A Basic Course in Economic Simulation Modeling using GAMS

Preface etc.

Chapter 1:	Introduction to GAMS for economic problems (Jesper Jensen's Welcome to GAMS)
Chapter 2:	Examples of economic equilibrium problems translated into GAMS
2.1	Simple supply-demand problem illustrating complementarity Model M2-1
2.2	Maximization of utility subject to a linear budget constraint Formulated as a NLP problem: Formulated as an MCP using first-order conditions: Formulated as an MCP using Marshallian and Hicksian demand functions: Model M2-2
2.3	Extension of the utility optimization problem: add a rationing constraint Formulated as a NLP problem and an MCP. Formulated as an MPEC Automating scenario generation Model M2-3
2.4	Brief introduction to sets: Model M2-3 in set notation Model M2-4
2.5	Toward general equilibrium: a simple one-good, one-factor, one consumer example Model M2-5
Chapter 3:	The Basic Closed-Economy General-Equilibrium Model as an MCP
3.1	The structure of a general-equilibrium model: optimization at the sector and household level
3.2	Micro-consistent data: product exhaustion and market clearing
3.3	Calibration and replication: background: production, cost and expenditure functions, Shepard's lemma for the Cobb-Douglas function

3.4	Two goods, two factors, one representative consumer
	Model M3-4
	Model M3-4b adds taxes

- 3.5 Initially slack activities Model M3-5
- 3.6 Labor-leisure decision Model M3-6
- 3.7 Two households with different preferences and endowments Model M3-7
- Chapter 4: Examples of Familiar Industrial-Organization Problems Modeled in GAMS
 - 4.1 Cournot and Bertrand Oligopoly with Continuous Strategies Model M4-1
 - 4.2 Nash equilibria with discrete strategies Model M4-2
 - 4.3 An insurance problem illustrating moral hazzard and adverse selection Model M4-3 modeled as an NLP Model M4-3b modeled as an MCP
- Chapter 5: Examples of Uses of the NLP Solver in Familiar Economics and Statistics Uses
 - 5.1 OLS as an NLP problem Model M5-1
 - 5.2 OLS one step up: constrained non-linear least squares with the NLP solver Model M5-2
 - 5.5 Reading and Writing to/from Excel Model M5-3
 - 5.3 Balancing a matrix to create micro-consistent data using NLP Model M5-4
 - 5.4 Matrix inversion as an MCP Model M5-5

Optimal Taxation and Redistribution Policies	General Equilibrium with Distortionary Taxes, Public Goods, Externalities, Optimal Taxation and Redistribution Policies	
6.1 Taxes in the benchmark data Model M6-1		
6.2 Labor supply taxation: introducing equal-yield tax Model M6-2a Model M6-2b introduces equal yield constraint	x reform	
6.3 Public consumption goods Model M6-3		
6.4 Optimal provision using a Samuelson rule Model M6-4		
6.5 Public intermediate (infrastructure) good with opt Model M6-5	timal provision	
 6.6 Pollution from production affects utility Model M6-6a Model M6-6b uses MPEC to solve for the optima Model M6-6c uses constraint equation to solve for 	-	
6.7 Optimal taxation and redistribution Model M6-7 adapts M3-7 to an MPEC maximizin	ng social welfare	
Chapter 7: Adding Scale Economies and Imperfect Competit	ion to General Equilibrium	
7.1 A brief introduction to the CES function - more la	ater	
7.2 Monopoly, with fixed costs (increasing returns) Model M7-2		
7.3 Oligopoly: Cournot competition with identical pro Model M7-3	oducts and free entry	
7.4 Monopolistic-competition I: large group Model M7-4		
7.5 Monopolistic-competition II: small group Model M7-5		

Chapter 8: Open Economy Models for Competitive Economies

- 8.1 Small open economy Model M8-1
- 8.2 Small open economy: tariffs versus trade costs Model M8-2
- 8.3 Small open economy: calibrating to tariffs in the benchmark Model M8-3
- 8.4 Small open economy: modeling a quota Model M8-4a modeled with an endogenous (variable) tax equivalent Model M8-4b modeled as supply/demand for licenses
- 8.5 Large economy and the optimal tariff (rest of world not explicitly modeled) Model M8-5
- 8.6 Two-country Heckscher-Ohlin model: Nash tariffs as an iterative MPEC
 Model M8-6a scalar version
 Model M8-6b same model in set notation

Chapter 9: Open Economy Models for Imperfect Competition and Scale Economies

- 9.1 A two-country oligopoly model Model M9-1
- 9.2 A two-country monopolistic-competition model Model M9-2
- 9.3 Monopolistic-competition with horizontal multinationals Model M9-3
- Chapter 10: Basics of Dynamic Modeling:
 - 10.1 Comparative steady-state analysis Model M10-1
 - 10.2 Converting an Infinite Horizon Problem to an MCP Model M10-2 (currently only available in an MPS/GE format)

Chapter 11: Toward CGE Modeling;

- 10.1 CES functions and the calibrated-share form
- 10.2 The Armington assumption
- 10.3 The MPS/GE subsystem of GAMS
- 10.4 From an IO Table into GAMS