\$TITLE: M6-6a.GMS: Modelling pollution as reducing the endowment * of an environment public good

\$ONTEXT

This model is a closed economy: two goods and one factor, one consumer Pollution is generated by the production of X, pollution reduces utility Pollution is modeled as a reduction in the endowment of CLEAN AIR Initial endowment of clear air is 200, with 100 reduced by X pollution and 100 entering utility.

	Production Sectors					Consumers			
Markets	/	X	Y	\overline{W}	/	CONS			
PX	/	100		-100	/				
PY	/		100	-100	/				
PW	/			300	/	-300			
PL	/	-100	-100		/	200			
PCA				-100		(200 - 100)			

\$OFFTEXT

PARAMETERS

TX ad-valorem tax rate for X sector inputs POLINT polution intensity multiplier; TX = 0; POLINT = 1;

POSITIVE VARIABLES

X Y W	activity level for X production activity level for Y production activity level for the "production" of welfare from X Y								
PX PY PCA PW PL	price of good X price of good Y price of clean air price of a unit of welfare (real consumer-price index) price of labor								
CONS POL	income of the representative consumer pollution;								
EQUATIONS									
PRF_Y	zero profit for sector X zero profit for sector Y zero profit for sector W (Hicksian welfare index)								
MKT_X	supply-demand balance for commodity X								

MKT_CA MKT_L	supply-demand balance for commodity Y market for clean air (determines shadow value PCA) supply-demand balance for primary factor L supply-demand balance for aggregate demand							
	income definition for CONS pollution caused by production - consumption of X;							
* Zero profit inequalities								
PRF_X	100*PL*(1+TX) =G= 100*PX;							
PRF_Y	100*PL =G= 100*PY;							
PRF_W	PRF_W 300*(PX**(1/3) * PY**(1/3) * PCA**(1/3)) =G= 300*PW;							
* Market clearance inequalities								
MKT_X	100*X	=G= 100	*	W	*	PW	/	PX;
MKT_Y	100*Y	=G= 100	*	W	*	PW	/	PY;
MKT_CA	200-100*POL	=G= 100	*	W	*	₽W	/	PCA;
MKT_W	300*W =E= CC	ONS / PW	;					

MKT_L.. 200 =G= 100*X + 100*Y;

* Income balance equations (don't forget tax revenue)

I_CONS.. CONS =E= 200*PL + (200-100*POL)*PCA + TX*100*X*PL;

PPOL.. 100*POL =G= POLINT*100*X;

MODEL POLLUTE /PRF_X.X, PRF_Y.Y, PRF_W.W, MKT_X.PX, MKT_Y.PY, MKT_CA.PCA, MKT_L.PL, MKT_W.PW,I_CONS.CONS, PPOL.POL /;

* Chose a numeraire: real consumer price index

PW.FX = 1;

* Set initial values of variables:

X.L=1; Y.L=1; W.L=1; PX.L=1; PY.L=1; PL.L=1; POL.L = 1; PCA.L = 1; CONS.L=300;

POLLUTE.ITERLIM = 0; SOLVE POLLUTE USING MCP; POLLUTE.ITERLIM = 1000; SOLVE POLLUTE USING MCP;

* counterfactual 1: 50% tax

TX = 0.5; SOLVE POLLUTE USING MCP;

TX = 0.75; SOLVE POLLUTE USING MCP;