Let ξ ą 1{2. For any integer τ ą 0 and any arm
a P r1,Ks,

E rNT paqs ď Cpτq
T logpτq

τ
` τβT ` log2pτq

where

Cpτq “
pl

?
τ ` 1q

2
ξ

p∆µT
piqq

2

rT {τ s

T {τ
`

2

logpτq

S

logpτq

logp1 ` 4
a

1 ´ p2ξq´1q

W

Proof: As in the analysis of Lemma 2, let us denote
by ∆µT

patq the minimum of the difference of the expected
reward µtpa

˚
t q of the best arm at time t and the expected

reward µtpatq of the arm at for all t P r1, T s when at is not
the optimal arm, i.e.,

∆µT
patq “ min

tPr1,T s; at‰a˚
t

pµtpa
˚
t q ´ µtpatqq . (44)

Let us consider some arm a P r1,Ks. The total pulls NT paq

can be represented as the following.

NT paq “ 1 `

T
ÿ

t“K`1

1 pat “ a ‰ a˚
t q (45)

Which can be broken into two disjoint events, as men-
tioned below.

NT paq “ 1 `

T
ÿ

t“K`1

1 pat “ a ‰ a˚
t ;Ntpτ, aq ă Apτqq

`

T
ÿ

t“1

1 pat “ a ‰ a˚
t ;Ntpτ, aq ě Apτqq (46)

where

Apτq “
pl

?
τ ` 1q

2
ξ logpτq

p∆µT paqq2
(47)

The next few steps follow from [33]’s analysis. For the
same definitions of T pτq, and we can bound NT paq by:

NT paq ď 1 ` rT {τ sApτq ` τβT

`
ÿ

tPT pτq

1 pat “ a ‰ a˚
t ;Ntpτ, aq ě Apτqq (48)

Now, for t P T pτq the event E : tat “ a ‰ a˚
t ;Ntpτ, aq ě

Apτqu will occur when the following inequality, labelled as
Z hold,

Z : X̄tpτ, aq ` ctpτ, aq ą X̄tpτ, a
˚
t q ` ctpτ, a

˚
t q (49)

Let us denote by Ȳtpτ, aq the empirical average of arm a
excluding the drift at each time until t (i.e., pure empirical
average, different from X̄tpτ, aq) for the sliding window size
of τ . We have the following inequalities from Z;

Z : Ȳtpτ, aq `
Dtpτ, aq

Ntpaq
` ctpτ, aq

ą Ȳtpτ, a
˚
t q `

Dtpτ, a
˚
t q

Ntpa
˚
t q

` ctpτ, a
˚
t q (50)

Therefore, the upper bound for the difference between the
expected reward of the optimal arm a˚

t and the current arm
a is

Ȳtpτ, a
˚
t q ´ Ȳtpτ, aq ă

Dtpτ, aq

Ntpaq
` ctpτ, aq

“

´

l
a

Ntpτ, aq ` 1
¯

d

ξ logpminpt, τqq

Ntpτ, aq

ď
`

l
?
τ ` 1

˘

d

ξ logpminpt, τqq

Ntpτ, aq

(51)

Now, we can decompose the event E as the following: for
the event Z to happen, at least one of the events Ei

t has to
occur.

tat “ a ‰ a˚
t ;Ntpτ, aq ě Apτqu Ď E1

t Y E2
t Y E3

t (52)

Where

E1
t “ tX̄tpτ, aq ą µtpτ, aq ` ctpτ, aqu (53)

E2
t “ tX̄tpτ, a

˚
t q ă µtpτ, a

˚tq ´ ctpτ, a
˚
t qu (54)

and

E3
t “ tȲτ,tpa

˚
t q ´ Ȳtpτ, aq

ă
`

l
?
τ ` 1

˘

d

ξ logpminpt, τqq

Ntpτ, aq
u (55)

The event E1
t represents the situation when the algorithm

overestimates the average reward of arm a, E2
t when the

algorithm underestimates the average reward of the best arm
a˚
t , and E3

t is when the expected rewards for both the arms
a and a˚

t have a small difference.
Note that for the choice of Apτq, the event E3

t never
occurs, as shown in the following inequality;

`

l
?
τ ` 1

˘

d

ξ logpminpt, τqq

Ntpτ, iq

ď
`

l
?
τ ` 1

˘

d

ξ logpτqq

Apτq
“

∆µT
piq

2
(56)

Therefore, we have the probability of the event E3
t as

P
“

E3
t

‰

“ 0 and we get the corresponding probabilities for
the E1

t and E2
t from [33] as



P
“

E1
t

‰

“ P
“

E2
t

‰

ď

S

logpminpt, τqq

logp1 ` ηq

W

minpt, τq
´2ξ

´

1´
η2

16

¯

(57)
We finally have the bound, by taking ξ ą 1{2 and η “

4
a

1 ´ p1{2ξq, so as to make 2ξp1 “ η2{16q “ 1:

E rNT paqs ď 1 ` rT {τ sApτq ` τβT
loooooooooooomoooooooooooon

M

` 2
T

ÿ

t“1

R

logpminpt,τqq

logp1`ηq

V

minpt, τq
looooooooooomooooooooooon

N

(58)

Substituting Apτq in M and expanding N we upper bound
E rNT paqs by

E rNT paqs ď 1 ` rT {τ s
pl

?
τ ` 1q

2
ξ logpτq

p∆µT piqq2
`

2T

τ

S

logpτq

logp1 ` ηq

W

` τβT ` log2pτq (59)

With the proper choice of τ , which minimizes the expres-
sion, we get the statement of Theorem 2.

C. Material for Theorem 5

Recall that in a continuously changing non-stationary
environment, the mean rewards of the arms can change
an arbitrary number of times but have a variation budget,
limiting the total change throughout the horizon.

In line 4 of Algorithm 4, in the main paper, the principal
employs some stochastic bandit algorithm (such as UCB1
or Thompson sampling) to recommend an arm to the agent.
The standard instance-dependent regret results for some of
the standard bandit algorithms have the form O plog T {∆aq

([29]), where ∆a is the difference in the expected reward of
some arm a and the best arm a˚ (also referred as the gap of
arm a). For almost all intent and purposes, it is assumed that
the minimum possible value of ∆a (i.e., the denominator in
the regret bound) is large enough to prevent the regret from
being an arbitrarily large quantity and, therefore, make the
regret bound meaningful. Assuming a well-behaved instance
is reasonable for a stationary bandit model, however, in the
continuously-changing non-stationary environment’s case, it
becomes a little too strong. Therefore, we need to give the
rewards more freedom to vary but simultaneously impose
certain assumptions to make them mathematically tractable.

We start by breaking the time horizon T into a sequence
of batches of timestamps, where each batch (except possibly
the last one) is of a fixed size σ. If we have total m “ rT {σs

batches, we define below the “gap" of a certain arm a in the
current context.

Definition 1 The minimum average difference ∆jpaq be-
tween the mean rewards of some arm a in comparison with

the instantaneous best arm a˚
t for each time step, within a

single batch j, is defined as:

∆jpaq “ min
jPr1,ms

1

σ

ÿ

tPTj

pµ˚
t ´ µtpaqq

where Tj is the set of timestamps within the batch j. To be
more precise, Tk “ tpk ´ 1qσ ` 1, 2, ...,minpT, kσqu.

In the next couple of assumptions, we form a balance
between providing the rewards more freedom to vary and
simultaneously imposing certain limitations to make them
mathematically tractable. Assumption 2 lower-bounds the
minimum average difference between the mean rewards of
the best overall arm and any other arm within a single batch,
and assumption 3 restricts the number of times the difference
between the expected rewards between any pair of different
arms can go below a certain threshold.

Assumption 2 There exists a constant M P p0, 1q such that
∆jpaq ě M for any arm a P r1,Ks and all j P r1,ms.

Assumption 3 For any given time epoch t, there exists
α P p0, 1q and some threshold value ε P r0, 1s such that
the following is true

T
ÿ

t“1

K
ÿ

a“1

K
ÿ

b“1;b‰a

1 pµtpaq ´ µtpbq ď εq ď tα (60)

Given the variation of the rewards (and potentially gaps
of different arms), we would henceforth consider the regret
bound, which does not depend on the said gap of an arm,
but only the T and K. For instance, UCB1 has a worst-case
regret bound (see chapter 1 in [28]) of O

`?
KT log T

˘

for
K arms. Next, we present the lemma that bounds the regret
of algorithm 4 in the main paper, which directly leads to the
main Theorem 5.

Lemma 6 If the principal in Algorithm 4 (line 4) employs
some stochastic bandit algorithm under reward drift with the
worst-case regret of λ

a

TK logpT q for some constant λ ą 0,
and the batch size σ “ pλT {VT q

2{3
pK logpT qq1{3, Then, for

T ě 2,K ě 2 and VT P r1{K,T {Ks, the total regret is

RT
V ď 2λ1{3 ¨ V

1{3
T pK logpT qq

1{3
T 2{3 (61)

Proof: We use the following proof structure. We break
the horizon into sequences of batches of size σ each and then
analyze the performance gap between the single best action
and the arm returned by a dynamic oracle (i.e., returns the
best action for each time t) in each batch. Then, we plug in
the known performance of the principal’s bandit algorithm
relative to the single best action under reward drift. We sum
them over the batches to establish the required regret bound.

For the time horizon T ě 1 and a total of K ě 2
arms, we have the variation budget VT P r1{K,T {Ks. We
break the horizon T into sequence of m “ rT {σs batches
denoted by Tj for all j P r1,ms, of size σ, except possibly
the last one. We decompose the regret in some batch j, as
the expected sum of differences between the arm with the



maximum expected reward µ˚
t at the time t (i.e., dynamic

oracle result) and the expected reward µt of an arm chosen by
the algorithm at t, with p “ E

”

maxaPr1,Ks

!

ř

tPTj
Xtpaq

)ı

as:

E

»

–

ÿ

tPTj

pµ˚
t ´ µtq

fi

fl “
ÿ

tPTj

pµ˚
t ´ pq

loooooomoooooon

J1

` p ´ E

»

–

ÿ

tPTj

µt

fi

fl

loooooooomoooooooon

J2

(62)
The first component J1 represents the expected loss of the

algorithm with respect to using a single action over batch j.
The second component J2 is the expected regret relative to
the single best action in batch j. From (6) in [34], we know
that J1 ď 2Vjσ. Since J2 is, after all, the regret of a policy
with respect to a single best action within a batch, we can
plug in the worst-case performance of the bandit algorithm
under reward drift. For some constant λ ą 0, we have the
following.

J2 “ E

»

– max
aPr1,Ks

$

&

%

ÿ

tPTj

Xtpaq

,

.

-

´ E

»

–

ÿ

tPTj

µπ
t

fi

fl

fi

fl ď λ
a

σK logpσq

(63)
The next step is to sum them over the entire horizon.

Since there are m batches, the overall regret is over all the
permissible reward sequences V:

RT
V “ sup

µPV

#

T
ÿ

t“1

µ˚
t ´ E

«

T
ÿ

t“1

µt

ff+

ď

m
ÿ

j“1

´

λ
a

σK logpσq ` 2Vjσ
¯

ď

ˆ

2T

σ

˙

¨ λ
a

σK logpσq ` 2VTσ psince m ě 1q

“ 2T ¨ λ

c

K logpσq

σ
` 2VTσ

(64)

Selecting σ “ pλT {VT q
2{3

pK logpT qq1{3, we get

RπpV, T q ď 2λ1{3 ¨ V
1{3
T pK logpT qq

1{3
T 2{3 (65)

Therefore, to prove Theorem 5, by virtue of Lemma 6, we
need to show that UCB1, ε-greedy and Thompson Sampling
algorithms follow the required regret bound (for a batch) of
O

`?
σK log σ

˘

under reward drift, for a batch size σ, and
thus employable by the principal (i.e., in line 4 of Algorithm
4).

We know from [21] that the regret for UCB1, RUCB1 under
reward drift, for a batch j, for some constant C, is

RUCB1 ď
ÿ

aPr1,Ks;∆jpaqą0

C pl ` 1q
2

∆jpiq
logpσq (66)

As discussed before, the gap ∆jpaq for any arm a can get
arbitrarily small in the denominator, therefore a more general
regret bound should be derived (see remark 1.13 in [28]),
independent of the ∆jpaq term. Let ε P p0, 1q, then

‚ The regret contributed by all the arms with ∆jpaq ą ε

is at most CKpl`1q
2 logpσq

ε .
‚ The regret contributed by all the arms with ∆jpaq ď ε

is at most ε ¨ σα (from Assumption 2).
Therefore, the total regret for this batch j is at most:

RUCB1 ď ε ¨ σα `
CK pl ` 1q

2
logpσq

ε
(67)

For ε “

b

CKpl`1q2 logpσq

σ and α “ 1, we have RUCB1 ď
?
C pl ` 1q

a

σK logpσq. This result is almost optimal as it
almost matches the minimax lower bound of Op

?
σq for any

stochastic bandit algorithm ([28]).
Next, from [21] we know that the regret RεG for ϵ-greedy

under reward drift, for a batch j, for some constant C,

RεG ď
l ¨ C

M2

ÿ

aPr1,Ks;∆jpaqą0

logpσq

p∆jpaqq
2 (68)

We employ the same technique as above to fix some ε P

p0, 1q.
‚ The regret contributed by all the arms with ∆jpaq ą ε

is at most KlC logpσq

M2ε2 .
‚ The regret contributed by all the arms with ∆jpaq ď ε

is at most ε ¨ σα.
Therefore, the total regret for this batch j is at most:

RεG ď ε ¨ σα `
KlC logpσq

M2ε2
(69)

For ε “

´

KlC logpσq

M2σ

¯1{3

and α “ 3{4, we

have RεG ď
`

Cl{M2
˘1{3

pK logpσqq
1{3 ?

σ ď
`

Cl{M2
˘1{3 a

3σK logpσq for σ ě 1. The analysis is
the same as above for Thompson Sampling.

In summary, we showed that the principal could use
UCB1, ε-greedy, and Thompson sampling as a submodule
(line 4 in Algorithm 4) to recommend arms to the agent,
balancing the exploration-exploitation dilemma and achiev-
ing a sublinear regret.

D. Proof for Theorem 3

Note that the principal compensates an agent when the
following inequalities are true.

The principal provides compensation when,

X̄tpγ, aq ą X̄tpγ, a
˚
t q (70)

and

X̄tpγ, aq `

d

ξ logpntpγqq

Ntpγ, aq
ă X̄tpγ, a

˚
t q `

d

ξ logpntpγqq

Ntpγ, a
˚
t q

(71)
Thus, the compensation is provided to the agent even

when the agent pulls the optimal arm and Ntpγ, a
˚
t q ă



Fig. 6: Time intervals representing sets V and S for com-
pensation analysis.

Ntpγ, aq. Therefore, the average number of times a player
is compensated for pulling the best arm is upper bounded
by M “ maxa‰a˚

t
ErNT paqs. Since the rewards can change

with a breakpoint, so can the best arm. We must consider
each interval between breakpoints separately.

Let tb be the timestamp at which the bth breakpoint
occurs, @b P r1, βT s. Let V “ tptb´1, tbq : @b P r1, βT su

and S “ tsv : sv “ |tb´1 ´ tb| @v P V ; @b P r1, βT su (see
Figure 6) be the set of intervals between breakpoints and the
sizes of each interval, respectively. For convenience, consider
t0 “ 0.

Let v` P V be the interval in which the principal pays
the compensation a maximum number of times Mv` when
the player plays the interval’s best arm i˚

v . Let pNsv paq be
the number of times the suboptimal arm a was played in the
interval v. Therefore,

v` “ argmax
vPV

„

max
aPr1,Ks:a‰a˚

v

E
”

pNsv paq

ı

ȷ

(72)

Taking a˚ to be the best arm in the interval v`, We get,

Mv` ď βT max
a‰a˚

E
”

pNsv paq

ı

ď βT max
a‰a˚

E
”

pNT paq

ı (73)

We get the total expected compensation as

ErCT s ď

K
ÿ

i“1

ErxNT paqs
ÿ

j“1

d

ξ logpntpγqq

Njpγ, iq

ď

Mv`
ÿ

j“1

d

ξ logpntpγqq

Njpγ, iq
`

K´1
ÿ

i“1

ErxNT piqs
ÿ

j“1

d

ξ logpntpγqq

Njpγ, iq

ď
a

ξ logpntpγqq

¨

˝

βT maxi‰i˚ ErxNT piqs
ÿ

j“1

1 `

K´1
ÿ

i“1

ErxNT piqs
ÿ

j“1

1

˛

‚

ď
a

ξ logpntpγqq

¨

˝

K
ÿ

i“1

βTErxNT piqs
ÿ

j“1

1 `

K´1
ÿ

i“1

ErxNT piqs
ÿ

j“1

1

˛

‚

ď
a

ξ logpntpγqq

¨

˝

K
ÿ

i“1

pβT `1qErxNT piqs
ÿ

j“1

1

˛

‚

ď
a

ξ logpntpγqq

˜

K
ÿ

i“1

pβT ` 1qEr pNT piqs

¸

(74)


