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Wepropose a kernel-based estimator for a partially linearmodel in triangular systemswhere endogenous
variables appear both in the nonparametric and linear component functions. Our estimator is easy to
implement, has an explicit algebraic structure, and exhibits good finite sample performance in a Monte
Carlo study.
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1. Introduction

The specification and estimation of nonparametric and semi-
parametric regression models with ‘‘endogenous’’ regressors has
been the object of considerable attention in econometrics (Newey
et al., 1999; Blundell and Powell, 2003; Ai and Chen, 2003; Su and
Ullah, 2008; Otsu, 2011). In this note, we add to this literature by
considering the estimation of the function m and the vector β in
the following partially linear model:

Yi = m(X1i, Z1i) + X2iβ + εi for i = 1, . . . , n. (1)

Here, the regressand Yi is a scalar, X ′

1i and X ′

2i are non-overlapping
subvectors of X ′

i ∈ RG of dimension G1 and G2 with G = G1 + G2.
Z ′

1i is a subvector of Z ′

i ∈ RK with dimension K1 ≥ 1, and εi is an
unobserved scalar random error. In addition, we assume that

Xi = Π(Zi) + Ui, (2)

whereUi is a conformable vector of unobserved random errors and
Π : RK

→ RG is an unknown function. In the model described by
(1) and (2), the variables Xi are taken to be ‘‘endogenous’’ in that
E(εi|Xi) ≠ 0, and the variables Zi are ‘‘exogenous’’ in that

E(Ui|Zi) = 0 and E(εi|Zi,Ui) = E(εi|Ui). (3)
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Themodel described by Eqs. (1)–(3) is different from that of Newey
et al. (1999) and Su and Ullah (2008) in that we explicitly allow en-
dogenous variables to enter the model nonparametrically through
m but also linearly. The motivation for adopting such a structure
is no different from that in the traditional semiparametric litera-
ture (Robinson, 1988;Hardle et al., 2000), i.e., incorporating known
functional form information, whenever available, to attain more
precise inference and faster convergence rates.

Ai and Chen (2003) and Otsu (2011) have considered the
estimation of semiparametric models that include the structure
described by (1) as a special case, but rather than exploring the
moment conditions in (3) and Eq. (2) they only assume that
E(εi|Zi) = 0. As discussed in Newey et al. (1999), the moment
conditions in (3) do not imply that E(εi|Zi) = 0, and in this
sense neither set of conditions is a subset of the other. However,
under additional restrictions, namely that (i) Ui is independent of
Zi and (ii) E(εi) = 0, the moment restrictions in (3) imply that
E(εi|Zi) = 0. Hence, under (i) and (ii), it is possible to estimate
the model described by (1)–(3) using the sieve minimum distance
estimator of Ai and Chen (2003) or the sieve conditional empirical
likelihood estimator of Otsu (2011). In this note, we propose new
estimators for m and β for the model described by (1)–(3). Our
estimation adapts and improves the procedure proposed in Su and
Ullah (2008) to the partially linear model. In addition, for models
where both E(εi|Zi) = 0 and (3) hold, we show in a Monte Carlo
study that our estimators outperform those proposed by Ai and
Chen (2003) and Otsu (2011) both in terms of their experimental
finite sample properties and in terms of ease of implementation
from a computational perspective. In contrast to their estimators,
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ours has an explicit algebraic structure requiring no numerical
optimization in its calculation.

Following this introduction, we present our estimator in
Section 2 and investigate its finite sample performance in Section 3.
Section 4 provides some brief concluding remarks. The study of
the asymptotic properties of our estimators is deferred to another
paper.

2. Estimation

Our estimator is motivated by exploring (2) and the moment
conditions in (3). We note that, from (2), E(εi|X1i, Zi,Ui) =

E(εi|Zi,Ui) and, from (3), E(εi|Zi,Ui) = E(εi|Ui). Hence, by
the Law of Iterated Expectations, we immediately conclude that
E(εi|X1i, Z1i,Ui) = E(εi|Ui). From Eq. (1), we can therefore write

E(Yi − X2iβ|X1i, Z1i,Ui) = m(X1i, Z1i) + E(εi|Ui)

≡ g(X1i, Z1i,Ui). (4)

Given (2), E(X2i|X1i, Z1i,Ui) = E(X2i|Zi,Ui) = X2i, and conse-
quently we obtain

E(Yi|X1i, Z1i,Ui) = X2iβ + m(X1i, Z1i) + E(ϵi|Ui). (5)

Eq. (5) is the semiparametric equivalent to Eq. (1.3) in Su and Ullah
(2008). Letting vi = Yi − E(Yi|X1i, Z1i,Ui), we rewrite (1) as

Yi = m(X1i, Z1i) + X2iβ + E(ϵi|Ui) + vi for i = 1, . . . , n, (6)

where, by construction, E(vi|X1i, Z1i,Ui) = 0. Eq. (6) is an additive
regression model in m, E(ϵi|Ui), and the linear component involv-
ing β . Furthermore, besides the fact that the structure of E(ϵi|Ui)
is unknown, the sequence of vectors Ui is not observed. Hence,
to render (6) estimable, we first obtain estimates for Ui. Denote
the jth element of Xi by Xi,j, and for each j = 1, . . . ,G define the
Nadaraya–Watson estimator

θ̂j(Zi) = argmin
θ

1
n det(H)

n
t=1

(Xt,j − θ)2K1

H−1(Z ′

t − Z ′

i )

,

whereH = diag{h1, . . . , hK } is a diagonal matrix with bandwidths
0 < hk for k = 1, . . . , K , det(H) denotes the determinant ofH , and
K1 : RK

→ R is a multivariate density (kernel) function. Denoting
the jth element of Ui by Uij, we define estimates Ûij = Xi,j − θ̂j(Zi)
for j = 1, . . . ,G and i = 1, . . . , n, and estimate Ui using Ûi. Hence,
for some unknown function h : RG

→ R, we can write Eq. (6) as

Yi − X2iβ = m(X1i, Z1i) + h(Ûi) + v̂i for i = 1, . . . , n, (7)

where v̂i = vi + E(εi|Ui) − h(Ûi). If β were known, the estimation
ofm and h could proceed by marginal integration (Linton and Har-
dle, 1996) as in Su and Ullah (2008). However, as discussed in Kim
et al. (1999) andMartins-Filho and Yang (2007), the marginal inte-
gration estimator is not oracle efficient, and it has been shown to
have poor finite sample performance in Monte Carlo studies. Thus,
inspired by Kim et al. (1999), we propose an alternative estimation
procedure.

First, denote the joint marginal density of X1i and Z1i by f , the
marginal density of Ui by fU , and the joint marginal density of
X1i, Z1i and Ui by φ. We estimate each of these densities by

f̂ (x, z) =
1

n det(Λ)

n
t=1

K2


Λ−1


X1t Z1t

′
−

x z

′
f̂U(u) =

1
n det(Θ)

n
t=1

K3


Θ−1


Û ′

t − u′


φ̂(x, z, u) =

1
n det(ζ )

n
t=1

K4


ζ−1


X1t Z1t Ut

′
−

x z u

′
,

whereΛ,Θ , and ζ are diagonal matrices with positive bandwidths
of dimension G1 + K1, G, and G + G1 + K1, and K2 : RG1+K1 → R,
K3 : RG

→ R, and K4 : RG1+K1+G
→ R are multivariate kernel

functions. Note that up to constants c1 and c2 the functions

γ1(X1i, Z1i) =


g(X1i, Z1i, u)fU(u)du = m(X1i, Z1i) + c1,

γ2(Ui) =


g(x, z,Ui)f (x, z)d(x, z) = E(εi|Ui) + c2

are equal to the nonparametric additive components in (6). In
addition, given that

E

f (X1i, Z1i)fU(Ui)

φ(X1i, Z1i,Ui)
(Yi − X2iβ)|X1i, Z1i


= m(X1i, Z1i) + c1

E

f (X1i, Z1i)fU(Ui)

φ(X1i, Z1i,Ui)
(Yi − X2iβ)|Ui


= E(εi|Ui) + c2,

the internalized Nadaraya–Watson estimators for γ1(x, z) and
γ2(u) are given by

γ̂1(x, z) =
1

n det(Λ)

n
t=1

K2


Λ−1


X1t Z1t

′
−

x z

′
×

f̂U(Ût)

φ̂(X1t , Z1t , Ût)
(Yt − X2tβ) (8)

γ̂2(u) =
1

n det(Θ)

n
t=1

K3


Θ−1


Û ′

t − u′


×

f̂ (X1t , Z1t)

φ̂(X1t , Z1t , Ût)
(Yt − X2tβ). (9)

Under the identification assumption that E(m(X1i, Z1i)) =

E(E(εi|Ui)) = 0, we define an estimator ĝ(x, z, u) for g as
ĝ(x, z, u) = γ̂1(x, z) + γ̂2(u) − (Ȳ − X̄2β), where Ȳ =

1
n

n
i=1 Yi,

and X̄ ′

2 is a G2-dimensional vector with lth element given by X̄2,l =
1
n

n
i=1 X2i,l.

The estimator ĝ is infeasible, as it depends on the unknown
parameter vector β . Inspired by (7), in the second step of our
procedure, we estimate β by

β̂ =


n

i=1

X̂ ′

i X̂i

−1 n
i=1

X̂ ′

i Ŷi, (10)

where

Ŷi = Yi −
1
n

n
t=1


1

det(Λ)
K2


Λ−1


X1t Z1t

′
−

X1i Z1i

′ f̂U(Ût)

φ̂(X1t , Z1t , Ût)
Yt

+
1

det(Θ)
K3


Θ−1


Û ′

t − Û ′

i

 f̂ (X1t , Z1t)

φ̂(X1t , Z1t , Ût)
Yt − Yt


,

and X̂ ′

i is a G2-dimensional vector, with lth element given by

X̂il = X2i,l −
1
n

n
t=1


1

det(Λ)
K2


Λ−1


X1t Z1t

′
−

X1i Z1i

′ f̂U(Ût)

φ̂(X1t , Z1t , Ût)
X2t,l +

1
det(Θ)

K3

×


Θ−1


Û ′

t − Û ′

i

 f̂ (X1t , Z1t)

φ̂(X1t , Z1t , Ût)
X2t,l − X2t,l


for l = 1, . . . ,G2.
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Table 1
Finite sample performances.

θ = 0.3 θ = 0.6 θ = 0.9
B S R M B S R M B S R M

DGP1 n = 100

(β̃, m̃(·)) −0.043 0.039 0.059 0.155 −0.039 0.046 0.061 0.148 −0.024 0.047 0.053 0.132
(βs,ms(·)) −0.105 0.059 0.120 0.270 −0.097 0.063 0.115 0.263 −0.102 0.063 0.120 0.273
(βe,me(·)) −0.101 0.092 0.137 0.292 −0.076 0.097 0.123 0.271 −0.101 0.098 0.141 0.301

n = 400

(β̃, m̃(·)) −0.043 0.023 0.049 0.30 −0.050 0.024 0.056 0.134 −0.043 0.025 0.050 0.114

DGP2 n = 100

(β̃, m̃(·)) 0.012 0.032 0.035 0.094 0.021 0.033 0.039 0.102 0.038 0.035 0.052 0.135
(βs,ms(·)) −0.003 0.040 0.040 0.100 0.008 0.042 0.042 0.106 −0.000 0.043 0.043 0.106
(βe,me(·)) 0.001 0.063 0.063 0.141 0.009 0.068 0.069 0.154 0.018 0.069 0.071 0.150

n = 400

(β̃, m̃(·)) −0.005 0.019 0.019 0.049 −0.009 0.018 0.021 0.043 0.011 0.018 0.021 0.073
Using β̂ in place of β in (8) and (9), we define feasible estimators
γ̃1(x, z) and γ̃2(u), which are used to construct Yi1 = Yi − (X2i +

X̄2)β̂ − γ̃2(Ûi) + Ȳ and Yi2 = Yi − (X2i + X̄2)β̂ − γ̃1(X1i, Z1i) + Ȳ .
The final estimators form and β are given by m̃ and β̃ , with

(m̃(x, z), δ̃(x, z))

= argmin
m,δ

1
n

n
i=1


Yi1 − m −


X1i Z1i


−

x z


δ
2

×
1

det(Λ)
K2


Λ−1


X1i Z1i

′
−

x z

′
β̃ =


X ′

2X2
−1 X ′

2Ỹ

where Ỹ is n × 1 with ith element given by Ỹi = Yi − m̃(X1i, Z1i) −

h̃(Ûi) + (Ȳ − X̄2β̂),

(h̃(u), η̃(u)) = argmin
h,η

1
n

n
i=1


Yi2 − h −


Ûi − u


η
2

×
1

det(Θ)
K3

Θ−1 Û ′

i − u′


,

and X ′

2 =

X ′

21 · · · X ′

2n


. In the next section, we investigate

the finite sample properties of m̃ and β̃ in a Monte Carlo study.
In particular, we compare our estimators to the sieve minimum
distance and sieve conditional empirical likelihood estimation
procedures proposed in Ai and Chen (2003) and Otsu (2011).

3. Monte Carlo study

We consider the following data generating processes (DGPs):

DGP1 : Yi = Ln(|X1i − 1| + 1)sgn(X1i − 1) + X2iβ + εi

DGP2 : Yi =
exp(X1i)

1 + c exp(X1i)
+ X2iβ + εi,

for i = 1, . . . , n. The sample size n is set at 100 and 400. In
both DGPs, we generate Z1i, Z2i independently from a N(0, 1), and
construct X1i = Z1i + Z2i +Ui1 and X2i = Z2

1i + Z2
2i +Ui2. εi and Ui =

(Ui1,Ui2) are generated as


ϵi
Ui


∼ NID


0,


1 θ θ

θ 1 θ2

θ θ2 1


, where

the values θ = 0.3, 0.6, and 0.9 indicate weak, moderate, and
strong endogeneity. It is easy to verify that E(ϵi|Zi) = 0, E(Ui|Zi) =

0, and we obtain E(ϵi|Ui, Zi) = E(ϵi|Ui) =
θ

1+θ2
(U1i + U2i). We set

the parameters β = 1 and c = 3, and perform 500 repetitions for
each experiment design. Our DGPs are adapted from those in Su
and Ullah (2008), and we note that DGP2 is also employed in the
simulation study performed in Ai and Chen (2003).

The implementation of our estimator requires a choice of
kernel functions Ki(·) for i = 1, . . . , 4 and bandwidth sequences.
For all kernels, we use products of a univariate Epanechnikov
kernel. We select bandwidths with the simple rule-of-thumb
bandwidth 1.25σ̂ 2(W )n−1/(4+d), where σ̂ (W ) is the sample
standard deviation of the variable W and d is the dimension of W .
For bandwidths in H , W = Zi; for Λ, W = X1i; for Θ , W = Ûi, and
for ζ , W = (X1i, Z1i, Ûi).

For comparison purposes, we include in our simulations the
sieve minimum distance estimator (βs,ms(·)) from Ai and Chen
(2003), and the sieve conditional empirical likelihood estimator
(βe,me(·)) from Otsu (2011). We follow the suggestions in the
simulation study of Ai and Chen (2003) and approximate m(X1i)
with a fourth-order power series multiplied by the cumulative
distribution function of a standard normal. We choose a tensor
product polynomial sieve as the set of instruments, which is
{1, Z1i, Z2i, Z2

1i, Z1iZ2i, Z
2
2i, Z

3
1i, Z

2
1iZ2i, Z1iZ

2
2i, Z

3
2i}. Since the DGPs are

not heteroskedastic, the weighting function in (βs,ms(·)) is set
to be the identity matrix. The same approximation and choice
of instruments are used to construct (βe,me(·)). Since there is
no simulation guidance for implementing (βe,me(·)), we take
the liberty to choose the Epanechnikov kernel and rule-of-thumb
bandwidth in constructing the weighting function for (βe,me(·)).
We notice that implementation of (βe,me(·)) is computationally
intensive. For example, when n = 400, one run of (βe,me(·))
takes 513 s using GAUSS on an Intel Core 2 Duo CPU E8400
3 GHz PC, and our estimator uses only 10 s. Since the pattern of
relative performances continues to hold with large samples, we
only compare the finite sample performance of our estimator with
(βs,ms(·)) and (βe,me(·)) for n = 100.

In Table 1, we summarize the finite sample performances
in terms of bias (B), standard deviation (S), and root mean
squared error (R) for the estimation of β , and the mean of
root mean squared error (M) for estimating m(·) obtained by
averaging across the realized values of X1i. We notice that
(βe,me(·)) occasionally produce extreme estimates. Hence, the
above performance measures are given for the 10–90% quantile
range of sample estimates. We note that, as the sample size
increases, (β̃, m̃(·))’s performance in terms of the above measures
improves significantly. The performances of all estimators do not
seem to be influenced by θ . This is consistent with the expectation
that they all properly deal with the endogeneity issue. DGP2
is relatively easy to estimate as all estimators’ performances
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are better in DGP2 relative to DGP1. In almost all experiments
considered here, our estimator (β̃, m̃(·)) clearly outperforms the
other two in terms of estimating both β andm(·). The second best
is (βs,ms(·)), followed by (βe,me(·)).

4. Conclusion

We propose a kernel-based estimator for β and m(·) in a
partially linear model, where we allow endogeneous variables to
enter both the nonparametric and linear component functions.
The estimator is much easier to implement than the natural
alternatives currently available in the literature (Ai and Chen,
2003; Otsu, 2011). In addition, a Monte Carlo study indicates
that our estimator has better finite sample performances than
the estimators proposed by Ai and Chen (2003) and Otsu (2011).
Although we have not studied the asymptotic properties of our
procedure, we are encouraged by the fact that the bias, variance,
and root mean squared error decrease with sample size.
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