An Alternative Base Case for Modeling Trade and the Global Environment

James R. Markusen

Abstract: The trade-and-environment literature concentrates on a generic base case, focused on the production side of general equilibrium, with consumption “neutralized” by assuming homothetic preferences. I offer a simple alternative base case, neutralizing the usual production features instead. I focus on the demand side of general equilibrium, introducing nonhomothetic preferences where environmental quality has an income elasticity of demand exceeding one. I contrast cooperative and noncooperative outcomes between two countries, showing that the poor country makes lower abatement efforts under either assumption. A poor country may be worse off when the large country abates (reversing the usual argument on free riding) and cooperative bargaining over abatement levels may offer no gains. I identify “policy leakage” and show that border taxes are counterproductive. Free trade is good for the environment for several reasons. Finally, I briefly examine “issue linking” in bargaining to assess the benefits of linking trade and environment negotiations.

JEL Codes: F64, Q56

Keywords: Noncooperative and cooperative policy, Nonhomothetic preferences, Per capita income, Trade and the environment

Much of the literature on trade policy concentrates on the production side of general equilibrium. In the trade/environment literature, for example, a typical model might involve the nexus among factor intensities in production, factor endowments of countries, and pollution intensities across goods. A common question might be how changes in trade or environmental policy of one country then change total world pollution and the distribution of pollution emissions across countries (e.g., the carbon leakage and pollution-haven literatures). Considerations of the role and determinants of the demand for environmental quality across countries are less featured, with demand “neutralized” by the assumption of homothetic preferences. Empirically, there

James Markusen is at the University of Colorado, Boulder, and is an affiliate of the NBER, CEPR, and CESifo. This paper was conceived and developed while I was a visitor at Hitotsubashi University in 2012, and I thank my colleagues there for a delightful and productive three months.

Received May 15, 2016; Accepted June 1, 2017; Published online July 25, 2017.
JAERE, volume 4, number 3. © 2017 by The Association of Environmental and Resource Economists. All rights reserved. 2333-5955/2017/0403-0007$10.00 http://dx.doi.org/10.1086/693135
are few theoretical papers on the environmental Kuznets (1966) or Engel curves, and per capita income differences have played a prominent role in CO$_2$ emissions negotiations. It is probably a fair generalization to say that rich countries are the driving force behind global climate efforts while poor countries are the most reluctant.

A principal focus of the paper is on how the per capita income levels of and differences between two countries affect their abatement efforts in a noncooperative policy-setting game. This outcome can then be used as a disagreement point to analyze Nash bargaining to solve for a cooperative outcome. To attack this problem, I develop a model of nonhomothetic preferences in which environmental quality has a high income elasticity of demand. I neutralize the usual production features of the literature by assuming that pollution before abatement is proportional to all economic activity so there is no pollution-intensive sector and no comparative advantage in clean versus dirty goods. Global, trans-boundary pollution depends only on both countries’ total production, and resources withdrawn from production are used in an abatement activity, financed by a nondistortionary tax.

After developing the general two-country model, I present some special cases for which we can derive analytical solutions for best responses by each country to the other country and how these best response functions and the noncooperative Nash equilibrium relate to the levels of and differences between per capita incomes in the two countries. Following this, I develop a general simulation model using a relatively novel optimization solver in general algebraic modeling system (GAMS). I model the general-equilibrium policy problem as an MPEC (mathematical programming with equilibrium constraints). In a noncooperative outcome, each country chooses an abatement tax, and a tariff in a later section, to maximize its utility given the tariff and tax of the other country, with the two-country general-equilibrium model as a constraint set. Cooperative outcomes can be found using noncooperation as a disagreement outcome, which I contrast to other reference solutions for world welfare.

A couple of basic results are apparent in the analytical model, illustrated again in the general-equilibrium model. First, abatement effort will be zero at very low per capita income, and rising income can produce a nonmonotonic Kuznets curve where environmental quality at first falls with growing income and then increases. Second, each country’s tax (abatement effort) is rising in its own per capita income and falling in the other country’s abatement effort and per capita income (higher income leading to a higher abatement tax). I term the latter “policy leakage”; that is, a government will reduce its abatement effort in response to an increase by the other country. Abatement taxes are strategic substitutes, unlike Copeland and Taylor (2005) where they can be strategic complements.

A third result follows from a model feature. While there is no pollution intensive-sector, countries have a comparative advantage in one of two final consumption goods. When a country withdraws resources from production to engage in abatement, it “shrinks” its economy and shifts the world terms of trade in that country’s favor. This
passes part of the cost of abatement to the other country. In a limiting special case, an abating country passes on half its abatement cost to the other country when it raises its tax, implying that the noncooperative and cooperative outcomes are identical.

I then turn to simulations to analyze more complex cases of cooperative and noncooperative outcomes (the model has 28 dimensions). Free trade is good for the environment because (a) gains from trade increase resources devoted to abatement and (b) the terms-of-trade effect that passes abatement costs to the other country is stronger the larger the volume of trade. Allowing the per capita income of the countries to differ holding total income constant (e.g., one country has fewer but more productive households), the Nash noncooperative policy outcome has a higher abatement effort by the high-income country and a lower effort by the poor country relative to when both countries have identical per capita incomes. The same is true for a cooperative Nash bargaining outcome using the noncooperative outcome as the disagreement outcome.

Two further experiments are conducted on this question. In the first alternative to the base case, comparative advantage is eliminated so that there is no trade and no effect of one country’s abatement on the terms of trade. This reduces the noncooperative abatement effort of both countries, since a small increase in abatement no longer shifts the terms of trade in that country’s favor. I note that it can now be the poor country that gains more at both the cooperative and noncooperative outcome relative to zero abatement by both countries (it does not have a terms-of-trade loss).

In the second alternative case, the difference in the per capita income of the two countries is widened considerably (returning to base-case comparative advantage). The poor country may be made worse off by an optimal abatement effort by the rich country, since the terms-of-trade deterioration for the poor country may outweigh the smaller benefits of any spillover improvement to its environment. This case also illustrates an important policy point, which is that there may be no gains to cooperation if abatement efforts are the only instrument available to the two countries in their bargaining. Another result that relates to this is that there is no role for “border tax adjustments” in the model. If one country places an (exogenous) tariff on imports, that only makes its trading partner poorer, and the latter country reduces its abatement effort.

A natural extension of the analysis is to consider “issue linking” in international bargaining. Specifically, there is the standard motive for protection in that an import tariff improves a country’s terms of trade. Is there a role for linking together bargaining on abatement efforts with trade liberalization? A clear possibility occurs when the rich country is also large, so that it will have a high tariff in a Nash equilibrium in tariff rates, as well as a high abatement tax. I present a case in which linking helps the small poor country without harming the large rich country, but bargaining theory suggests that robust results are unlikely.

Before turning to a brief literature review, two motivating data plots are given in figures 1 and 2. Figure 1 plots an environmental sustainability index from the Global Competitiveness Report against the log of country per capita income. While there is
variation in the data, it is clear that richer countries have more sustainable policies despite having a lot more production and consumption. Evidence (discussed below) suggests that higher per capita income countries adopt much tougher standards, consistent with the model here.

Figure 2 motivates my desire to move away from focusing on the relative pollution intensities of traded goods. In the United States, for example, only about 34% of all energy is consumed by “industry,” and this includes agriculture and nontraded manufacturing, although the share of industry is higher for the world as a whole. In a survey article, Sato (2014) reports that literature estimates of the share of carbon emissions embodied in trade are somewhere in the 15%–30% range with a large variance. Further, figure 2 casts doubt on the standard assumption that pollution/energy use arises from the production of goods. Clearly, a lot arises from consumption, which makes a big difference in open-economy models.

1. By pollution from production versus consumption I mean, for example, energy used in building a car versus energy used in driving the car. The literature virtually always assumes pollution from production but has a quite different production-versus-consumption issue: does the pollution from production get “charged” to the country where the car is made or to the country where it is sold (Sato 2014)? In my model, both latter issues are not relevant: at world prices, the pollution content of a country’s consumption equals that in its production, and similarly the pollution content of its import bundle equals that of its export bundle given trade balance.
There is an immense amount of literature related to this paper, in part because it overlaps a little with three quite separate agendas. First, there is the trade and environment literature. Second, there is a literature on income elasticities of demand generally and willingness to pay for environmental goods specifically. Third, there is a literature on bargaining and linked games. I have done a little work in all three areas but am an expert in none individually. I will offer a short review but will surely miss some things that are important.

While Pigouvian taxes (with revenues redistributed to consumers) dominates a lot of the analysis, a few papers model real-resource-using abatement activities, including Copeland and Taylor (2003), McAusland and Millimet (2013), and Bogmans (2015). The terms-of-trade effect I identify here has a closely related parallel in Bogmans (2015), where an emissions standard has an “iceberg” effect that shrinks output (the abatement activity uses the good itself). Both Bogmans and the present paper imply that abatement shrinks a country’s output in a neutral way and hence generates a positive terms-of-trade change in the country’s favor.

There also exists a general literature on cooperative and noncooperative policy outcomes and issue linking in trade policy generally (in turn drawing on a pure-theory literature which I will not discuss) or in a few cases explicitly on environmental negotiations. Literature includes Markusen (1975), Markusen and Wigle (1989), Markusen, Morey, and Olewiler (1995), Hauer and Runge (1999), Spagnolo (2000), Abrego et al. (2001).
Bagwell and Staiger (2001), Conconi and Perroni (2002), Horstmann, Markusen, and Robles (2005), Limao (2005), Ulph and Ulph (2007), Harstad (2012a, 2012b), Gori and Lambertini (2013), and Böhringer, Lange, and Rutherford (2014). I find it hard to draw general conclusions here. It is certainly the case that issue linking can result in Pareto improvements for negotiating partners: there are more instruments to hit multiple targets (trade barriers, environmental protection). But it is also not hard to produce special cases where one country is worse off by linking.

The trade-and-environment literature is extensive, but few papers seem to include any theoretical consideration of per capita income and nonhomothetic preferences. Clearly, Copeland and Taylor’s (2004) review article is a starting point, with other features in Copeland and Taylor (1994, 2005) and Antweiler, Copeland, and Taylor (2001). Papers embedding nonhomothetic preferences in general-equilibrium trade models include Markusen (1986, 2013), Hunter and Markusen (1988), Hunter (1991), and Caron, Fally, and Markusen (2014). There is a significant empirical literature on the environmental Kuznets curve, relating environmental quality (or inversely pollution) to per capita income or some other measure of development. Papers include Selden and Song (1994), Grossman and Krueger (1995), Deacon and Norman (2006), Chiu (2012), and Tang (2015). Evidence for a nonmonotonic Kuznets curve (environmental quality at first falls and then rises with per capita income) seems mixed, but there are many separate factors at work other than simply preferences.

At a more micro level, there is a literature examining the income elasticity of demand for environmental quality and the income elasticity of willingness to pay. These are not the same as noted by Flores and Carson (1997), and it will be true in my model that the income elasticity of demand exceeds the income elasticity of willingness to pay (the latter equals one). Evidence that these income elasticities are greater than one is mixed: evidence is presented in Hökby and Söderqvist (2003) and Kriström and Riera (1996) casts some doubt on this. Pearce (2006) summarizes evidence from a number of studies and, while there is a lot of variance, provides some support for environmental quality being an income-elastic good, a finding more strongly supported in Deacon and Norman (2006). Navrud and Strand (2013) focus on the income elasticity of willingness to pay and find these elasticities less than one using “raw” GDP per capita but greater than one using purchasing power parity (PPP) corrected GDP per capita. Again, in my model the income elasticity of willingness to pay is equal to one and less than the income elasticity of demand for environmental quality.

I draw support for my assumptions on preferences from the empirical results in two recent working papers, Shapiro and Walker (2015) and Levinson and O’Brien (2016). Shapiro and Walker find that 75% of the 1990–2008 (very large) reduction in pollution emissions from US manufacturing can be attributed to increased environmental stringency. This is consistent with my approach in which an activist government is responsive to citizens with income elastic demands for environmental quality when incomes are rising over time. Levinson and O’Brien find that, in cross-section, the pollu-
tion content of household consumption rises more slowly than income, though that is not my focus here. Their second finding is that this curve (pollution content of household consumption graphed against income) shifts down over time at all levels of income. This is again consistent with an activist government that is reflecting citizens with income elastic demands for environmental quality, though this is my interpretation and not a conclusion drawn by the authors.

1. PRODUCTION, INCOME, AND THE ENVIRONMENT
In this section, I consider an international policy question that is of current interest: the relationship between trade policy and international environmental policy with a global pollutant such as CO$_2$. Assume that we have two final consumption goods (X_1, X_2), one environmental good (E), and two countries (n, s), where n (north) will be the higher per capita income country.

Final goods are produced by a CET (constant elasticity of transformation) technology, with one input L, with L_x denoting the total efficiency units of labor allocation to production.

$$
\left(\sum_i \alpha_i \left(\frac{X_i}{\alpha_j} \right)^{\beta/\alpha_i} \right)^{1/\beta} = L_x \quad \infty \geq \beta \geq 1, \quad \sigma = \frac{1}{\beta - 1} \quad i = (1, 2)
$$

(1)

where σ is the elasticity of transformation along the production frontier. The alphas, normalized to sum to one, are parameters that indicate comparative advantage when they differ across countries. Use n and s superscripts to denote countries, $\alpha^n_1 > \alpha^s_1$ (and therefore, $\alpha^n_2 < \alpha^s_2$) indicates that the north has a comparative advantage in good X_1 and the south has a comparative advantage in good X_2.

This transformation function is presented in an online appendix to the paper, which also shows two further results. First, the unit ($L_x = 1$) revenue or national-product function is given by

$$
r(p) = \left(\sum_i \alpha_i p_i^{\sigma+1} \right)^{1/(\sigma+1)}.
$$

(2)

The optimal output of X_i at $L_x = 1$ (denoted x_i) is found by applying Shepard’s lemma to (2):

$$
x_i = \alpha_i p_i^{\sigma} \left(\sum_j \alpha_j p_j^{\sigma+1} \right)^{1/(\sigma+1)-1} = \alpha_i p_i^{\sigma} \left(\sum_j \alpha_j p_j^{\sigma+1} \right)^{-\sigma/(\sigma+1)} = \alpha_i \left(\frac{p_i}{r(p)} \right)^\sigma.
$$

(3)
Relative production of X_1 and X_2 thus depends on prices and comparative advantage. The total output of X_i is given by (3) multiplied by the total labor allocated to production L_x:

$$X_i = \alpha_i (p_i / r(p))^a L_x.$$ \hfill (4)

It may help to interpret the α_i’s to note from (2) and (3) that, if all prices equal one, then α_i will give the value share of X_i in total output.

Let E^* be the level or “endowment” of world environmental quality at zero production. Pollution is modeled as a reduction in the endowment of good E and is proportional to the total aggregate input L_x in both countries. Input L can also be used for an abatement activity, such as planting trees that absorb CO$_2$. Aggregate labor in each country is then divided between production and abatement: $\bar{L} = L_x + L_a$ where \bar{L} is effective labor supply (explained shortly).

$$\text{Pollution} = \text{Reduction in } E \text{ endowment} = L_x^n + L_x^s$$
$$\text{Abatement} = \text{Addition to the } E \text{ endowment} = L_a^n + L_a^s$$ \hfill (5)

For any allocation of labor between production and abatement in the two countries, world environmental quality is then given by:

$$E = E^* - (L_x^n + L_x^s) + (L_a^n + L_a^s).$$ \hfill (6)

Abatement is financed by an income tax on labor (or by equal consumption taxes on both goods) in n and s: t^n, t^s. The government uses tax revenue to hire labor away from production and pays it to plant trees. Thus public policy, via the tax, determines the allocation of the composite input L between production and abatement. Budget balance then requires tax revenues twL_x to equal abatement expenditures wL_a where w is the wage rate. Thus the tax rate (in either country) will equal the ratio of labor in abatement to labor in production.

$$t = \frac{L_a}{L_x} \quad \text{or} \quad \frac{t}{1 + t} = \frac{L_a}{L} = \text{share of labor in abatement} \ (L_x = \bar{L} - L_a).$$ \hfill (7)

The advantage of this simple model is that it implies “neutrality” in several senses. By neutrality I mean:

$=>$ no pollution-intensive sector,
$=>$ no comparative advantage in polluting sector,
$=>$ no factor-intensity, factor-endowment issues,
$=>$ no pollution-from-consumption-versus-production issue.

The dominant model in the trade-and-environment literature has only one sector that pollutes. This leads to policy results that are very sensitive to:
which good is the dirty good,

which good is the country’s comparative advantage good,

whether pollution is from consumption or production (almost always production).

Here we avoid these issues. However, at the same time, allowing the α_i’s to differ across countries generates a comparative advantage motive for trade and gains from trade in the X’s. This will be important since world prices will change as one country withdraws labor from production in order to increase abatement. This terms-of-trade change in the relative prices of the two X goods will always favor the environmentally conscious country, a point I will return to shortly.

Preferences are Stone-Geary, lowercase letters for per capita or “household” quantities. Production will generally not equal consumption in the open economy, so household consumption of X_i is denoted c_i. Utility (u) is given by:

$$u = \xi_1c_\gamma E + e_0 \gamma - 2\xi + \gamma = 1,$$

where e_0 is a positive parameter for each household in each country which creates the nonhomotheticity: up to a critical level of income, there will be no demand for (or no willingness to pay for) additional environmental quality. It can be useful to think of e_0 as an endowment good given to each household that cannot be traded: every household can watch the sunset and that is a perfect substitute for a cleaner environment. The term E is the (world) environmental good supply given in (6) and is a pure (nonrivaled and nonexcludable) public good. So each consumer in each country gets to consume the entire world supply. Let

- E_i denote the demand for environment in country i,
- m_i is country i’s per capita (household) income or labor productivity,
- h_i is the number of households in country i,
- $L_i = m_ih_i$ is the total effective labor supply in i, equal to productivity per household times the number of households. The term L is used as numeraire, so country i’s total income is given by $M_i = m_ih_i = L_i$,
- p_e is the price (willingness to pay) by a single household h for environment in i.

Consumer (household) optimization yields:

$$E_i = \max\left[0, (\gamma - 1)c_0 + \frac{\gamma m_i}{p_e}\right]$$
The result is the one just noted: up to the threshold per capita income given in (10), there is no demand for environmental quality. Once the threshold income is reached,

\[E^i = (\gamma - 1)e_0 + \gamma \frac{m^i}{p_i} \epsilon \]

(note that \(\gamma - 1 < 0 \)). \(\tag{11} \)

At a constant price, the income elasticity of demand for \(E \) is greater than one once the threshold is reached. In equilibrium, \(E \) must be the same for all consumers in all countries (perfect global public good). So for (11) to hold, it must be that the willingness to pay \(p_i \) differs across countries. This (private) willingness to pay can be found by inverting (11). \(\tag{12} \)

Since the environment is a public good (nonrival and nonexcludable), optimal policy depends on the aggregate benefits of the good across households. The “planner’s problem” is to maximize the aggregate equivalent of (8): \(U^i = (C_j)^{\epsilon}(C_j^{\prime})^{\gamma}(E + e_j b^i)^\gamma \), where \(C_j = \epsilon_j b^i \). The social-welfare maximizing level of \(E \), analogous to (11), is given by

\[E^i = (\gamma - 1)e_0 b^i + \gamma \frac{m^i}{q^i} b^i \]

where \(m^i b^i = M^i \) is \(i \)'s total income. \(\tag{13} \)

When this is set equal to the (exogenous) quantity of \(E \), the price that produces equality is denoted by \(q^i \), which I will term the “social willingness to pay.” Invert (13).

\[q^i = \frac{\gamma m^i b^i}{E + (1 - \gamma)e_0 b^i} = \frac{\gamma M^i}{E + (1 - \gamma)e_0 b^i} \]

\(\tag{14} \)

The income elasticity of social willingness to pay (for a fixed \(E \)) with respect to \(m^i \) holding \(b^i \) constant is one, while the income elasticity with respect to \(b^i \) holding \(m^i \) constant is less than one.

Holding total income \(M^i \) constant, an increase in per capita income is a reduction in the number of households \(h^i \), and so the social willingness to pay rises. Note that this passes one simple check: if preferences are homothetic such that \(e_0 = 0 \), then the social willingness to pay depends only on total income and not per capita income and the

2. Note from (11) and (12) that the income elasticity of demand for \(E \) (greater than one), is greater than the income elasticity of willingness to pay (equal to one in [12]). This difference is explored in Flores and Carson (1997).
value of demand is a constant share of total income: \(q_i E = \gamma M_i \). Note also that with or without homotheticity, the social price in (14) is greater than the private willingness to pay in (12) for \(b > 1 \).

From (14), the ratio of the social willingness to pay in \(n \) and \(s \) is given by

\[
\frac{q^n_s}{q^n_e} = \frac{\left[\frac{E + (1 - \gamma) b^n}{E + (1 - \gamma) b^n + \rho b^n} \right] M^n}{M^s}.
\]

(15)

Since \(E \) is common to the two countries, country \(n \) will have the higher willingness to pay if:

(a) countries have the same total income but country \(n \) has a higher per capita income \((M^n = M', b^n < b') \). Pure nonhomotheticity effect.

(b) countries have the same number of households, but \(n \) has a higher per capita income and therefore higher total income \((M^n > M', b^n = b') \). Market size effect—would also hold under homothetic demand.

(c) countries have the same per capita income, but country \(n \) has more households and therefore higher total income \((b^n = \rho b', M^n = \rho M', \rho > 1) \). Pure Samuelson public-goods effect.

Willingness to pay does not easily translate into an optimal tax rate (abatement effort) in this model. The introduction of this tax by one country will lead to an increase in \(E \) for both countries, lowering the willingness to pay for environment by the passive country: one country’s social willingness to pay \(q \) is endogenous to the other country’s tax. Thus noncooperative and cooperative tax rates will differ. Second, an optimal tax must take into account the effect of withdrawing resources from production to use in abatement on the terms of trade in goods. This terms-of-trade effect can partially compensate country \(n \) for the lower production of goods when it uses resources for abatement, but it creates a corresponding loss for country \(s \).

In order to understand the terms-of-trade effect, consider some restrictive assumptions in order to derive a clear expression for the effect of abatement by one country on the terms of trade. First, assume that the elasticity of transformation (\(\sigma \) in eqs. [1]–[4]) is zero, so that goods are produced in fixed proportions in each country, with that proportion depending on the country’s alpha parameters. Assume that there is free trade in goods, so that the world production ratio equals the (inverse) consumer price ratio in equilibrium (since the goods are Cobb-Douglas symmetric substitutes in consumption). We then have:

\[
\frac{X^n_1 + X^n_1}{X^n_2 + X^n_2} = \frac{\alpha^n_1 L^n_x + \alpha^n_1 L^n_x}{\alpha^n_2 L^n_x + \alpha^n_2 L^n_x} = \frac{p_2}{p_1},
\]

(16)

Let country \(n \) withdraw a unit of labor from production. Assume that country \(n \) has the comparative advantage in good 1: \(\alpha^n_1 > \alpha^n_2 = (1 - \alpha^n_1) \) and \(\alpha^n_2 > \alpha^n_1 = (1 - \alpha^n_2) \). This
derivative is shown in the appendix as (A14). Assume also that the countries are identical initially and that there are no initial abatement taxes, so that \(L^n_x = L^s_x = L_x \) where \(L_x \) is the total endowment of each country. Second, assume symmetry in the comparative advantage parameters such that \(\alpha^n_1 = \alpha^s_2 = (1 - \alpha^n_s) = (1 - \alpha^s_1) \). Because \(\alpha^n_1 + \alpha^s_2 = 1 \) and \(p_1/p_2 = 1 \) (symmetry in production and consumption), the withdrawal of a unit of labor from production in \(n \) simplifies to (shown in the appendix in (A14) to (A16)).

\[
(\alpha^n_1 - \alpha^s_2) \frac{dL^n_x}{L^n_x} = \frac{d(p_2/p_1)}{(p_2/p_1)} \quad \text{or} \quad -\frac{d(p_1/p_2)}{(p_1/p_1)} = \frac{d(p_2/p_1)}{(p_2/p_1)} = (\alpha^n_1 - \alpha^s_2) \frac{dL^n_x}{L^n_x}. \tag{17}
\]

The effect of country \(n \) withdrawing a unit of labor from production \((dL^n_x < 0)\) is to reduce the relative price of country \(s \)'s export good \(X_2 \) (country \(s \) has a deterioration in its terms of trade) with the size of this effect proportional to the comparative advantage spread \((\alpha^n_1 - \alpha^s_2)\). This term is in fact the elasticity of the terms of trade with respect to labor used for production.

Could this terms-of-trade effect be very strong in practice, and how could we think about it empirically? The two extreme cases of (17), which we will look at in more detail below, \((\alpha^n_1 - \alpha^s_2) = [0, 1]\), map directly into an empirically observable volume of trade. Zero maps into no trade, and one maps into a volume of trade of 100% of GDP. Roughly translating into observables, for two countries of the same size, a trade volume of 20% of GDP suggests that a 1% withdrawal of labor from production improves the terms of trade by about 0.2%.

2. ANALYTICAL SOLUTIONS FOR SPECIAL CASES
Continue to assume that total income \(M^i = m^i h^i \) is the same in both countries and the production ratio in each country is fixed as we have just done. But one country \((n)\) may have fewer more productive households. Two special cases are instructive.

\((\alpha^n_1 - \alpha^s_2) = 0\): no comparative advantage and hence no trade in goods. Country \(s \) has no adverse terms-of-trade effect and benefits from the reduction in emissions from country \(n \).

This is shown in figure 3, where the (right angle) production frontiers are initially the same, and country \(n \)'s frontier moves in with labor transferred to abatement. All the reduction in commodity consumption is borne by country \(n \) while both countries benefit from an increase in \(E \).

\((\alpha^n_1 - \alpha^s_2) = 1\), that is, \(\alpha^n_s = \alpha^s_1 = 0\): each country is fully specialized. Country \(s \) has the maximum possible adverse terms-of-trade effect but does benefit from the reduction in emissions from country \(n \).
This is shown in figure 4: because of Cobb-Douglas preferences between X_1 and X_2, the world price ratio changes so that both countries share the same reduction in commodity consumption. Fully half the burden of withdrawing resources from production by country n is shifted to country s. With Cobb-Douglas demand, each country will have the same income M:

$$M^n = p_1X_1^n = p_1L_x^n = M^s = p_2X_2^s = p_2L_x^s \text{ since } \frac{X_1^n}{X_2^s} = \frac{p_2}{p_1},$$

which follows from (8), and the symmetry of the alphas ($\alpha_1^n = \alpha_2^s = 1$).

With identical Cobb-Douglas subutility functions over X_1 and X_2, the countries will have identical (X_1, X_2) consumption bundles regardless of the level of country n's abatement effort. In other words, the change in the terms-of-trade change fully compensates country n (relative to country s) for its unilateral abatement effort. Both countries have an identical consumption loss and the same aggregate improvement in the environment. We would expect that the full-specialization case should lead to higher noncooperative abatement efforts as each country passes part of the burden of its tax to its partner.

Figure 3. Effect of abatement by country n: no comparative advantage
Consider first the case of no comparative advantage. From our earlier assumptions, utility of country \(n \) is given by

\[
U = U\left(\frac{L^*_x}{2}, \frac{L^n_x}{2}, E^* - L^n_x + L^n_u - L^*_x + L^*_u + \varepsilon_0 b^n\right),
\]

(19)

where \(-L^n_x + L^n_u = -(L - 2L^n_u)\). Using the explicit function form in (8) and exploiting the symmetry between the two consumption goods, this becomes

\[
U = \left(\frac{L^*_u - L^n_u}{2}\right)^{2\varepsilon} \left(E^* - (L - 2L^n_u) - (L - 2L^*_u) + \varepsilon_0 b^n\right)^\gamma.
\]

(20)

The noncooperative (Nash) solution is found by taking the derivative of (20) with respect to \(L^*_u \) holding \(L^*_u \) constant. This derivative is given in the appendix as (A17). To simplify further, give equal weights to all three goods, such that \(\varepsilon = \gamma = 1/3 \). Let \(E^* = 0 \) to make things even simpler. The derivative and an intermediate step are shown in the appendix as (A18). Although I will use a consumption tax in the general-equilibrium model, a very simple tax is just one on all labor. With \(L \) as numeraire, the budget-balance condition that tax revenues equal payments to labor in abatement is given.
by $t^*L = L_a^i$ or $t^* = L_a^i/L$. The best-response functions under these special assumptions reduce to

$$t^n \geq 1 - \frac{e_0}{3m^n} - \frac{2}{3} t' \quad \perp t' \geq 0 \quad t' \geq 1 - \frac{e_0}{3m^n} - \frac{2}{3} t^n \quad \perp t' \geq 0.$$ (21)

These are Nash best-response functions giving each country’s “optimal” (noncooperative) tax as a function of its rival’s tax. Clearly, the taxes are strategic substitutes. An increase in the north’s tax improves the environment, therefore reducing the south’s marginal willingness to pay, and therefore reducing the south’s tax. Each country’s best response tax is increasing in its per capita income.

Assuming that the two equations have an interior solution (both taxes positive), the solution is:

$$t^n = \frac{3}{5} - \frac{3}{5} \frac{e_0}{m^n} + \frac{2}{5} \frac{e_0}{m^n} \quad t' = \frac{3}{5} - \frac{3}{5} \frac{e_0}{m^n} + \frac{2}{5} \frac{e_0}{m^n}.$$ (22)

Each country’s tax is increasing in its per capita income and decreasing in the other country’s per capita income, the two countries’ total incomes constant by assumption. The difference between the two countries’ taxes is given by:

$$t^n - t' = \frac{e_0}{m^n} - \frac{e_0}{m^n} = \frac{e_0}{m^n} (m^n - m').$$ (23)

The symmetric solution when both countries have the same per capita incomes is

$$t^n = t' = \frac{3}{5} - \frac{e_0}{5m} \quad \text{at} \quad m = m^n = m' \quad \text{critical} \quad m : m = \frac{e_0}{3}$$ (24)

where the critical m is the common value of m at which (24) holds with equality at $t = 0$. Taxes will be zero at any lower level of m. Once the tax kicks in at $m = e_0/3$, further increases in m, raise the tax rate, and so the share of resources devoted to abatement.

Now consider the case of full specialization, with country n producing X_1 and s producing X_2, continuing to assume a common value of \bar{L}. The situation follows from equation (19) and figure 4. Each country’s consumption will be half the world output of each good, so the identical consumption bundles are: $X_1^i = L_a^i/2$ and $X_2^i = L_a^i/2$. Utility in the north is:

$$U^n = U(L_x^i/2, L_x^i/2, E - L_a^n - L_x^n - L_x^i + L_a^i + e_0 b^n),$$ (25)

where $-L_x^n + L_a^n = -(\bar{L} - 2L_a^n)$. Notice in (25) that n’s consumption of X_2 is now not reduced by its own abatement effort. As we did above, (25) can be written as

$$U = \left(\frac{L - L_a^i}{2}\right)^{\gamma} \left(\frac{L - L_a^i}{2}\right)^{\gamma} (E - (L - 2L_a^n) - (\bar{L} - 2L_a^n) + e_0 b^n)^{\gamma}.$$ (26)
With the first-order condition given (A20) in the appendix. Assume again equal consumption weights such that that \(\varepsilon = \gamma = 1/3 \) (intermediate steps shown in (A21)–(A22)). Assuming an interior solution, we have

\[
t^n = \frac{2}{3} - \frac{1}{3} \frac{e_0}{m^n} + \frac{1}{6} \frac{e_0}{m}, \quad t' = \frac{2}{3} - \frac{1}{3} \frac{e_0}{m'} + \frac{1}{6} \frac{e_0}{m}.
\]

(27)

The difference between the tax rates in this solution is

\[
t^n - t' = \frac{e_0}{2m^n m'} (m^n - m').
\]

(28)

The symmetric solution when both countries have the same per capita incomes is

\[
t^n = t' = \frac{2}{3} - \frac{e_0}{6m} \quad \text{at} \quad m = m^n = m' \quad \text{critical} \quad m : m = \frac{e_0}{4}.
\]

(29)

Comparing (29) to (24), we see that noncooperative taxes are higher under full specialization, where each country can pass on part of the burden of its tax to the other country. The critical \(m \), the level of income at which a tax is first introduced, is lower in the case of full specialization (29).

Figure 5 shows a numerical example of these two cases, in which \(e_0 = 2 \). Moving to the right on the horizontal axis, per capita income increases for the north, with the south’s income being the reciprocal of the north’s. The taxes diverge under growing income inequality, and the taxes under full specialization are greater than under no comparative advantage.

Now let us consider a cooperative outcome or a Nash bargaining outcome using the noncooperative outcome as a disagreement point. Impose the assumptions that both countries are the same size (\(L \) is the same) and have the same per capita income (\(m^n = m', h^n = h' \)). Since everything is symmetric in this special case (including equal taxes in the noncooperative outcome), the cooperative outcome will involve a common abatement effort \(L_a = L_a^n = L_a' \), and the solution can be represented by maximizing the utility of either country under the assumption of equal abatement efforts. Second, the solution will be the same in either the no-comparative-advantage case or the full-specialization case. In the latter case, each country produces \((\bar{L} - L_a)\) of its specialization good and trades half of that for the other country’s good, consuming \((\bar{L} - L_a)/2 \) of each good. In the no-comparative-advantage case, each country both produces and consumes \((\bar{L} - L_a)/2 \) of each good. So both cases will yield the same cooperative outcome given the symmetry assumptions. Dropping the country superscript on \(L_a \) and \(h \) in (20), utility for each country is maximized with respect to a common value of \(L_a \). Equation (20) becomes

\[
U = \left(\frac{\bar{L} - L_a}{2} \right)^{2\varepsilon} (E^x - 2L + 4L_a + e_0 h)^\gamma.
\]

(30)
Let $E^* = 0$ to make things even simpler as before. Using intermediate step (A23) and (A24) in the appendix, our result is

$$t^n = t^s = \frac{2}{3} \frac{e_0}{6m} \quad \text{at} \quad m = m^n = m^s. \quad (31)$$

Here we have an interesting result that the cooperative outcome is the same as the noncooperative outcome under the full-specialization assumption (eq. [29]). Under the latter, each country raises its tax noncooperatively because it can pass on half the burden to the other country. Under all our special symmetry assumptions, this substitutes perfectly for a country raising its tax in order to cooperatively internalize its externality on the other country.

Two final comments before moving on to general equilibrium. First, it is probably clear that an economy can exhibit a nonmonotonic Kuznets curve. Starting from a very low m, the optimal taxes are zero as income increases, meaning that there is an unambiguous fall in E. Eventually taxes kick in, and after that the tax rates rise with m, and so the share of labor devoted to abatement rises. At some point, environmental quality may exceed the initial quality, an outcome we will see in the next section. Second, note from the best-response functions (A19) and (A22) that we can have something I dub “policy leakage.” As one country increases its abatement tax and effort, the environment

Figure 5. Abatement taxes and per capita income
improves and so the optimal response of the other country is to lower its tax. This is reinforced to the extent that the increase in the first country’s tax makes the second country poorer through the terms-of-trade effect and hence lowers its willingness to pay.

3. THE GENERAL-EQUILIBRIUM SIMULATION MODEL

The model developed above seems simple, but there is a lot more simultaneity if relative commodity outputs are endogenous and countries may differ in size (L) as well as per capita incomes. Optimal policy depends on income, for example, and income depends on the policy chosen, both by determining the domestic resources available for production of goods and through the international general-equilibrium terms-of-trade effect. Note, for example, that the simple result in (17) requires severe assumptions and even then it is only locally valid in the neighborhood of zero abatement. So let us turn to a numerical general-equilibrium model to see how per capita income matters for cooperative and noncooperative outcomes.

The model belongs to a class of problems loosely known as MPEC: mathematical programming with equilibrium constraints. In our case, the set of equilibrium constraints is the two-country general-equilibrium model. The latter, in turn, is known as an MCP: mixed complementarity problem. This is a set of weak inequalities with associated nonnegative variables such as quantities and prices. When a weak inequality holds as an equality, the complementary variable is positive, zero if the inequality is strict in equilibrium.

The MPEC consists of maximizing some function such as a Nash bargaining function (cooperative) with respect to instrument variables such as tax rates (pollution taxes and/or tariffs) subject to the economic equilibrium constraint set. A noncooperative Nash equilibrium is found by iteration: maximize the welfare of i holding j’s taxes constant, then hold i’s taxes constant at the solution values and maximize j’s welfare, repeat. This converges to a best-response, noncooperative outcome in about eight iterations. There is one small difference from the model above that has no effect on any results. Here is a description of the model.

(A) Alternative objective functions

welfare of country n

welfare of country s

joint welfare (or Nash bargaining function)

(B) The m-by-m economic equilibrium problem (constraint set): 28 inequalities and unknowns

3. I define a composite output quantity Z in each country equal to the left-hand side of (1), analogous to a Dixit-Stiglitz composite differentiated good in monopolistic-competition models. This carries a price p_z which can be useful in comparing the relative price of consumption to the environment.
Inequalities Complementary Variables Number

marginal cost ≥ price	quantities	2
production of Z by n, s	quantities of Z	2
trade in X1, X2 by n, s	quantities traded	4
welfare in n and s	welfare in n and s	2
abatement activities in n and s	quantity of abatement	2
market clearing: supply ≥ demand	prices	2
supply / demand for Zn, Zs	prices of Z in n, s	2
supply / demand for Xi in n, s	prices of Xi in n, s	4
supply / demand for L in n and s	prices of L in n, s	2
supply / demand for welfare	price index in n, s	2
supply / demand for abatement in n, s	price of abatement in n, s	2
supply / demand for environment good	willingness to pay in n, s	2
income balance: income ≥ expenditure	income in n, s	2
income balance for n, s	income in n, s	2
auxiliary equations	pollution abatement	1
pollution reduction = abatement	pollution abatement	1
pollution = emissions	pollution	1

(C) Additional unmatched instrument variables chosen to optimize welfare:

- pollution abatement effort (abatement tax) in countries n, s 2
- tariffs imposed by countries n, s 2

(D) The MPEC (mathematical programming with equilibrium constraints)

Maximize objective function, subject to:
- instruments: pollution abatement taxes and tariffs in n, s 4
- mmx economic equilibrium problem constraint set 28

A sample program, written and solved in GAMS, is available from the author.

4. POLICY EXPERIMENTS

The first policy experiment is shown in figure 6.4 This considers environmental quality as a function of per capita income, where I make the countries identical (in total and in

4. Somewhat different parameterizations are used here than in the simplified analytical model. Here environmental quality is: \(E = E^* - (L^n_x + L^s_x)/2 + 4(L^n_u + L^s_u) \) with \(E^* = \)
per capita incomes) for simplicity. Productivity or “effective” labor units per household are increased holding the number of households constant. The MPEC solves for the optimal taxes or abatement effort at each level of income (productivity).

This produces a nonmonotonic Kuznets curve in figure 6 as we expect. At very low levels of per capita income, there is no demand for abatement or additional environmental quality and the latter falls with increases in productivity. At a critical level around 0.9 in this experiment, there is a positive demand for additional environmental quality and the tax kicks in. The tax rate rises steadily thereafter due to the non-homotheticity and is equal to 0.25 on the right-hand boundary where environmental quality is now higher than in very poor counties.

What is perhaps not so obvious is that there is still some nonmonotonicity in the Kuznets curve with homothetic demand. This is due to the fact that the initial fixed endowment of $E = E^*$ is too high or rather the demand price too low to justify abatement at low income levels. Intuitively, a really poor country would want to sell off some of the environmental good if it could under either homothetic or nonhomothetic de-

\[
\frac{(L^n + L^l)}{2}. \text{ A consumption tax is used instead of a labor tax, though there is a simple relationship between them as can be seen from (7): the equivalent labor tax is equal to } t/(1 + t) \text{ where } t \text{ is the consumption tax. These are simply for expositional purposes and do not affect the qualitative results in any way.}
\]
mand. Adding the nonhomotheticity assumption shifts the minimum point to the right in figure 6 (not shown). 5

Figure 7 presents simulation results that relate to three issues that have received a lot of attention in the trade/environment literature. In the top two panels, both countries have the same total income \(L\) but country \(n\) has a per capita income 1.5 times that of country \(s\) (\(n\) has fewer, more productive households). There is a strong pattern of comparative advantage in the case considered, \(\alpha_1' = \alpha_2' = 0.9\), and \(\sigma = 1\). “Leakage” in the literature typically works through price changes when sectors differ in pollution intensities. A carbon tax in one country pushes down the world price of fuels and pushes up the world price of the carbon-intensive sector, thus transferring production and fuel use to the other country. In my model, there is no pollution-intensive sector, but there is leakage through abatement changes as I briefly mentioned earlier. The top panel (A) of figure 7 graphs the effect of an exogenous increase in country \(n\)'s abatement tax on the abatement efforts of both countries. As country \(n\)'s tax and effort increase, the best response of country \(s\) is to decrease its tax and abatement for two complementary reasons: first, the environment is cleaner \((E\) rises\) and, second, the terms-of-trade effect makes country \(s\) poorer.

The second panel (B) of figure 7 relates to a literature on “border-tax adjustments,” in which a country may impose import tariffs on the carbon content of imports. In panel B, an (exogenous—not optimized) tariff for country \(n\) is graphed on the horizontal axis. The effect of the tariff is to make country \(s\) poorer, and country \(s\)'s optimal response is to lower its abatement effort. A border-tax adjustment is counterproductive. Furthermore, the tariff reduces trade volume and country \(n\) is less able to pass on part of its abatement costs by changes in the terms of trade. For the particular parameter values in this simulation, country \(n\) actually responds to its own (exogenous) tariff by reducing its own abatement effort.

The bottom panel (C) of figure 7 addresses a very old but very important question: is free-trade good for the environment, with an answer here in the affirmative. I show a simple case where the two countries are identical, and they have identical, exogenous import tariffs (later these are endogenous). The vertical axis gives the endogenous abatement taxes (and thus abatement efforts) of the two countries as a function of their common tariff level in a noncooperative abatement setting. Protection is bad for the environment because (a) it makes the countries poorer and thus lowers their abatement efforts and (b) higher tariffs make it less possible to pass on part of a country's abatement costs to the other country (applies to the noncooperative case only).

5. If there were no initial endowment of \(E\), \(E^* = 0\), then the homothetic case would produce a constant tax rate at all levels of income such that environmental quality is a linear function of income passing through the origin, while the nonhomothetic case continues to look like figure 6 (\(E\) can go negative provided that \(-E < c_0\)). This possibly expected result occurs only when \(E^* = 0\).
Figure 7. Policy leakage, border tax adjustments, bilateral protection
The next exercise is to examine how cooperative and noncooperative policy outcomes depend on per capita income. Some results are shown in figure 8. There is a strong pattern of comparative advantage: \(\alpha_1 = \alpha_2 = 0.9 \), and \(\sigma = 1 \). Thus when per capita incomes and taxes are unequal, there will be a fairly strong terms-of-trade effect that favors country \(n \).

The solid boxes in figure 8 show an outcome when the two countries have equal per capita incomes (or same number of equally productive households). Each country’s (unilateral) optimal tax is shown when the other country’s tax is zero, as are the noncooperative Nash equilibrium rates. There is no difference in the values of the taxes across countries in this latter equilibrium as we expect to be the case. The (equal) cooperative tax rates are Nash bargaining outcomes where the disagreement outcome is the noncooperative Nash equilibrium. The cooperative rates are considerably higher than the noncooperative ones, as shown in figure 8. The terms of trade in both outcomes is one and there is no trade in goods.

The second set of outcomes, shown with a slash through the boxes in figure 8, assumes that country \(n \) has a per capita income 1.5 times that of country \(s \). Total incomes

![Figure 8. Effect of differing per capita income on equilibrium](image-url)
are the same as in the first case (solid boxes), so country n now has fewer, more productive households while s has more, less productive households. Figure 8 shows that the noncooperative equilibrium shifts to a higher tax for country n and to a lower tax for country s (as we would expect). The cooperative Nash bargaining outcome using the noncooperative outcomes as the disagreement point shifts from the equal-per-capita-income scenario in about the same way.

Table 1 presents numerical values for these results and compares them to several alternative scenarios. The first two columns of numbers are the case where country n’s per capita income is 1.5 times that of country s as in figure 8. The first row gives the welfare values when there is no intervention by either country, where these welfare values are normalized at one. The second and third rows of table 1 give the welfare values for the noncooperative and cooperative outcomes, and the lower panel (rows 6 and 7) the corresponding tax rates (t_n, t_s), which are those in figure 8. Note that the noncooperative outcome results in a substantial welfare gain over nonintervention: unlike a noncooperative tariff “war,” for example, here the no intervention is a failure to internalize a positive rather than a negative externality.

The tax rates that maximize the Cobb-Douglas world welfare function and a Rawlsian welfare function are also shown (world welfare is the minimum of the two countries’ welfare levels) in the fourth and fifth rows of table 1 (and tax rates below in rows 8 and 9). The Cobb-Douglas is equivalent to a Nash bargaining outcome when the disagreement outcome for both countries is zero.

An interesting feature of these base-case results is that country n is actually the relative gainer over the no-intervention outcomes (except the Rawlsian one). How much of this is simply due to the fact that country n places a much higher value on the environment at the no-intervention point, and how much might be due to the this terms-of-trade effect? In order to examine this question, I compute an alternative scenario in which there is no comparative advantage: $a_n = a_s = 0.5$, referred to as alternative case 1 in table 1.

Results for alternative case 1 are shown in columns 3 and 4 of table 1. Here we see some significant differences. First, the relative gainer is reversed in the cooperative and noncooperative Nash outcomes. Now country s is the relative gainer. This verifies the conjecture that the terms-of-trade effect that favors the higher-tax country n in columns 1 and 2 is indeed important in determining the relatively larger gains for country n in those columns. Second, note in the lower part of the table that the noncooperative rates for both countries are lower when there is no comparative advantage. This is clearly due to the fact that raising your tax rate has no compensating beneficial effect on the terms of trade with no comparative advantage. Third, the cooperative Nash is almost unchanged from the comparative-advantage case, which seems to follow from section 3: cooperation internalizes the terms-of-trade externality to the extent there is one.

The Cobb-Douglas maximum rates are also unchanged from the base case in alternative case 1, because there is no terms-of-trade effect when the countries have the
<table>
<thead>
<tr>
<th></th>
<th>Base Case: n’s Per Capita Income 1.5 That of Country s</th>
<th>Alternative Case 1: No Comparative Advantage</th>
<th>Alternative Case 2: n’s Per Capita Income 10 Times That of s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Welfare n (1)</td>
<td>Welfare n (3)</td>
<td>Welfare n (5)</td>
</tr>
<tr>
<td></td>
<td>Welfare s (2)</td>
<td>Welfare s (4)</td>
<td>Welfare s (6)</td>
</tr>
<tr>
<td>Abatement taxes = 0</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Noncooperative NE</td>
<td>1.210</td>
<td>1.136</td>
<td>1.161</td>
</tr>
<tr>
<td>Coop Nash NE outside option</td>
<td>1.239</td>
<td>1.197</td>
<td>1.261</td>
</tr>
<tr>
<td>C-D world welfare index max</td>
<td>1.291</td>
<td>1.290</td>
<td>1.261</td>
</tr>
<tr>
<td>Rawlsian world welfare max</td>
<td>1.225</td>
<td>1.237</td>
<td>1.161</td>
</tr>
<tr>
<td>Tax rates</td>
<td>Tax n</td>
<td>Tax n</td>
<td>Tax n</td>
</tr>
<tr>
<td></td>
<td>Tax s</td>
<td>Tax s</td>
<td>Tax s</td>
</tr>
<tr>
<td>Noncooperative NE</td>
<td>.32</td>
<td>.24</td>
<td>.41</td>
</tr>
<tr>
<td>Coop Nash NE outside option</td>
<td>.51</td>
<td>.51</td>
<td>.41</td>
</tr>
<tr>
<td>CD world welfare index max</td>
<td>.35</td>
<td>.35</td>
<td>.20</td>
</tr>
<tr>
<td>Rawlsian world welfare max</td>
<td>.57</td>
<td>.48</td>
<td>.41</td>
</tr>
</tbody>
</table>

Note. Cobb-Douglas index used is \((\text{Welfare } n)^{0.5} \times (\text{Welfare } s)^{0.5}\); welfare \(n, s\) normalized to 1 at zero taxes. Rawlsian welfare index is \(\text{MIN}(\text{Welfare } n, \text{Welfare } s)\); welfare \(n, s\) normalized to 1 at zero taxes. NE = Nash equilibrium.
same rates. Fourth, the Rawlsian maximum rate is now lower for country n and higher for country s. I think that the intuition here is that, starting from the Rawlsian taxes with comparative advantage, removing comparative advantage reduces the welfare of high-tax country n and raises it for country s. The Rawlsian outcome then adjusts n‘s tax down and s‘s tax up in alternative case 1.

A second alternative case is presented in columns 5 and 6 of table 1, referred to as alternative case 2. Comparative advantage is reinstated, but country n now has 10 times the per capita income of country s. Results are now that country s has a zero tax rate at both the cooperative and noncooperative Nash outcomes. The noncooperative outcome is in fact a Pareto optimum: there are no gains from cooperation. Second, note that country s is indifferent between the no-intervention outcome and the cooperative or noncooperative equilibrium (in fact, I searched until I found the per capita income difference, a factor of 10, that gave this borderline result). If I push the size difference a little higher, then country s is actually worse off than with no intervention. Country s places little value on improved environmental quality and suffers a negative terms-of-trade effect when country n imposes its abatement tax. The relative price of country n’s export good is 1.22 (no taxes $= 1$) at the cooperative and noncooperative tax rate of 0.41 in alternative case 2.

Alternative case 2 also gives a large difference between Cobb-Douglas world welfare maximum tax rates and the Rawlsian rates. The Cobb-Douglas rates are again equal to one another, while country n bears all the abatement effort in the Rawlsian equilibrium, which is equal to the noncooperative Nash equilibrium in all respects.

I will mention one more result, though I omit an analysis for brevity. The model can consider an experiment in which countries agree to a common tax rule $t^u = t^i$ and then bargain over the level of this shared tax rate. When the difference between the countries’ per capita incomes is a factor of 10 as in columns 5 and 6 of table 1, country s cannot gain at any common tax rate. Thus having agreed on an “equal sharing rule” and then bargaining on the rate, the outcome is a zero rate when the per capita income difference is large. This has some clear applications to situations such as the Kyoto Protocol, where there was considerable controversy over whether or not the poor and rich countries should suffer the same proportional cuts in carbon emissions. The result was that the poor countries did not participate at all, which is consist with the model here.

Now I turn to issue linking and introduce two additional policy instruments: import tariffs for countries n and s, denoted tr_n and tr_s. We will assume that country n has five times both the total income and the per capita income of country s. Comparative advantage is the same as we used earlier: $\alpha_n = 0.9$ and $\sigma = 1$. The no-intervention case shown in the first row of table 2 fixes the four policy instruments at zero.

Table 2 then gives the noncooperative Nash equilibrium in the second row, where each country jointly chooses its abatement tax and tariff for fixed values of the other
country’s instruments. This is solved as an iterative MPEC. Country \(n \)'s welfare is maximized with respect to \(t_n \) and \(tr_n \) holding \(t_s \) and \(tr_s \) constant. Then the solution values of \(t_n \) and \(tr_n \) are held constant and the welfare of country \(s \) is maximized with respect to \(t_s \) and \(tr_s \). The iteration converges to the noncooperative Nash equilibrium in about six to eight iterations.

Table 2 shows that, not surprisingly, country \(n \) has a high abatement tax and tariff. Country \(s \) has a small tariff and a zero abatement tax. The tariff difference would be expected by any trade economist from simple noncooperative tariff theory given the size difference. Table 2 notes a substantial welfare improvement over no intervention for both countries: country \(s \) benefits more from \(n \)'s abatement effort than \(s \) is hurt by \(n \)'s tariff. However, I imagine a case can easily be produced in which country \(s \) is worse off than in the no-intervention equilibrium.

Four cooperative bargaining outcomes are then computed using the Nash equilibrium as a disagreement point in table 2. The first (row 3) computes an isolated environmental tax bargain, tariffs held at their Nash values. The second (row 4) computes

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Welfare (n)</th>
<th>Welfare (s)</th>
<th>Tax (n)</th>
<th>Tax (s)</th>
<th>Tariff (n)</th>
<th>Tariff (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No intervention</td>
<td>.731</td>
<td>.788</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Noncooperative Nash:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Each country coordinates their tax and tariff</td>
<td>1.000</td>
<td>1.000</td>
<td>.386</td>
<td>0</td>
<td>1.567</td>
<td>.196</td>
</tr>
<tr>
<td>Cooperative Nash using noncooperative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>outcome as disagreement outcome:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolated environment negotiation</td>
<td>1.001</td>
<td>1.008</td>
<td>.451</td>
<td>.036</td>
<td>1.567</td>
<td>.196</td>
</tr>
<tr>
<td>Isolated tariff negotiation</td>
<td>1.008</td>
<td>1.048</td>
<td>.386</td>
<td>0</td>
<td>1.015</td>
<td>0</td>
</tr>
<tr>
<td>Bargain over tariff (n) and pollution</td>
<td>1.005</td>
<td>1.025</td>
<td>.386</td>
<td>.150</td>
<td>.692</td>
<td>.196</td>
</tr>
<tr>
<td>tax (s)</td>
<td>1.009</td>
<td>1.059</td>
<td>.452</td>
<td>.034</td>
<td>1.015</td>
<td>0</td>
</tr>
<tr>
<td>Bargain over all four instruments</td>
<td>1.024</td>
<td>1.075</td>
<td>.541</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>with transfer (s) to (n) (= 22.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of (s)'s income)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Country \(n \) has five times the total income and per capita income of country \(s \).

6. The welfare numbers are normalized at 1.0 in the noncooperative outcome in the second row, but I should note that the difference in the welfare levels is nowhere near a factor of five: \(n \)'s welfare is about twice that of country \(s \). This is due to a large relative price advantage for country \(s \): the relative price ratio is 0.472 or inverting, the relative price of country \(s \)'s export good \(X_2 \) is 2.121.
an isolated tariff bargain, abatement taxes held at their Nash values. One interesting result here is that there are only very small gains to an isolated environment negotiation. The isolated tariff negotiation does produce a positive result, as country \(n \) lowers its tariff significantly in exchange for country \(s \) eliminating its tariff.

In the third case using the noncooperative outcome as a disagreement point (row 5 of table 2), country \(n \) offers a lower tariff in exchange for a positive abatement effort by country \(s \). In my view, this is what some writers and politicians in high-income countries want to do: offer trade liberalization in exchange for environmental and labor standards to poor countries. Results in table 2 indicate a Pareto improvement with the north trading trade liberalization for abatement by the south.

Row 6 of table 2 takes the noncooperative Nash outcome as a disagreement outcome and computes a cooperative bargaining solution treating all four instruments as endogenous variables. Here the outcome is a zero abatement tax and a zero tariff for country \(s \). Country \(n \) bears the burden of abatement and, in exchange, retains a high tariff but substantially less than the noncooperative tariff.

Row 6 emphasizes the fact that free trade may not be achievable even in the four-instrument case using the Nash equilibrium as the disagreement outcome. Row 7, the final one in table 2, therefore adds a final instrument which is a transfer payment to the other four instruments. In this case, the outcome does involve free trade as intuition probably suggests. It requires a large transfer payment from \(s \) to \(n \); in effect, \(s \) bribes \(n \) into free trade (this transfer result is driven by the trade distortion, not the environment distortion). Row 7 also indicates that the north should bear all of the abatement effort. This is being driven by country size: with \(s \) a lot smaller, the world is scarce in good \(X_2 \), south’s comparative-advantage good, and abundant in \(X_1 \), north’s comparative-advantage good. Thus efficiency dictates that the real cost of the abatement should fall on \(X_1 \), meaning the north does the abatement.

It is interesting to see, in both table 1 and table 2, that cooperative bargaining does not extract much in the way of additional gains. The noncooperative outcomes do a "good job" of extracting gains, since the noninternalized pollution externality is a positive spillover between countries. I have no reason to believe that this specific result has great generality beyond this specific case: results are suggestive and illustrative.

5. SUMMARY AND CONCLUSIONS

The purpose of the paper is to offer an alternative base-case model for trade and the environment. I move away from a focus on differing pollution intensities across sectors and Pigouvian taxes and tariffs. The focus is on per capita income and a resource-using abatement activity as determinants of cooperative and noncooperative international trade policy. The setting is a world with a global environmental externality such as \(CO_2 \) pollution and consumers who have a high income elasticity of demand for environmental quality. While some of the results are not surprising, there are a number of interesting subtleties than may have gone unnoticed.
A couple of basic results are that (a) environmental quality will exhibit a U-shape with respect to per capita income, an example of an environmental Kuznets curve. (b) Noncooperative outcomes will involve “policy leakage”: an increase in one country’s abatement effort improves the world environment and hence leads the other country to reduce its effort. (c) Border taxes are unhelpful: they just make your trading partner poorer and reduce its abatement effort. (d) Free trade is good for the environment because (1) it raises welfare and thus leads to a higher abatement effort and (2) it allows a country to pass on more of the costs of abatement to the other country (in the noncooperative case), thus raising its abatement effort.

But the bulk of the paper focuses on countries with different per capita incomes. I show that a poorer country will have a lower abatement effort in both a noncooperative outcome and in a Nash bargaining outcome using the noncooperative equilibrium as a disagreement outcome. It may be that the poor country makes no abatement effort in a noncooperative outcome and, beginning from that equilibrium, it may be that there are no gains to bargaining when abatement taxes are the only instrument available to the countries. When per capita income differences are very large, the poor country can be worse off in a noncooperative outcome than when neither country does any abatement.

Some of the unambiguity of these results is due to an assumption which neutralizes the production features that drive much of the traditional literature: here pollution is proportional to all economic activity so that there is no (relatively) dirty sector and no comparative advantage in clean versus dirty goods. When a country withdraws resources from production to abate, it effectively shrinks its economy, and this will move the world terms of trade in its favor. Thus it passes on part of the cost of abatement to the nonabating country. While some other papers have a similar terms-of-trade effect, it is ambiguous because it depends on whether or not the export sector is the clean or dirty sector, and it also must be true that for one country abatement improves its terms of trade while it must deteriorate the terms of trade for the other country. Here abatement by either country improves that country’s terms of trade.

The final section of the paper allows countries to set tariffs as well as abatement taxes and focuses on the case where the rich country is large and so has both a high tariff and a high abatement tax. Part of the advantage of the numerical model, using the relatively new MPEC solver in GAMS, is that we can compute a Nash equilibrium in four instruments. Then using this as a disagreement outcome, we can compute bargaining outcomes for linked or unlinked negotiations. Results are interesting, but my (superficial) knowledge of bargaining theory suggests that general results (e.g., is it better to link) are unlikely to be found.

In the area of understanding how we got to where we are, the results here may help explain why the high-income countries often seem to give up more than they get in international negotiations (some will surely dispute this assertion), such as the Kyoto Protocol. While this may indeed be all or in part due to altruism or ideology, some
of our results here suggest that this is also predicted by standard economic theories of cooperative and noncooperative behavior. Specifically, with environmental quality a high-income-elasticity good, conventional self-interest predicts a high abatement effort by high-income countries.

REFERENCES

