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Demand Shaping in Cellular Networks
Xinyang Zhou Lijun Chen

Abstract— Demand shaping is a promising way to mitigate
the wireless cellular capacity shortfall in the presence of ever-
increasing wireless data demand. In this paper, we formulate
demand shaping as an optimization problem that minimizes
the variation in aggregate traffic. We design a distributed and
randomized offline demand shaping algorithm under complete
traffic information and prove its almost surely convergence.
We further consider a more realistic setting where the traffic
information is incomplete but the future traffic can be predicted
to a certain degree of accuracy. We design an online demand
shaping algorithm that updates the schedules of deferrable
applications (DAs) each time when new information is available,
based on solving at each timeslot an optimization problem over
a shrinking horizon from the current time to the end of the day.
We compare the performance of the online algorithm against
the optimal offline algorithm, and provide numerical examples
to complement the theoretical analysis.

Index Terms— Demand shaping, offline algorithm, online al-
gorithm, steepest descent algorithm, supermartingale, deferrable
applications, cellular networks.

I. INTRODUCTION

We have witnessed in recent years rapid increase in demand
for wireless data, driven by the proliferation of smart mobile
devices. The global mobile traffic in 2016 has nearly reached
84 exabytes, more than 80 times greater than the entire global
Internet traffic in 2000; yet, this number is expected to be
increasing at a compound annual growth rate (CAGR) of 47%
in the coming five years, i.e., a seven-fold growth from 2016
to 2021 [20]. However, despite frequent upgrades of cellular
networks technology from 2G to 4G LTE and beyond, wireless
service providers fall short of keeping up with this increasing
wireless data demand, leading to congestion in the network,
especially in areas of dense population. As a result, users’ data
rates have to be throttled to ease congestions [2], [6], [9], at
the cost of the degraded quality of service (QoS).

Admittedly, the capacity shortfall of cellular networks can
be mitigated by allocating more wireless spectrum and deploy-
ing more wireless infrastructures including more and smaller
cells and WiFi networks offloading, etc. However, spectrum
allocation and infrastructure upgrading are not only costly but
also time-consuming, while WiFi networks may not always be
available and secure. A promising alternative, inspired by the
similar problem of demand response in power networks, is to
improve spectrum and infrastructure efficiency through man-
aging wireless data traffic (i.e., demand). Notice that wireless
traffic or demand usually fluctuates with a large peak-to-valley
ratio throughout a day; see Fig. 1 for a trace of smartphone
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Fig. 1: North America smartphone web browsing activity in
one day [21].

web browsing activity over a day. However, wireless capacity
needs to be provisioned to meet the peak demand rather than
the average. This means that the cellular network is usually
stressed in peak hours while largely underutilized at other
times. If the demand profile can be shaped to reduce the peak
and smooth the time variation, not only can more traffic be
accommodated under limited existing capacity constraints, but
also additional spectrum allocation and infrastructure upgrades
can be slowed down, which together greatly improve wireless
network efficiency and QoS, and yield huge savings for service
providers.

In this paper, we focus on designing demand shaping
algorithms for cellular networks. We divide wireless traffic into
two categories: non-deferrable traffic and deferrable traffic.
Non-deferrable traffic refers to the traffic of those applications
such as online gaming that have no or low delay tolerance, and
constitutes the base traffic whose profile cannot be shaped.
Deferrable traffic refers to the traffic of those applications
such as file uploading/downloading that are flexible in time
and only require being served by a designated deadline, e.g.,
finishing photo backup on cellphone by 12 am. Deferrable
applications (DAs) are further divided into two major types:
(1) continuous-rate interruptible applications such as photos
backup and applications update that allow any data rates—
e.g., the delayed offloading in [27], [30], and (2) discrete-rate
non-interruptible applications such as online movie streaming
and video conference that usually require certain constant data
rate [3], [4] and should not be interrupted once started, e.g.,
one can schedule movie watching or video conference to the
“valley” time to enjoy better graphic quality and incur less
data cost if he/she has the time flexibility. See Table I for a
summary of traffic types and examples. We seek to schedule
the deferrable traffic to flatten the aggregate traffic profile over
a day.

Specifically, we formulate the cellular traffic demand shap-
ing as an optimization problem that minimizes the (time)
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Traffic/Application Type Examples
Non-deferrable application Online gaming, web browsing

Discrete-rate non-interruptible DA Movie streaming, video conference
Continuous-rate interruptible DA Applications update, photos backup

TABLE I: Traffic/Application types and examples.

variation in the aggregate traffic profile subject to the time and
rate specification on each DA. We first assume complete traffic
information and design an offline demand shaping algorithm.
There are two challenging issues in the offline algorithm de-
sign. First, the optimization problem is non-convex because of
discrete-rate non-interruptible applications. We instead solve
its convex relaxation and design a randomized scheme based
on the solution to the relaxed problem. Second, demand
shaping involves potentially a huge number of applications
and users. A centralized algorithm is not scalable. We instead
design an iterative and distributed algorithm based on the
descent method. We establish the almost surely convergence
for the algorithm based on supermartingale theory.

We then consider a more realistic setting with incomplete
information where we can only predict future traffic to a
certain degree of accuracy, and design an online and distributed
demand shaping algorithm that updates the schedules of DAs
each timeslot when new information and updated prediction
are available, based on the offline algorithm for an optimiza-
tion problem over a shrinking horizon from the current time to
the end of the day. We compare the performance of the online
algorithm against the optimal offline algorithm, and provide
numerical examples to complement the theoretical analysis.

The rest of the paper is organized as follows. Section II
briefly reviews some related work and discusses some related
issues. Section III describes the system model and problem for-
mulation. Section IV presents an offline distributed algorithm
for demand shaping under the assumption of complete traffic
information and characterizes its performance. Section V con-
siders a realistic setting of incomplete traffic information, and
presents an online algorithm for demand shaping. Section VI
provides numerical examples to complement theoretical anal-
ysis, and Section VII concludes the paper.

II. RELATED WORK AND ISSUES

Demand shaping in cellular networks is similar to demand
response in power networks, in terms of design objectives,
problem formulation, and the associated algorithmic chal-
lenges. Indeed, we borrow insights from demand response in
power networks; see, e.g., [12], [14], [15], [29]. In particular,
our online demand shaping algorithm is motivated by the
solution approach for online control of continuous load in
reference [15], and mathematically can be seen as its exten-
sion to incorporate discrete decision variables considered in
reference [14]. However, our model captures realistic cellular
traffic settings, as it includes both continuous and discrete de-
cision variables. Moreover, the integration of discrete decision
variables into the online algorithm makes the performance
analysis of the algorithm more challenging, compared to that
in [15]. Related work also includes Zhao et al [38] that designs
a centralized online EV charging algorithm to minimize the
peak procurement from the grid under uncertain prediction of

future demand and renewable energy supply, and Parise et al
[31] that proposes a decentralized charging control for EVs to
flatten the aggregate power demand profile. They all consider
only continuous decision variables.

To ease the stress from high demand in cellular networks,
various demand-shaping-based methodologies as well as traffic
offloading strategies have been studied in existing literatures.
Tadrous et al in [36] propose a paradigm to proactively
serve peak-hour requests during the off-peak time based on
prediction to smoothen the traffic demand over time without
changing customers’ activity pattern. However, such strategy
is limited to routine behaviors only. In [19] Hajiesmaili et
al introduce an online procurement auction framework to
incentivize mobile devices to participate in device-to-device
load balancing to offload traffic from one heavy-loaded base
station to adjacent idle ones. Besides, WiFi and femtocell
offloading of cellular data is another major approach to easing
the congestion of cellular networks; see [10], [13], [22], [26],
[27], [30] for related works.

In this paper we have focused on designing demand shaping
algorithms based on a general and simplified system model.
We do not investigate the important practical issues such as the
timescale and granularity at which we schedule and reschedule
the DAs. We plan to develop a platform to enable automatic
demand shaping in the future, and will investigate various
practical issues then. Also, demand shaping involves not only
the design of control algorithms but also the design of right
mechanisms to incentivize the users to move out of their
“comfortable zone” in wireless applications and data usage.
Incentive design for demand shaping is currently an active
research area; see, e.g., the smart data pricing in wireless
networks [18], [35], [37], pricing design in general network
service to remove congestions [23], [32], pricing/reward sig-
nals in power distribution system [28], [40], and the references
therein.

Some discussion on the practicality of demand shaping
is also in place. People tend to use mobile data services
whenever they want, regardless of whether it is at peak time
or valley time for the cellular network. However, a survey [17]
conducted in India and USA in 2012 shows that, given proper
monetary incentive, many people are willing to postpone their
mobile data usage, with acceptable postponement varying from
minutes to hours, depending on different types of services and
different individual preferences [18]. For example, wireless
service providers can motivate the users to shift their demand
by implementing the time-dependent pricing (TDP) strategy.
TDP is now applied as a simple two-period plan by many
wireless service providers around the world, in voice services
and data services; e.g., Verizon [8] and Sprint [5] in the US
have “happy hours” in the night and weekend for voice service,
TelCom [7] in South Africa has “Night Surfer” plans giving
free data from 11pm to 5am, and Airtel [1] in India provides
unlimited data in the night. More refined TDP strategies can
be applied to maximize benefits for both wireless service
providers and users, by dynamically adjusting prices according
to the data usage of the current time and predicted future.
For instance, Ha et al [18] have worked on a TDP-based
application named TUBE. Trials in cooperation with a local
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t time index, t ∈ T := {1, . . . , T}
n DA index, n ∈ N := {1, · · · , N}
N ′ set of N ′ continuous DAs
N ′′ set of N ′′=N−N ′ discrete DAs
N̂ ′′t set of discrete DAs started earlier
Ñt set of DAs adjustable at time t
b base traffic profile, b = {b(t); t ∈ T }
pn data rate profile of DA n, pn = {pn(t); t ∈ T }

pn(t) upper bounds of DA n on the data rate at time t
rn constant bit rate for DA n ∈ N ′′
ln number of timeslots to finish transmission for DA n ∈ N ′′
q virtual deferrable traffic profile
d average traffic profile
d̂ average traffic profile of online ODS
d̂∗ average traffic profile of online relaxed ODS
d∗ average traffic profile of offline relaxed ODS
Pn total traffic required from DA n, Pn =

∑
t∈T pn(t)

Pn(t) remaining traffic to be served for DA n ∈ N ′t
xk
n change in traffic profile of DA n, xk

n = pk+1
n − pkn

tan arrival time of DA n
tdn deadline of DA n
An number of feasible profiles of DA n ∈ N ′′
fn,a a-th feasible profile of DA n ∈ N ′′
un,a probability corresponding to fn,a

Fn set of all feasible traffic profiles for discrete DAs,
Fn={fn,a; 1 ≤ a ≤ An}

V (d) objective value: (time) variance of d

TABLE II: Main notation.

wireless service provider shows its effectiveness in shaping the
traffic profile [24]. Also refer to [34] for a review of pricing
strategies.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cellular network that serves users for different
applications such as web browsing, file sharing, real-time
entertainment, etc. The applications can be broadly divided
into two categories: deferrable applications (DAs) and non-
deferrable applications (non-DAs). DAs refer to those applica-
tions that are flexible in the starting time and/or data rate, while
the non-DAs refer to those that should be served immediately
and often have stringent data rate requirement. Please refer
to the third paragraph of Section I and TABLE I for more
detailed description and examples of DAs and non-DAs.

This work aims to schedule the traffic of DAs so as to flatten
the aggregate traffic profile over a day, subject to the time
constraints and rate constraints of each application. We use a
discrete-time model where one day is divided equally into T
timeslots, indexed by t ∈ T = {1, 2, · · · , T}. The duration of
a timeslot can be, e.g., 30 minutes or 1 hour [18], depending
on the time resolution of scheduling decisions.

A. Non-Deferrable Applications

Non-DAs include web browsing, online gaming, and real-
time chatting with multimedia, etc. The latency tolerated by
these applications usually varies from hundreds of millisec-
onds to seconds. Since these applications should be served
immediately upon request, their traffic is inelastic and consti-
tutes the base traffic whose profile cannot be shaped. Denote
the base traffic profile by b = {b(t); t ∈ T }. As we can only
predict the base traffic to a certain accuracy, we model it as
a random vector with mean b̄ = {b̄(t); t ∈ T } and random
derivation δb = {δb(t); t ∈ T } from the mean, i.e., b = b̄+δb.

We assume that δb(t) has a mean of 0 and variance of δ2(t),
and may be temporally correlated. We further assume that we
can make better prediction for the timeslots that are closer
to current time, modeled by a time-dependent deviation from
the mean, i.e., the base traffic at some future time τ ∈ T is
predicted at current time t by

bt(τ) = b̄(τ) + δbt(τ), (1)

where the subscript t represents the timeslot when the pre-
diction is made, and δbt(τ) has a decreasing variance δ2t (τ)
as t approaches τ . More concrete model for prediction will
be introduced in Section VI. The parameters b̄ and δt will be
specified exogenously, and can be estimated from the historical
traffic records.

B. Deferrable Applications

Assume that there are N DAs in the network, indexed
by n ∈ N = {1, · · · , N}. Each DA n is characterized by
an arrival time tan when it is requested or after which it
can be started, a deadline tdn by which its transmission must
be done, and certain requirement or constraint on data rate
pn = {pn(t); t ∈ T }. Let Pn denote the total traffic required
by DA n, i.e.,

∑
t∈T pn(t) = Pn. We can classify DAs

into two main categories: continuous-rate interruptible DAs
(or continuous DAs for simplicity) that allow any data rates
between certain upper and lower bounds and can be interrupted
and resumed at any time before the deadline, and discrete-
rate non-interruptible DAs (or discrete DAs for simplicity)
that require certain (roughly) constant data rate and cannot
be interrupted once they are started. For example, system
backup is usually interruptible and allows any continuous data
rates, while video conference is usually preferred to be non-
interruptible and runs at a constant (thus discrete) data rate
once it is started.

Among the total N DAs, we assume there are N ′ continuous
DAs, indexed by n ∈ N ′ = {1, · · · , N ′}. For each continuous
DA, denote by p

n
(t) and pn(t) the lower and upper bounds

on its data rate at time t ∈ T , i.e.,

p
n
(t) ≤ pn(t) ≤ pn(t), t ∈ T . (2)

Naturally, 0 ≤ p
n
(t) ≤ pn(t). The lower bounds p

n
(t) are

usually zero, and the upper bounds pn(t) can be set according
to, e.g., the available bandwidth. The arrival time tan and the
deadline tdn can be integrated into the rate constraints (2) by
setting pn(t) = 0 for t < tan and t > tdn, i.e., no traffic is
transmitted before arrival time or after deadline.

Index the rest N ′′ = N−N ′ discrete DAs by n ∈ N ′′ =
{N ′ + 1, · · · , N}. For a discrete DA such as a streaming
application, a constant bit rate rn corresponds to a certain
graphic quality, e.g., rn = 3 Mbps for a SD quality movie
on Netflix [4], and rn = 1.2 Mbps for a HD video call on
Skype [3]. As the graphic quality usually (preferrably) does
not change during those applications, this seemingly over-
simplified assumption of a single discrete rate is reasonable.

For each DA n ∈ N ′′ with its total traffic Pn and the rate
rn, it takes ln = Pn/rn consecutive timeslots (or equivalently
the other way around, i.e., we calculate Pn = ln ∗ rn based
on ln and rn). Therefore, the number of its feasible traffic
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profiles is An = tdn − tan − ln + 1, wherein the a-th feasible
profile is denoted as

fn,a=
{
pn

∣∣∣pn(t) =
{ rn, if tan + a− 1 ≤ t ≤ tan + a+ ln

0, otherwise

}
.

We denote the set of all feasible traffic profiles of DA n ∈ N ′′
by Fn = {fn,a : 1 ≤ a ≤ An}, i.e., pn ∈ Fn, ∀n ∈ N ′′.

Remark 1: All the modeled traffic parameters can be rea-
sonably accessed or estimated in practice. For example, infor-
mation regarding total required traffic Pn and video streaming
rate rn is available from metadata of traffic to be transmitted,
parameters like tan and tdn are specified by the users in advance
(and Fn can then be calculated accordingly), whereas data rate
bounds p

n
(t) and pn(t) can be either determined by available

bandwidth or designated by the users. See, e.g., [18] for an
example system involving similar information requirement and
implemented with real users and service provider. 2

C. Problem Formulation

We aim to schedule the traffic of DAs, so as to flatten
the aggregate traffic profile as much as possible. Denote the
“average” traffic profile by d = {d(t); t ∈ T } := 1

N (b +∑
n∈N pn). Traffic flattening can be achieved by minimizing

the time variance of d, formulated as the following optimal
demand shaping (ODS) problem:

ODS:
min
p,d

V (d) =
1

T

∑
t∈T

(
d(t)− 1

T

∑
τ∈T

d(τ)
)2

(3a)

s.t. d(t) =
1

N

(
b(t) +

∑
n∈N

pn(t)
)
, t ∈ T , (3b)

p
n
(t) ≤ pn(t) ≤ pn(t), t ∈ T , n ∈ N ′, (3c)∑

t∈T
pn(t) = Pn, n ∈ N ′, (3d)

pn ∈ Fn, n ∈ N ′′. (3e)

Notice that the constraints (3e) for discrete DAs are non-
convex. In next section, we will investigate an offline algorithm
together with a randomized scheme for solving the ODS
problem under the assumption of complete information on the
base traffic and DAs. Then in Section V, we will study an
online algorithm for demand shaping under a more realistic
setting of incomplete information where we can only predict
the future traffic to a certain degree of accuracy. The offline
ODS problem and algorithm will later serve as a benchmark
to characterize the performance of the online algorithm.

IV. OFFLINE DEMAND SHAPING ALGORITHM

In this section, we assume complete traffic information, i.e.,
the base traffic and arrival of DAs are accurately known, and
study how to solve the resulting offline ODS problem. The
offline problem and algorithm will provide insights into the
online algorithm design for a realistic setting of incomplete
information that will be considered in Section V.

A. Convex Relaxation and Randomized Scheme

The offline ODS problem is non-convex, as each discrete
DA has to pick a traffic profile from a discrete set; see

constraint (3e). Consider the convex hull of Fn, defined as

conv(Fn) :=
{
pn| pn =

An∑
a=1

un,a · fn,a, ua,n ≥ 0

and
An∑
a=1

un,a = 1
}
, (4)

where un := {un,1, . . . , un,An} is the convex combination
coefficients, and will be interpreted as probability distribution
in the randomized algorithm to be introduced soon. We will
instead solve the convex relaxation of the ODS problem by
replacing (3e) with the following constraint:

pn ∈ conv(Fn), n ∈ N ′′. (5)

We call the relaxed problem (3a)–(3d)(5) the R-ODS problem.
However, a solution p∗n∈ conv(Fn), n ∈ N ′′ to the R-ODS
problem might not be feasible for original ODS, i.e., p∗n /∈ Fn.
But since by definition (4) a solution p∗n can always be written
as the convex combination

∑An

a=1 un,afn,a we will randomly
pick a traffic profile pn = fn,a ∈ Fn with corresponding
probability un,a. That said, we will design a randomized
algorithm for the offline ODS problem, based on the solution
to the R-ODS problem. We will integrate it into a distributed
algorithm next.

B. Distributed Algorithm

Solving the R-ODS problem (and the offline ODS problem)
directly in a centralized way requires collecting information on
all DAs, which may incur too much communication overhead
and is impractical in the real network. Moreover, the users may
not be willing to reveal information on DAs due to privacy
concern. Therefore, we seek to solve it in a distributed way.
Noticing that R-ODS problem has decoupled constraints, we
attempt to design an iterative and distributed algorithm based
on the decent method [11].

Before deriving the algorithm, we establish the following
useful results. At k-th iteration, let pk = {pkn; n ∈ N} be the
traffic profiles of all DAs, dk = 1

N (b+
∑
n∈N p

k
n) the average

traffic profile, and xkn = pk+1
n − pkn, n ∈ N the change in

traffic profile of DA n from iteration k to k + 1. We have:

E
[∥∥ ∑

n∈N
xkn
∥∥2
2

]
=
∑
n∈N

V ar(xkn) +
∥∥ ∑
n∈N

E[xkn]
∥∥2
2
, (6)

where the variance V ar(xkn) := E
[
‖xkn‖22

]
−‖E[xkn]‖22, and

E[·] denotes the average.1 By Jensen’s inequality,

‖
∑
n∈N

E[xkn]‖22 ≤ N
∑
n∈N

∥∥E[xkn]
∥∥2
2
. (7)

Therefore, one has

E
[
‖
∑
n∈N

xkn‖22
]
≤
∑
n∈N

V ar(xkn) +N
∑
n∈N

∥∥E[xkn]
∥∥2
2
. (8)

1Notice that we consider a randomized scheme only for discrete DAs. That
said, for continuousDAs there is no randomness and their variance is zero.
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And it follows that

TN2
(
E[V (dk+1)|pk]− V (dk)

)
= E

[
‖
∑
n∈N

xkn‖22 + 2〈Ndk,
∑
n∈N

xkn〉
]

≤
∑
n∈N

V ar(xkn) +N
∑
n∈N
‖E[xkn]‖22 + 2

∑
n∈N

E[〈Ndk, xkn〉]

=
∑
n∈N ′

(
2〈Ndk, xkn〉+N‖xkn‖22

)
+
∑
n∈N ′′

(
2〈Ndk, E[xkn]〉

+N‖E[xkn]‖22 + V ar(xkn)
)
. (9)

Denote by W1 the first term in (9) and W2 the second. For
n ∈ N ′, we choose pk+1

n so as to minimize W1, i.e., to solve

min
pn

2〈dk, pn − pkn〉+ ‖pn − pkn‖22 (10a)

s.t. (3c)− (3d). (10b)

On the other hand, after some mathematical manipulations,
we have
W2 =

∑
n∈N ′′

(
2N〈dk− pkn, E[pk+1

n ]〉+(N−1)‖E[pk+1
n ]‖22

)
+Πk,

where Πk is a constant given pkn. For n ∈ N ′′, we choose
p∗k+1
n so as to minimize W2, i.e., to solve

min
pn∈conv(Fn)

2〈dk − pkn, pn〉+
N − 1

N
‖pn‖22. (11)

In essence, what we have done is to maximize the expected
incremental decrease in the objective value V (d) at each
iteration (i.e., steepest descent). This motivates a distributed
demand shaping algorithm with the collaboration of a coor-
dinator; see Algorithm 1. The wireless service provider can
implement a logical coordinator at the base station.

Algorithm 1 Offline Demand Shaping (Off-DS) Algorithm

At k-th iteration:
1) Upon gathering traffic profiles pkn from DAs, the coordi-

nator calculates the average traffic profile dk = 1
N (b +∑

n∈N p
k
n) and announces it to DAs (or the end users)

over a signaling or control channel.
2) Upon receiving the average traffic profile dk,

• DA n ∈ N ′ updates its traffic profile by

pk+1
n = arg min

pn

∥∥pn − pkn + dk
∥∥2
2

s.t. (3c)–(3d),

and submits it to the coordinator.
• DA n ∈ N ′′ calculates the average traffic profile by

p∗k+1
n = arg min

pn∈conv(Fn)

∥∥∥pn − N

N − 1
(pkn − dk)

∥∥∥2
2
,

which is p∗k+1
n =

∑An

a=1 u
k+1
n,a fn,a, and then ran-

domly chooses a traffic profile pk+1
n = fn,a with

probability uk+1
n,a and submits it to the coordinator.

The Off-DS algorithm is a distributed algorithm wherein
each DA solves its own simple optimization problem based on
its previous decision, the average traffic profile dk, and local
constraints, while the coordinator collects the proposed traffic
profiles and updates the average traffic profile. Therefore, this

algorithm is not only preserving privacy of the users, but also
scalable and thus capable of quick response, which is crucial
especially in real-time implementation in Section V.

The computational complexity of the Off-DS algorithm is
estimated as follows for completeness. Given certain accuracy
requirement ε > 0 in the objective function value, the
descent method requires O(log(1/ε)) iterations [11]. At each
iteration, DAs solves an easy quadratic programming with a
polynomial complexity of O(TO(1)) [33]. On the other hand,
the coordinator calculates the average traffic profile which
requires O(N) complexity each iteration. As a result, the Off-
DS algorithm requires overall computational complexity of
O
(
(N + TO(1)) log(1/ε)

)
.

Remark 2: For simpler expression, we use pn as the deci-
sion variable for DA n ∈ N ′′ in algorithm design and analysis,
while in real implementation, it is more convenient to use
probability distribution un as the equivalent decision variable.
Also notice that, if there is no continuous DA, Algorithm 1
reduces to the stochastic algorithm in [14]. We expect that
the solution approach—randomized algorithm based on the
“steepest” descent method for the convex relaxed problem—
that we lay out in Sections IV-A and IV-B will find broad
application in designing efficient algorithms for optimization
problems that involve both continuous and discrete decision
variables. 2

C. Convergence

Before showing the convergence of the Off-DS algorithm,
we first establish two useful relations. For each DA n ∈ N ′,
since pk+1

n solves the problem (10), we have the first-order
optimality condition

〈pk+1
n − pkn + dk, pn − pk+1

n 〉 ≥ 0 (12)

for any feasible pn. Set pn = pkn to obtain

〈dk, pk+1
n − pkn〉 ≤ −‖pk+1

n − pkn‖22. (13)

For each DA n ∈ N ′′, recalling that p∗k+1
n = E[pk+1

n ], by the
first-oder optimality condition, we have

〈 N

N − 1
(dk − pkn) + p∗k+1

n , pn − p∗k+1
n 〉 ≥ 0 (14)

for any feasible pn. Set pn = pkn to get

〈Ndk, p∗k+1
n − pkn〉 ≤ −(N − 1)‖p∗k+1

n − pkn‖22
+ 〈pkn, p∗k+1

n − pkn〉. (15)

Now, construct a filtration Σ∗ of the probability space
{Ω,Σ,P}, where the sample space Ω is the feasible set
specified by the constraints (3c)–(3e), the σ-algebra Σk =
Ω, k ≥ 0, and P(Σk) = {δ(pn − pkn), n ∈ N ′; ukn,a, 1 ≤
a ≤ An, n ∈ N ′′}, i.e., determined by the k-th iteration of
the Off-DS algorithm.

Theorem 1: The pair (V (d), Σ∗) is a supermartingale. 2

Proof: First, notice that V (d) is bounded from below. So,
E[−min{0, V (d)}] < ∞. Second, applying relations (13)–
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(15) to equation (9), we obtain

TN2
(
E[V (dk+1)|pk]− V (dk)

)
≤

∑
n∈N ′

−N‖xkn‖22 +
∑
n∈N ′′

(
V ar(xkn)

+ (−N + 2)
∥∥E[xkn]

∥∥2
2

+ 2〈pkn, p∗k+1
n − pkn〉

)
=

∑
n∈N ′

−N‖xkn‖22 +
∑
n∈N ′′

(−N + 1)
∥∥E[xkn]

∥∥2
2

≤ 0,

i.e., E[V (dk+1)|pk] ≤ V (dk). By definition, (V (d), Σ∗) is a
supermartingale [16].

Notice that (V (d), Σ∗) is a nonnegative supermartingale.
By the martingale convergence theorem [16], the following
result is immediate.

Corollary 1: V (d∞) = limk→∞ V (dk) exists almost
surely, where V (d∞) is some random variable. 2

Theorem 2: Denote by P∞ an “equilibrium” distribution
over traffic profiles that (V (d), Σ∗) converges to. The support
of P∞ is a singleton. 2

Proof: When (V (d), Σ∗) converges, E[V (dk+1)|pk] =
V (dk). This requires E[xkn] = E[xkn′ ], n, n′ ∈ N , pk+1

n =
pkn, n ∈ N ′, and p∗k+1

n = pkn, n ∈ N ′′ for (8), (13), and
(15) to hold with equality. Notice that p∗k+1

n = pkn implies
pk+1
n = pkn, as different feasible traffic profiles of DA n ∈ N ′′

are linearly independent. Thus, pk+1
n = pkn, n ∈ N . So, the

support of P∞ contains only one point.
Denote by p∞ an “equilibrium” traffic profile of the Off-DS

algorithm, i.e., if pk = p∞, then pk+1 = p∞. Obviously the
set of equilibrium profiles is not empty, as an optimum of the
offline ODS problem is an equilibrium. The following result
follows immediately from Theorem 2 and Corollary 1.

Theorem 3: The Off-DS algorithm converges almost surely
to an equilibrium traffic profile. 2

By equations (12)–(14), we have the following optimality
conditions at equilibrium p∞: for any feasible pn,

〈b+
∑
m∈N

p∞m , pn − p∞n 〉 ≥ 0, n ∈ N ′, (16a)

〈b+
∑
m6=n

p∞m , pn − p∞n 〉 ≥ 0, n ∈ N ′′. (16b)

D. Performance Analysis of the Offline Algorithm

We now characterize the performance of Off-DS algorithm
with respect to the relaxed problem R-ODS that at optimum
may attain a lower objective value than the ODS problem.
Specifically, denote by p∗ the solution of R-ODS, we bound
the gap between the equilibrium of the Off-DS algorithm and
the solution of the R-ODS problem as: Goff := V (d∞) −
V (d∗), where d∞ = (b +

∑
n∈N p

∞
n )/N and d∗ = (b +∑

n∈N p
∗
n)/N . Denote by Goff

r := (V (d∞) − V (d∗))/V (d∗)
the relative gap achieved by the Off-DS algorithm.

Theorem 4: For the Off-DS algorithm, the gap Goff is
bounded as follows:

Goff ≤ 2

TN2

∑
n∈N ′′

‖p∞n ‖22. (17)

Moreover, the relative gap diminishes as the number N ′′ of

discrete DAs increases, i.e.,

lim
N ′′→∞

Goff
r = 0. (18)

2

Proof: For notational simplicity, let cd :=
∑
t∈T d(t)/T ,

which is a constant given the total amount of traffic. The
objective value can be written as

V (d) =
1

T
‖d− cd · 1‖22 =

1

T
(‖d‖22 + c2d‖1‖22 − 2〈d,1〉)

=
1

T
(‖d‖22 + T · c2d − 2T · cd),

where only the part ‖d‖22 contains decision variables. We can
thus write the gap Goff as

Goff = V (d∞)− V (d∗) =
1

T

(
‖d∞‖22 − ‖d∗‖22

)
=

1

T

(
− ‖d∞ − d∗‖22 + 〈2d∞, d∞ − d∗〉

)
≤ 1

T
〈2d∞, d∞ − d∗〉

=
2

N2

(∑
n∈N ′

〈Nd∞, p∞n − p∗n〉+
∑
n∈N ′′

〈Nd∞, p∞n − p∗n〉
)

≤ 2

TN2

∑
n∈N ′′

〈p∞n , p∞n − p∗n〉

≤ 2

TN2

∑
n∈N ′′

‖p∞n ‖22,

where the second inequality follows from (16). Note that
‖p∞n ‖22 is a constant for n ∈ N ′′. Then the relative gap Goff

r

can be bounded as

Goff
r ≤ 2

TN2

∑
n∈N ′′

‖p∞n ‖22/V (d∗)

=

∑
n∈N ′′ ‖p∞n ‖22

‖b+
∑
n∈N p

∗
n‖22 +N2(T · c2d − 2T · cd)

,(19)

whose numerator increases linearly with N ′′ and denominator
increases linearly with the square of N ′′. Equation (18)
follows.

Remark 3: We use the relaxed problem R-ODS for compar-
ison instead of the ODS problem for two reasons. First, it is
difficult to characterize the optimum of the non-convex ODS
problem, and thus evaluating the gap between the equilibrium
of the Off-DS algorithm and the optimum of ODS problem is
mathematically hard. Second, R-ODS achieves an optimal ob-
jective value that is not greater than ODS, resulted from convex
relaxation for the discrete decision variables. Therefore, Goff

provides an upper bound for the “actual” sub-optimality, i.e.,
the gap between the equilibrium of Off-DS and the optimum
of ODS. 2

V. ONLINE DEMAND SHAPING ALGORITHM

In this section, we consider a realistic setting with incom-
plete information where we can only predict future traffic
to a certain degree of accuracy, and study online demand
shaping that makes decisions based on the prediction of future
traffic and updates the decision as new information becomes
available.

A typical algorithm used in this setting is the receding
horizon control; see, e.g., [25]. However, as the objective
function (3a) does not have a nice additive structure, receding
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horizon control algorithm does not admit an easy analysis.
We will instead extend a shrinking horizon control algorithm,
which is used in [15] that studies mathematically the same
problem with only continuous DAs, to include discrete DAs,
and apply it to our online demand shaping (online DS)
problem.

A. Online Algorithm

We assume that the number mt of DAs arriving at time t
is randomly distributed with a mean λt and variance (δλt)

2,
and the total amount of traffic of each DA is randomly
distributed with a mean P and variance (δP )2. Denote by
N ′t = {1, · · · , N ′t} the set of continuous DAs and N ′′t =
{N ′ + 1, · · · , Nt} the set of discrete DAs that have arrived
by time t ∈ T , and let Nt = N ′t ∪ N ′′t and N ′′t = Nt −N ′t .
Notice that we cannot reschedule the remaining traffic of a
discrete DA that has already started. Denote by Ñ ′′t ⊆ N ′′t
the set of discrete DAs that have not been started by time t.
For DA n ∈ Ñ ′′t , denote by Fn(t) = {fn,a; 1 ≤ a ≤ An(t)}
the set of feasible traffic profiles at time t. Let Ñt = N ′t ∪Ñ ′′t
be the set of DAs whose profiles are still adjustable at time t
(i.e., all the continuous DAs and the discrete DAs that have
not started by time t).

At time t, we make a prediction bt(t : T ) of base traffic for
the rest timeslots of the day, and we also have the information
on DA n ∈ Nt and the expected total future deferrable
traffic

∑T
τ=t+1 Pλτ . Following [15], we introduce a virtual

deferrable traffic profile q(t : T ) = {q(τ); t ≤ τ ≤ T} with
q(t) = 0 and

∑T
τ=t q(τ) =

∑T
τ=t+1 Pλτ , to emulate the

impact of the future deferrable traffic upon the current demand
shaping decision. With the afore setup, we aim to schedule and
reschedule the DAs, so as to solve the following problem at
each timeslot t ∈ T .

ODSt:

min V (d) =
1

T−t+1

T∑
τ=t

(
d(τ)−

∑T
s=t d(s)

T−t+1

)2
(20a)

over p(t : T ), d(t : T ), q(t : T )

s.t. d(τ) =
bt(τ)+q(τ)+

∑
n∈Nt

pn(τ)

Nt
, τ ≥ t, (20b)

p
n
(τ) ≤ pn(τ) ≤ pn(τ), τ ≥ t, n ∈ N ′t , (20c)

T∑
τ=t

pn(τ) = Pn(t), n ∈ N ′t , (20d)

pn ∈ Fn(t), n ∈ Ñ ′′t , (20e)
T∑
τ=t

q(τ) =

T∑
τ=t+1

Pλτ , (20f)

where p(t : T ) = {pn(τ); t ≤ τ ≤ T, n ∈ Ñt}, d(t : T ) =
{d(τ); t ≤ τ ≤ T}, and Pn(t) = Pn −

∑t−1
τ=1 pn(τ), n ∈ N ′t

is the amount of traffic to be served at or after time t.
We can solve the ODSt problem at each timeslot the same

way as we solve the offline ODS problem (3), constituting an
online demand shaping algorithm; see Algorithm 2, wherein
the convergence (and computational complexity) of Step
2) can be established (and analyzed) in the same way as
Algorithm 1.

Algorithm 2 Online Demand Shaping (On-DS) Algorithm
At each timeslot t ∈ T :

1) Denote by p
(t−1)
n , n ∈ Nt−1 the schedules determined

by time t − 1, and by N̂ ′′t ⊆ N ′′t the set of discrete
DAs that has been started before time t. For each DA
n ∈ N̂ ′′t , set its schedule pn(t;T ) = {pn(τ); t ≤ τ ≤ T}
as pn(τ) = p

(t−1)
n (τ), t ≤ τ ≤ T .

2) Solve the ODSt problem iteratively: at k-th iteration,
a) Upon gathering traffic profiles pkn(t : T ) = {pkn(τ); t ≤
τ ≤ T} from DAs n ∈ Ñt, the coordinator solves

min
q(t+1:T )

T∑
τ=t+1

(
bt(τ) + q(τ) +

∑
n∈N̂ ′′

t

pn(τ) +
∑
n∈Ñt

pkn(τ)
)2

s.t. (20f),

to obtain a virtual deferrable traffic {qk(τ); t + 1 ≤
τ ≤ T}, and then calculates the average traffic dk(τ) =
1
Nt

(
bt(τ)+qk(τ)+

∑
n∈N̂ ′′

t
pn(τ)+

∑
n∈Ñt

pkn(τ)
)

for
τ ≥ t and announces it to DA n ∈ Ñt over a signaling
or control channel.

b) Upon receiving the average traffic profile dk,
• DA n ∈ N ′t obtains pk+1

n (t : T ) by

min
pn(t:T )

∥∥pn(t : T )− pkn(t : T ) + dk(t : T )
∥∥2
2

s.t. (20c)–(20d),

and submits the updated profile to the coordinator.
• DA n ∈ Ñ ′′t calculates p∗k+1

n (t : T ) by

min
pn(t:T )

∥∥∥pn(t : T )− Nt
Nt − 1

(pkn(t : T )− dk(t : T ))
∥∥∥2
2

s.t. pn(t : T ) ∈ conv(Fn(t)), n ∈ Ñ ′′t ,
represents it as a convex combination p∗k+1

n =∑An(t)
a=1 uk+1

n,a fn,a, and randomly chooses a traffic
profile pk+1

n = fn,a with probability uk+1
n,a and

submits it to the coordinator.

B. Performance Analysis of the Online Algorithm

We now characterize the performance of On-DS algorithm
with respect to the result of Off-DS algorithm which serves
as a benchmark. We will make the following assumptions to
simplify the analysis and obtain insights into how uncertainties
affect the performance of On-DS algorithm.

Assumption 1: The amount of deferrable traffic is large and
flexible enough so that a valley-filling schedule exists at every
time t = 1, . . . , T , i.e., there exists some constant C(t) ≥
bt(τ),∀τ = t, . . . , T such that

Nd(t) = C(t)

=
1

T − t+ 1

( T∑
τ=t

bt(τ) +

T∑
τ=t+1

Pλτ +

Nt∑
n=1

Pn(t)
)
. (21)

2

Remark 4: Assumption 1 looks a strong assumption, and
we do not have empirical evidence to support it as demand
shaping has not being widely adopted in current cellular
networks. However, with increasing penetration of deferrable
traffics and users, this assumption expects to hold. One purpose
of algorithm design as in this paper and incentive design
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Fig. 2: Strategy to calculate the gap between the equilibrium
of the On-DS algorithm and that of Off-DS algorithm.

as in [18] is to facilitate and incentivize wide adoption of
demand shaping. On the other hand, valley-filling represents
the scenario where demand shaping is most useful and presents
a benchmark for the potential of demand shaping. Mathe-
matically, it is very difficult to analyze the performance of
the online algorithm under more general assumption than
Assumption 1. However, notice that in numerical examples in
Section VI, we do not impose Assumption 1 while the results
still fall into the bound specified in Theorem 5. 2

Assumption 2: The base traffic prediction at t is modeled
as the following causal filter

bt(τ) = b̄(τ) +

T∑
s=1

e(s)f(τ − s), τ = 1, . . . , T, (22)

where e = {e(s)}Ts=1 is an uncorrelated sequence of indepen-
dent and identically distributed random variables with mean
0 and variance δ2, and f = {f(τ)}∞τ=−∞ is the impulse
response with f(0) = 1. Let F (t) :=

∑t
s=0 f(s). 2

We denote by Gon the gap defined as the expected difference
between the results of On-DS algorithm and Off-DS algo-
rithm, i.e., Gon = E[V (d̂) − V (d∞)], where E denotes the
expectation, and d̂ and d∞ denote the average traffic profiles
achieved by the On-DS algorithm and the offline-DS algorithm
respectively. It turns out that direct calculation of this gap is
difficult. We therefore utilize two intermediate variables: d∗,
the average traffic profile achieved by the R-ODS problem,
and d̂∗, the average traffic profile achieved by the relaxed
online DS, i.e., the counterpart of R-ODS problem in the
online scenario. Similar notations are applied to individual
traffic profile pn. With the relation shown in Fig. 2, we can
write online gap as

Gon = E
[
V (d̂)−V (d̂∗)+V (d̂∗)−V (d∗)+V (d∗)−V (d∞)

]
= E

[
V (d̂)− V (d̂∗)

]
+ E

[
V (d̂∗)− V (d∗)

]
+ E

[
V (d∗)− V (d∞)

]
. (23)

Theorem 5: The gap, i.e., the expected difference between
the results of On-DS algorithm and Off-DS algorithm is
bounded as follows:

Gon = E[V (d̂)− V (d∞)] ≤ 2

TN2

∑
n∈N ′′

‖p̂n‖22

+
(δλ)2

T

T∑
t=2

1

t
+
δ2

T 2

T−1∑
t=0

F 2(t)
T − t− 1

t+ 1
. (24)

2

Proof: Applying the approach and results from Theo-

rem 4, we have

0 ≤ E
[
V (d̂)− V (d̂∗)

]
≤ 2

TN2

∑
n∈N ′′

‖p̂n‖22, (25)

− 2

TN2

∑
n∈N ′′

‖p̂n‖22 ≤ E
[
V (d∗)− V (d∞)

]
≤ 0. (26)

For the second term of (23), under Assumptions 1–2, following
[15], we get

E
[
V (d̂∗)−V (d∗)

]
=

(δλ)2

T

T∑
t=2

1

t
+
δ2

T 2

T−1∑
t=0

F 2(t)
T − t− 1

t+ 1
.

(27)

Combine (25)–(27) to obtain (24).
Theorem 5 indicates that, the size of the gap between online

and offline algorithms changes monotonically with prediction
error of both base traffic and future arrival of deferrable traffic.
Accordingly we can improve the result of On-DS algorithm
by implementing better prediction mechanism, e.g., On-DS
algorithm which updates its prediction to keep the value of
prediction error small. Also, if the impulse response f is
chosen to fade quickly enough, then as we have finer time
granularity, we have T →∞, and Gon → 0, which intuitively
indicates that, with infinitely small timeslot, we can update
our decisions frequently enough to mitigate prediction errors,
and therefore have a negligible performance gap.

Lastly, similar to Theorem 4, define a relative gap Gon
r :=

Gon/V (d∞). The following result is immediate.
Theorem 6: The relative gap Gon

r diminishes as the number
of discrete DAs N ′′ increases, i.e.,

lim
N ′′→∞

Gon
r = 0. (28)

2

Remark 5: It is worth noting that equation (28) does not
necessarily imply a monotone decreasing of Gon

r with respect
to N ′′. This can be seen from Fig. 6 in Section VI that does
not show a decreasing Gon

r as N ′′ increases. 2

By equations (25) and (27), it is straightforward to obtain
the following result.

Corollary 2: The expected difference between the On-DS
algorithm and the optimum of the R-ODS problem is bounded
as follows:

E[V (d̂)− V (d∗)] ≤ 2

TN2

∑
n∈N ′′

‖p̂n‖22

+
(δλ)2

T

T∑
t=2

1

t
+
δ2

T 2

T−1∑
t=0

F 2(t)
T − t− 1

t+ 1
.

2

VI. NUMERICAL EXAMPLES

In this section, we provide numerical examples to evaluate
the performance of the On-DS algorithm. We use certain
composite traffic traces to drive simulations to show the impact
of base traffic prediction errors, deferrable traffic prediction
errors, and deferrable traffic penetration levels. We expect the
conclusions obtained to hold for real traffic.

A. Experimental Setup
Consider a 48-hour period of time starting from 4:00 pm to

3:59 pm two days later. We divide the 48 hours equally into
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Fig. 3: Base traffic: the average (blue/dotted) and a “real” trace
(red/solid).

96 timeslots, each 30 minutes long. We consider scheduling
traffic that arrives within the first 24 hours only, which may
be allocated to the second 24 hours.

1) Non-deferrable Traffic: The “real” trace we use for non-
deferrable traffic, or base traffic, is shown in Fig. 3 (red line). It
is constructed by random fluctuation around the average base
traffic trace (blue line) composed based on North American
mobile web browsing activity by time of day in 2013 [21],
shown in Fig. 1. As modeled in Section III-A, the prediction
of base traffic follows (1), consisting of average base traffic
b̄(τ) and random deviation δbt(τ) from the average value.
Following [15], at time t, δbt(τ) is modeled as

δbt(τ) =

τ∑
s=t+1

ωs(τ), t < τ ≤ T, (29)

where ωs(τ) are random variables of Gaussian distribution
with 0 mean and variances

E[ω2
s(τ)] =

σ2

τ − s+ 1
, 1 ≤ s ≤ τ ≤ T. (30)

In this way, δbt(τ) has decreasing variance as t approaches τ ,
simulating a gradually improving prediction for some future
timeslot τ as one gets closer to it. In simulation, we take the
values of σ2 in (30) from 0 to 100 with increment of 10,
corresponding to a root-mean-square prediction error (RMSE)
ranging from 0% to 32%, looking 48 timeslots (24 hours)
ahead.

2) Deferrable Traffic: We assume that the number of DAs
arriving at each timeslot follows a “shifted” Poisson process
m + poissrnd(λp), with m ≥ 0 and poissrnd(λp) denoting a
Poisson process with rate λp. Here, we set λp = 4, while each
DA has a 50-50 chance to require continuous- or discrete-rate
traffic. The total traffic Pn of each DA is uniformly distributed
in [P , P ] where we set P = 12 and P = 24. The deadline for
DA n is uniformly distributed in [tan + ln +D, tan + ln +D],
where ln = pPn/pnq is the minimum number of timeslots
required by the DA calculated by ceiling function p·q. We set
D = 6, D = 14, and a universal bit rate upper bound pn = 3.
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Fig. 4: Repetitive experiments show that a number of 20 to
30 iterations give a satisfying result in terms of convergence.

3) Benchmarks for Comparison: We compare the perfor-
mance of the On-DS algorithm with a few typical benchmarks
to evaluate the impact of base traffic prediction error, the
benefit of updating the prediction in real time, and the impact
of deferrable traffic’s penetration level. We thus consider the
followings five cases in our experiments:

(0) Offline demand shaping w/ Off-DS algorithm. We use
“real” trace for future base traffic and use arrival infor-
mation recorded from case (1) below for DAs. Applied
with Off-DS algorithm, this case gives the optimal per-
formance used as benchmark to characterize the gap of
other cases.

(1) Online demand shaping w/ On-DS algorithm. We make
prediction for both DAs’ arrival and base traffic in the
future. Prediction is updated at each timeslot. We run
On-DS algorithm to schedule traffic.

(2) Online demand shaping w/ exact information for base
traffic and w/o exact information for DAs. We use “real”
trace for base traffic and prediction for DAs. We apply
On-DS algorithm. Comparison of case (2) with case (1)
shows the impact of uncertainty in base traffic.

(3) Demand shaping w/ updating prediction of base traffic
and w/ exact information for DAs. We use DAs arrival
information recorded from case (1). Instead of applying
virtual deferrable traffic, we schedule traffic profiles for
all the future deferrable traffic. Since the exact base
traffic information is not available, we updated base
traffic prediction at each timeslot. Comparison of case (3)
and (1) shows the impact of uncertainty in DAs arrival
prediction.

(4) Demand shaping w/o updating prediction of base traffic
and w/ exact information for DAs. We use prediction of
the base traffic at the beginning (t = 1) without further
updating, and use arrival information recorded from case
(1) for DAs. This case shows how the online algorithm
benefits from updating prediction at each timeslot.

We use the metric of relative gap Gr(d) = (V (d) −
V (d0))/V (d0) to evaluate the performance, where d0 is the
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2

Fig. 5: Base traffic prediction error has little impact on online
algorithms with updated base traffic prediction.

results obtained from case (0). Also notice that when d is cal-
culated based on case (1), Gr(d) becomes Gon

r in Theorem 6.

B. Experiment Results

Considering randomness in DAs’ arrivals, base traffic pre-
diction, and deciding traffic profiles for discrete DAs, we run
simulation for 10 times, and take the average as the final result
to present.

1) Convergence Speed: We first run a case of randomly
generated 143 continuous DAs and 150 discrete DAs by Off-
DS algorithm with different numbers of iterations ranging
from 1 to 40 for 10 times. Because of the random process
in choosing traffic profiles for discrete DAs, we observe
oscillation in objective function values for each individual
run. However, the oscillation has a trend of diminishing as
the more iterations are implemented, with satisfying enough
results generated from running 20 to 30 iterations. See Fig.4
for the results. We will implement a number of 30 iterations
to make each decision for the rest of simulation.

2) Impact of Base Traffic Prediction Error: As described
in Section VI-A, we can tune the variance σ2 to emulate
situations with different prediction errors in base traffic. As
Fig. 5 shows, with updated prediction, case (1)’s performance
is barely affected by the increasing prediction error, keeping its
relative gap under 5%. This is almost as good as that of case
(2) with perfect base traffic information. We can also see from
the performance of case (3) the pure impact from prediction
errors, while case (4) gives an example showing what happens
if there is no updated prediction.

3) Impact of Penetration Level of Discrete DAs: In this
case, we fix the prediction error in base traffic at σ2 = 40 and
the average number of DAs’ arrival at each timeslot at λp = 4.
We then tune the penetration level of discrete DAs from 25%
to 75% with granularity of 5%. As shown in Fig. 6, the relative
gap maintains relatively unaffected by the changes of discrete
DAs whose penetration has increased by three times. Here, we
do not observe a decreasing relative gap mainly because the
gap is not monotonically decreasing with number of N ′′.

Fig. 6: Increasing penetration level of deferrable traffic does
not influence the relative gap of online algorithms.

VII. CONCLUSION

We have formulated demand shaping in cellular networks
as an optimization problem that minimizes the time variation
in aggregate traffic subject to the rate and time requirements
of the applications. We design a distributed and randomized
offline demand shaping algorithm under complete traffic in-
formation and prove its almost surely convergence. We then
consider a realistic setting with incomplete information where
we can only predict future traffic to a certain degree of
accuracy, and design an online demand shaping algorithm
that updates the schedules of deferrable applications each
time new information is available, based on solving at each
timeslot an optimization problem over a shrinking horizon
from the current time to the end of the day. We compare
the performance of the online algorithm against the optimal
offline algorithm analytically and numerically. As future work,
we are investigating to integrate the incentive mechanisms
such as the smart data pricing into the demand shaping
algorithm design. We also plan to develop a platform to enable
automatic demand shaping in cellular networks and investigate
the related practical issues.
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