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We propose kernel-based estimators for both the parametric and nonparametric com-
ponents of a partially linear additive regression model where a subset of the covariates
entering the nonparametric component are generated by the estimation of an auxiliary
nonparametric regression. Both estimators are shown to be asymptotically normally
distributed. The estimator for the finite dimensional parameter is shown to converge
at the parametric

√
n rate and the estimator for the infinite dimensional parameter

converges at a slower nonparametric rate that, as usual, depends on the rate of decay
of the bandwidths and the dimensionality of the underlying regression. A small Monte
Carlo study is conducted to shed light on the finite sample performance of our estimators
and to contrast them with those of estimators available in the extant literature.
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1. Introduction

The estimation of partially linear regression models has been the subject of a large literature since the seminal work
of Heckman (1986) and Robinson (1988). See, e.g., Chamberlain (1992), Cuzick (1992), Linton (1995), Fan et al. (1998),
Fan and Li (1999) and Juhl and Xiao (2005) among many in this literature. A number of papers (Newey et al., 1999; Li and
Wooldridge, 2000; Pinkse, 2000; Fan and Li, 2003; Manzan and Zerom, 2005; Su and Ullah, 2008; Yu et al., 2011; Martins-
Filho and Yao, 2012) have considered the estimation and asymptotic efficiency gains that may result from knowledge that
the nonparametric component of a partially linear regression model has a partial or fully additive structure. Generally
speaking, this additivity can emerge directly from primitive assumptions (Li and Wooldridge, 2000; Manzan and Zerom,
2005) or from the specification of systems of regressions that lead to additivity of the regression of interest. A frequently
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occurring example of the latter case is econometric models that include ‘‘endogenous’’ covariates, where identification
and estimation result from the specification of control functions (Newey et al., 1999; Pinkse, 2000; Su and Ullah, 2008;
Martins-Filho and Yao, 2012; Ozabaci et al., 2014). Hence, consider the following partially linear triangular simultaneous
equations model

Y = β0 + X ′

2β + m(X1, Z1) + ε, (1)

X = Π (Z) + U, (2)

where Y is a scalar regressand, Z1 ∈ RD11 is a subvector of Z = (Z ′

1, Z
′

2)
′

∈ RD1 with D1 = D11 + D12, X1 and X2 are
non-overlapping subvectors of X ∈ RD2 of dimensions D21 and D22 with D2 = D21 + D22, U ∈ RD2 , E(U |Z) = 0 and
E(ϵ|Z,U) = E(ϵ|U) ≡ g(U). Note that by subtracting E(Y |Z,U) from Eq. (1) and defining v = Y − E(Y |Z,U) we obtain

Y = β0 + X ′

2β + m(X1, Z1) + g(U) + v. (3)

In this paper, our primary goal is to propose and study the asymptotic properties of estimators for both the finite
dimensional parameter (β0, β

′)′ and the infinite dimensional parameter m(·) in Eq. (3). A complicating factor in the
estimation of this model is that some of the covariates appearing in the additive nonparametric component are not
observed (U) and must be generated (estimated) by the auxiliary regression (2).

The asymptotic properties of a general class of estimators of the finite dimensional parameter of semiparametric
models with generated covariates have been recently studied by Mammen et al. (2016). They establish consistency and√
n asymptotic normality of a parametric estimator that is obtained by a three-step estimation procedure. The first step

involves nonparametric estimation (generation) of the unobserved covariates. The second step involves nonparametric
estimation of a nuisance regression that may depend on the finite dimensional parameter (profiling), and the third
step involves the minimization of a GMM-type objective function based on the first two steps. Although the class of
semiparametric models they consider includes the partially linear additive nonparametric regression with generated
regressors we study in this paper, their estimation procedure fails to incorporate the additivity that is present in our
model. In contrast, the estimators we propose for both the finite and infinite dimensional parameters make full use of
the additive structure of the nonparametric component. In this regard, our paper is more closely related to Newey et al.
(1999) or Su and Ullah (2008), although the moment conditions we use in motivating and deriving our estimators are
different from those used in these papers.

The moment conditions we use to motivate our estimators are similar, but critically different, from those employed
by Manzan and Zerom (2005) to estimate a model that is identical to our Eq. (3) but where the covariates U are observed.
Hence, the asymptotic normality we obtain for our estimator of the finite dimensional parameter can be viewed as an
extension of their main result to the case of a partially linear regression model with generated regressors. In fact, as
explained in Section 2 of this paper, we have found critical flaws in the proof of the main theorem in Manzan and Zerom
(2005), casting doubt on the asymptotic normality of their estimator.1 Thus, as a special case of our result we obtain the
asymptotic normality of our estimator when U is observed. It also reveals that a proof for the main theorem in Manzan
and Zerom (2005) may not exist for reasons that are related to those that prevented (Martins-Filho and Yao, 2012) from
giving an asymptotic characterization for their estimator.

Our proposed estimators are kernel based and relatively easy to implement since they do not require any numerical
optimization or iterated procedures. As will be shown, they are consistent and asymptotically normally distributed,
with the estimator for the finite dimensional parameter converging at the parametric

√
n rate, and the nonparametric

estimator converging at the expected nonparametric rate that is a function of the rate of decay of the bandwidth and the
dimensionality of the underlying regressions.

Newey et al. (1999) proposed series estimators (power and splines) for a model where β0 = 0 and the partially linear
structure in (3) is generically modeled as g0(X, Z1).2 Otherwise, their model is identical to ours. Given that our partially
linear structure is a restriction on g0, their estimation method can be adapted to the model described by (1) and (2) (see
Section 6 of their paper). In Section 3 of this paper, we contrast the additional assumptions they make to characterize
some of the asymptotic behavior of their estimators with those we make to obtain similar results. Martins-Filho and
Yao (2012) proposed kernel-based estimators for (β0, β

′)′ and m(·), but although their estimators appear to have good
finite-sample properties, they have failed to provide a characterization of their asymptotic behavior. In fact, our theoretical
work suggests that their estimators cannot be shown to be asymptotically normally distributed under standard parametric
and nonparametric normalizations (see details in Section 2).

Although the estimation procedure we consider is conceptually simple and fairly easy to implement, its asymptotic
characterization is non-trivial, requiring repeated analysis of U-Statistics of high degree. This has been greatly facilitated
by results in Yao and Martins-Filho (2015), which are used frequently in our proofs. The ancillary results required to obtain
our theorems are, to our knowledge, novel and can be used in other contexts where generated regressors are encountered
in various types of two stage kernel-based estimators.

1 Their results have been used in Manzan and Zerom (2010), Ozabaci and Henderson (2015) and featured in Li and Racine (2007) and Henderson
and Parmeter (2015).
2 Ozabaci et al. (2014) also considered a model similar to that in Newey et al. (1999), but in their formulation Π (Z), g0(X, Z1), and g(U) are all

additive nonparametric functions of each of their arguments.
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The rest of this paper is organized as follows. Section 2 describes the model in greater detail, considers identification
and the moment conditions used in estimation, and provides a detailed algorithm for estimation. Section 3 gives
asymptotic characterizations for our estimators and the assumptions we use to obtain our results. Where appropriate, we
contrast our assumptions with those in Newey et al. (1999). Section 4 contains a small Monte Carlo study that sheds some
light on the finite sample performance of our estimators and contrasts them to the series estimator proposed by Newey
et al. (1999). Section 5 concludes. Supporting lemmas and the proofs of all theorems are given in Appendix A. An online
appendix (OA) provides the proofs for the lemmas and details on the order of the U-Statistics appearing in the proofs of
the theorems.

2. Moment conditions, identification and estimation

2.1. Moment conditions

We start by deriving a collection of conditional moments that emerge from Eqs. (2) and (3) and are the bases
for the estimators we propose in Section 2.2. First, as usually assumed in the additive nonparametric literature (see,
inter alia, Linton and Härdle, 1996; Kim et al., 1999; Manzan and Zerom, 2005; Martins-Filho and Yang, 2007), we put
E (m(X1, Z1)) = E (g(U)) = 0, since each component in an additive nonparametric model can only be identified up to an
additive constant.3

Using a suitable ‘‘instrument’’ function, we now obtain moment conditions that motivate our estimator for β0 and
β . For simplicity, in what follows, we put W = (X ′

1, Z
′

1)
′. As in Kim et al. (1999), we define an ‘‘instrument’’ function

η = η(W ,U) ≡
fW (W )fU (U)
fWU (W ,U) , where fW is the marginal density of W , fU the marginal density of U and fWU the joint density

of W and U . Note that E
(
η|W

)
= 1, E

(
η|U

)
= 1, E

(
ηg(U)|W

)
= 0, and E

(
ηm(W )|U

)
= 0. By pre-multiplying both sides

of Eq. (3) by η, and taking conditional expectations given W and U , respectively, we have

E
(
η(Y − X ′

2β − β0) | W
)

= m(W ), E
(
η(Y − X ′

2β − β0) | U
)

= g(U). (4)

It is apparent that if β0 and β were known, and U were observed,m(W ) and g(U) could be estimated based on the moment
conditions (4) using an estimated η̂ constructed with nonparametric density estimators of fW , fU , and fWU evaluated at all
data points. To address the fact that β0 and β are unknown, note that m(W ) and g(U) can be expressed as conditional
expectations containing β and β0 in (4). Substituting them back into (3) and rearranging, with β0 = E(η(Y − X ′

2β)), we
have

Y ∗
= X∗′

2 β + v, (5)

where Y ∗
≡ Y − E(ηY |W ) − E(ηY |U) + E(ηY ), and X∗

2 ≡ X2 − E(ηX2|W ) − E(ηX2|U) + E(ηX2).
Estimation of β could proceed by exploring the fact that E(X∗

2 v) = 0. In fact, the last equation provides a class
of moments that can be used to estimate β . This follows since pre-multiplying by any arbitrary measurable function
L ≡ L(Z,U), we have E(LX∗

2 v) = 0, with instruments LX∗

2 . It seems natural to put L = 1, as in Manzan and Zerom
(2005), since X∗

2 is already in the space spanned by all ‘‘instrumental variables’’ {Z,U}. However, to obtain the
√
n-

consistency of the estimator for β , we find it essential to have the instruments orthogonal to each of the nonparametric
regressors, specifically, E(LX∗

2 |W ) = 0 and E(LX∗

2 |U) = 0. This requirement arises due to the additive structure of the
nonparametric components and their separable estimation. As such, we set L = η(W ,U) since it satisfies E(LX∗

2 |W ) = 0
and E(LX∗

2 |U) = 0.4
Failure to recognize the critical role of setting L = η is at the heart of the problems we have encountered in the proof

of asymptotic normality of the estimator of β proposed by Manzan and Zerom (2005).5 Martins-Filho and Yao (2012) also
failed to suggest, or understand, the role of L in obtaining asymptotic properties of the kernel-based estimators for this
model. In fact, a more careful investigation of the consequences of choosing such a normalizing function in establishing
the asymptotic properties of estimators of β0, β , and m remains an open and important topic of study, as it also has a
direct impact on the structure of the variances of their asymptotic distributions.

Hence, we consider the moment condition

E
(
ηX∗

2 (Y
∗
− X∗′

2 β)
)

= 0. (6)

We denote the additive components in Y ∗, X∗

2 , and their corresponding error terms by m1(W ) ≡ E(ηY |W ), m2(W ) ≡

E(ηX2|W ), m3(W ) ≡ E(η|W ), g1(U) ≡ E(ηY |U), g2(U) ≡ E(ηX2|U), g3(U) ≡ E(η|U), µ1 ≡ E(ηY ), µ2 ≡ E(ηX2),

3 See Schick (1986). As in Robinson (1988), E (m(X1, Z1)) = 0 can be relaxed by setting β0 = 0.
4 Robinson (1988) does not encounter this issue since there is only one nonparametric regression involved in the moment condition explored

in estimation and the instruments X − E(X |Z) (in his notation) are orthogonal to the nonparametric regressor Z . However, in other partially linear
additive models, such as those for quantile regression, similar requirements may be needed. See, e.g., Cheng and Zerom (2015).
5 Their difficulties occur primarily in the proof of their Lemma 2. First, their g̃k

j for k ̸= j does not equal to zero. Second, for E(Sg1−g̃1 ), we find
it impossible to approximate it with the term following the ∼ sign on the second line of page 320. Third, the proof neglects the order of the error
induced by using a nonparametric density estimator, which is dominating in terms of magnitude. In other words, the lemma suggests that the
nonparametric estimators they use have a better than parametric convergence rate op(n−1/2), which cannot be true.
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vm1 ≡ ηY − m1(W ), vm2 ≡ ηX2 − m2(W ), vm3 ≡ η − m3(W ), vg1 ≡ ηY − g1(U), vg2 ≡ ηX2 − g2(U), and vg3 ≡ η − g3(U).
Given the moment condition associated with m(W ) in Eq. (4), we let vm ≡ η(Y −X ′

2β−β0)−m(W ) = vm1 −v′

m2β−vm3β0.
The moment condition (6) suggests an estimator of β obtained by inserting estimators of η, Y ∗, and X∗

2 prior to an
application of a standard rule, such as the no-intercept ordinary least squares (OLS) method. Note that by (4), we have
m = m1 − m′

2β − m3β0, and g = g1 − g ′

2β − g3β0. Thus, to estimate Y ∗, X∗

2 , m, and g , we need only estimate each
of their additive components separately. The main technical difficulty rests in the fact that U must be substituted by a
generated regressor Û in the estimation of all conditional moments involving U and η(W ,U). Kernel-based nonparametric
regression estimators are employed throughout this paper, and for identification purposes, existence and non-singularity
of Φ0 ≡ E

(
ηX∗

2X
∗′

2

)
are assumed.

2.2. Estimation

Consider a random sample {Yi, Xi, Zi}ni=1 where (Yi, X ′

i , Z
′

i )
′ is distributed as (Y , X ′, Z ′)′ for any i = 1, . . . , n.

Based on the moment conditions given in Section 2.1, we now describe in detail our proposed estimation procedure.
Since Ui is not observed, the first step in the estimation generates Ûi. We obtain a Nadaraya–Watson (NW) estimator for
Π (z) from (2), with the jth element defined as

Π̂j(z) = argmin
θ

1

nhD1
1

n∑
t=1

(Xt,j − θ )2 K1

(
Zt − z
h1

)
for j = 1, . . . ,D2,

where Xt,j is the jth element of Xt , h1 > 0 is the associated bandwidth, and K1:RD1 → R is a multivariate kernel
function. To associate the relevant subvector of Π (Zi) with X2i, we define Π (Zi) ≡ (Π ′

1(Zi),Π
′

2(Zi))
′, where Π2(Zi) ≡

(Π21(Zi), . . . ,Π2D22 (Zi))
′

= X2i − U2i. Π1(Zi) is defined similarly. Denote the estimates by Π̂ (Zi) =
(
Π̂ ′

1(Zi), Π̂
′

2(Zi)
)′

≡(
Π̂1(Zi), . . . , Π̂D2 (Zi)

)′ and calculate the nonparametric residuals Ûi ≡
(
Ûi1, . . . , ÛiD2

)′, where Ûij ≡ Xi,j − Π̂j(Zi), for
j = 1, . . . ,D2 and i = 1, . . . , n.

In the second step, we estimate ηi (instrument functions) from Section 2.1 using Wt , and the generated regressors Ût
obtained in the first step. We first obtain Rosenblatt–Parzen density estimators for fU , fW , and fWU :

f̂Û (u) =
1

nhD2
2

n∑
t=1

K2

(
Ût − u
h2

)
, f̂W (w) =

1

nhD3
3

n∑
t=1

K3

(
Wt − w

h3

)
,

f̂WÛ (w, u) =
1

nhD4
4

n∑
t=1

K4

(
(W ′

t Û ′
t )

′
− (w′ u′)′

h4

)
,

where K2:RD2 → R, K3:RD3 → R, and K4:RD4 → R are multivariate kernel functions with D3 ≡ D11 + D21 and D4 ≡

D2 +D3, and hi > 0 is the associated bandwidth for i = 2, 3, 4. Similarly, denote the infeasible Rosenblatt–Parzen density
estimators using the unobserved {Ut}

n
t=1 by f̂U and f̂WU . Then, a natural estimator for ηi is η̂i = η̂(Wi, Ûi) ≡

f̂W (Wi)f̂Û (Ûi)

f̂WÛ (Wi,Ûi)
.

In the third step we obtain the NW estimators for each conditional expectation in Y ∗

i and X∗

2i as follows:

m̂1(w) =
1

nhD3
3

1

f̂W (w)

n∑
t=1

K3

(
Wt − w

h3

)
η̂tYt , m̂2(w) =

1

nhD3
3

1

f̂W (w)

n∑
t=1

K3

(
Wt − w

h3

)
η̂tX2t ,

ĝ1(u) =
1

nhD2
2

1

f̂Û (u)

n∑
t=1

K2

(
Ût − u
h2

)
η̂tYt , ĝ2(u) =

1

nhD2
2

1

f̂Û (u)

n∑
t=1

K2

(
Ût − u
h2

)
η̂tX2t .

(7)

Estimators of the unconditional expectations µ1 and µ2 are given by µ̂1 =
1
n

∑n
t=1 η̂tYt , and µ̂2 =

1
n

∑n
t=1 η̂tX2t . Thus,

we define estimators of Y ∗

i and X∗

2i respectively as Ŷi = Yi − m̂1(Wi) − ĝ1(Ûi) + µ̂1, X̂2i = X2i − m̂2(Wi) − ĝ2(Ûi) + µ̂2, for
i = 1, . . . , n.

In the fourth step, using the estimators η̂i, Ŷi, and X̂2i derived in the previous steps, instead of ηi, Y ∗

i , and X∗

2i in (6), we
have a feasible no-intercept OLS estimator of β ,

β̂ =

(
X̂

′

2η̂X̂2

)−1
X̂

′

2η̂Ŷ , (8)

where Ŷ = (Ŷ1, . . . , Ŷn)′, X̂2 = (X̂21, . . . , X̂2n)′, and η̂ = diag{η̂i}ni=1. Given that β0 = E(Y − X ′

2β) and β̂ , an estimator of
β0 is β̂0 = Ȳ − X̄ ′

2β̂ , where Ȳ ≡
1
n

∑n
t=1 Yt , and X̄2 ≡

1
n

∑n
t=1 X2t .

Finally, the last step provides an estimator for m. Given Eq. (4) and the estimators β̂0 and β̂ , we propose the following
estimators for m(Wi) and g(Ui),

m̂(w) = m̂1(w) − m̂′

2(w)β̂ − m̂3(w)β̂0, ĝ(u) = ĝ1(u) − ĝ ′

2(u)β̂ − ĝ3(u)β̂0, (9)
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where m̂3(w) and ĝ3(u) are NW estimators for m3(w) and g3(u) defined similarly as m̂1(w) and ĝ1(u) in (7) except that η̂t
is used, instead of η̂tYt , as regressand.

Our choice of NW estimators in the first and third steps of our estimation procedure was guided by the following
considerations. First, NW estimators are widely used and easy to implement. Second, they have been the estimator
of choice for the infinite dimensional parameter in a number of papers that study partially linear models (see, inter
alia, Robinson, 1988; Fan and Li, 1999; Li and Wooldridge, 2002; Manzan and Zerom, 2005; and Juhl and Xiao, 2005). Third,
whereas other nonparametric kernel-based regression estimators could be used, such as local-polynomial estimators
(see Linton, 1995 and Su and Ullah, 2008), their asymptotic properties do not impact our main result in Theorem 3.
Fourth, whereas the choice of NW estimators does not impact Theorem 3, it does impact the structure of the bias of
the estimator m̂(·) in Theorem 4. In particular, the design adaptability of the bias of local polynomial estimators (Fan,
1992) is not a property of NW estimators. However, given that in partially linear models m(·) is largely taken to be a
nuisance parameter and given the theoretical convenience of dealing with NW estimators, we elect to use NW estimators
throughout our estimation procedure.

3. Asymptotic characterizations of β̂ and m̂(·)

In this section, we study the asymptotic properties of the estimators β̂ and m̂(·) defined in the previous section. We first
establish the uniform convergence in probability rate of the Rosenblatt density estimator using estimated residuals {Ûi}

n
i=1.

Second, we give the uniform convergence in probability rate of the NW estimator constructed using estimated residuals
{Ûi}

n
i=1. Third, we establish

√
n asymptotic normality of β̂ − β . Lastly, we use the asymptotic normality of

√
n(β̂ − β) to

establish the asymptotic distribution of m̂(·) under suitable centering and normalization.

3.1. Assumptions

First we provide a list of general assumptions that will be adopted in our theorems and introduce notation. In what
follows, C denotes a generic constant in (0,∞) that may vary from case to case. k(j)(x) denotes the jth-order derivative
of k(x) evaluated at x.

Assumption A1. The kernels Ki, for i = 1, 2, 3, 4, satisfy Ki(x) =
∏Di

j=1 ki(xj), where Di is the corresponding dimension of
Ki. ki is symmetric about zero, 4-times continuously differentiable, and satisfies: (a)

∫
ki(x) dx = 1; (b) |k(j)i (x)||x|7+a

→ 0
as |x| → ∞, j = 0, . . . , 4, for some a > 0; (c) ki is a kernel of order si, i.e.,

∫
ki(x)xj dx = 0 for j = 1, . . . , si − 1, and∫

|ki(x)||x|si dx < C . We let s ≡ max{si}4i=1 and µki,si ≡
∫
ki(x)xsi dx.

Our use of ‘‘higher-order’’ kernels is needed to attain suitable orders for the biases of our nonparametric estimators.
Since global differentiability of the kernel functions is required in using Taylor’s Theorem, in the following theorems, we
will not consider kernels with compact support for theoretical purposes.6 It is easy to construct kernels that satisfy the
conditions in A1. For example, kernels of even order s ≥ 2, can be defined as

ks(x) =

1
2 (s−2)∑
j=0

cjx2jφ(x), (10)

where φ(x) = (2π )−1/2exp(− 1
2x

2) for suitably chosen cj. In particular, given that we can evaluate the moments m2j =∫
x2jφ(x) dx, 0 ≤ j ≤

1
2 (s − 2), we choose {cj}

1
2 (s−2)
j=0 that satisfy the linear system of s/2 simultaneous equations∑ 1

2 (s−2)
j=0 cjm2(i+j) = δi0, 0 ≤ i ≤

1
2 (s− 2), where δi0 is Kronecker’s delta. For example, k2(x) = φ(x), k4(x) =

( 3
2 −

1
2x

2
)
φ(x),

and k6(x) =
( 15

8 −
5
4x

2
+

1
8x

4
)
φ(x). Note that these kernels are continuously differentiable of any order everywhere, and

when multiplied by any polynomial function they are all uniformly bounded and absolutely integrable, as their tails decay
exponentially. We show in Lemma 1 that product kernels satisfying A1 are locally Lipschitz continuous, which is necessary
for Lemma 3.

Assumption A2. The components of the sequence {(Yi, X ′

i , Z
′

i )}
n
i=1 of random vectors described in (2) and (3) are

independent and identically distributed (IID). The density functions fW (w), fZ (z), fWU (w, u), fUZ (u, z), and fU (u) are
uniformly bounded away from zero and infinity on arbitrary convex compact subsets of their domains. Here, fUZ (·) is
the joint density function of (U, Z).

The existence, boundedness properties and compactness of the support of the densities in Assumption A2 are common
regularity conditions imposed to derive properties of kernel-based nonparametric estimators and largely overlap with
Assumption 2 in Newey et al. (1999).

6 This requirement is not essential, in practice, if we only consider estimated Û taking values on a compact set.
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Assumption A3. (i) E
(
m(W )

)
= E

(
g(U)

)
= 0, (ii) E

(
v2
⏐⏐Z,U) = σ 2

v < ∞, E
(
U2
j

⏐⏐Z) = σ 2
Uj
< ∞, E

(
v2m1

⏐⏐W) = σ 2
vm1 < ∞,

E
(
v2m2,j

⏐⏐W) = σ 2
vm2 < ∞, E

(
v2g1

⏐⏐U) = σ 2
vg1 < ∞, E

(
v2g2,j

⏐⏐U) = σ 2
vg2 < ∞, and (iii) the following Cramer’s conditions:

E
⏐⏐X2,j

⏐⏐p ≤ Cp−2p!E
⏐⏐X2,j

⏐⏐2 < ∞, E
(
|Uj|

p
|Z
)

≤ Cp−2p!σ 2
Uj
, for some C > 0, p = 3, 4, . . ., and j = 1, . . . ,D2.

A3(i) is assumed without loss of generality and is used in identification of the additive structure in Eq. (3). In A3(ii),
it is not essential to assume that the second conditional moment of the error terms are independent of the conditioning
variables; however, the boundedness of the second moment is crucial here, as in Assumptions 1 and 5 in Newey et al.
(1999). Cramer’s conditions in A3(iii) are imposed due to the use, in Lemma 2, of Bernstein’s Inequality to establish the
uniform order in probability of some specific averages. In particular, Lemma 2 is critical in handling the fact that U is
estimated by Û , which is used in defining f̂Û , f̂WÛ , and η̂. If U were observed, Cramer’s conditions could be relaxed.

Assumption A4. Let Cq denote the class of functions such that each of its elements: (i) is q-times partially continuously
differentiable, and (ii) all their partial derivatives up to order q are uniformly bounded. For d = 1, . . . ,D2, and ℓ = 1, 2, 3,
Πd(·), fWU (·), fUZ (·),m(·), g(·),mℓ(·), gℓ(·) ∈ C s+1, where s is defined in Assumption A1.

Assumption A4 assumes smoothness of the regression functions and uniform bounds of their partial derivatives. This
assumption, together with kernels of suitable order, as required in A1, gives desired orders for the biases. We note that
in our Assumption A1 s ≡ max{si}4i=1, and for convenience A4 requires all functions to be in C s+1. This is sufficient for our
theorems, but not necessary, expressing only the highest degree of smoothness needed. Depending on the context lower
degrees of smoothness can be assumed.7

Assumption A5. Denote Lin ≡

(
log n

nh
Di
i

) 1
2

+ hsi
i , for i = 1, . . . , 4, and Ln =

∑4
i=2 Lin, where hi → 0 as n → ∞ and satisfies:

(i) h1 = n−δ , with 1
2s1
< δ < min{i=2,4}

Di
D1(2si+Di)

;

(ii) for i = 2, 4, hi = n−
1

2si+Di , with si ≥ Di/2 + 2;
(iii) h3 = n−

1
2s3+D3 , with 1

2 <
s3
D3
< min{i=2,4}

si
Di
.

Assumption A5 provides the order of all the bandwidths. The fact that using residual estimates {Ûi}
n
i=1, instead of

{Ui}
n
i=1, has no impact on the first-order asymptotic properties of our estimator relies on undersmoothing in the first

stage when regressing X on Z nonparametrically, and on Π (z) being sufficiently smooth. For h2, h3, and h4, the orders
are chosen optimally by minimizing the mean squared error of traditional NW kernel estimators. The second inequality
in A5(iii) implies that Lin/L3n → 0 for i = 2, 4 to ensure that using estimated densities for fU (·) and fWU (·) does not result
in any asymptotic consequences in deriving the distribution of m̂(·).

3.2. Theorems

By Theorem 2.6 in Li and Racine (2007), under A1–A5, for a compact subset GZ ⊂ RD1 , we have

sup
z∈GZ

⏐⏐Π̂ (z) −Π (z)
⏐⏐ = Op(L1n) (11)

where L1n =

(
log n

nh
D1
1

)1/2
+ hs1

1 . This uniform convergence rate in probability of the NW estimator is used throughout this

paper. Note that f̂Û (Ûi) and f̂WÛ (Wi, Ûi) are used to approximate fU (Ui) and fWU (Wi,Ui) in ηi. By Theorem 1, we can show
that the uniform convergence rate of f̂Û (Ûi) to fU (Ui) using {Ûi}

n
i=1 is no different from that of the traditional Rosenblatt

density estimator based on the unobserved {Ui}
n
i=1. A similar result holds for f̂WÛ (Wi, Ûi).

Theorem 1. Under A1–A5, for arbitrary convex and compact subsets GZ ⊂ RD1 , GU ⊂ RD2 and GM ⊂ RD3 , we have

sup
u∈GU

⏐⏐f̂Û (u) − fU (u)
⏐⏐ = Op(L2n), sup

w∈GW

⏐⏐f̂W (w) − fW (w)
⏐⏐ = Op(L3n),

sup
{w,u}∈GW×GU

⏐⏐f̂WÛ (w, u) − fWU (w, u)
⏐⏐ = Op(L4n),

(12)

where GW × GU denotes the Cartesian product of sets GW and GU , Lin =

(
log n

nh
Di
i

)1/2
+ hsi

i , for i = 2, 3, 4.

7 For example, in Section 4, where specific data generating processes (DGP) are considered, it suffices to have Π (·) ∈ C6 , fWU (·) ∈ C4 , fUZ (·) ∈ C5 ,
m(·) ∈ C2 , and g(·) ∈ C4 .
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Note that in Theorem 1 we establish the uniform convergence rate of f̂Û (u) and f̂WÛ (w, u) over GU and GW × GU ,
respectively. This is due to the fact that Ûi is an estimated residual given by Ûi = Xi − Π̂ (Zi) and the uniform convergence
rate of Π̂ (Zi) given in (11) is taken over a compact set GZ . Consequently, this implies that |f̂Û (Ûi) − fU (Ui)| = Op(L2n)
uniformly for any Ûi,Ui ∈ GU as |f̂Û (Ûi) − fU (Ui)| ≤ |f̂Û (Ûi) − fU (Ûi)| + |fU (Ûi) − fU (Ui)| ≤ Op(L2n) + C∥Ûi − Ui∥E =

Op(L2n + L1n) = Op(L2n). Similarly, we have |f̂WÛ (Wi, Ûi) − fWU (Wi,Ui)| = Op(L4n) uniformly. These results and A2 together
imply that η̂i − ηi = Op(Ln) uniformly, where Ln ≡

∑4
i=2 Lin, and consequently we have µ̂k − µk = Op(Ln) for k = 1, 2.

With this result, we are ready to provide the uniform convergence rate of the estimators given in (7).

Theorem 2. Under A1–A5, for arbitrary convex and compact subsets GU and GW , for k = 1, 2, 3, we have,

sup
u∈GU

⏐⏐⏐ĝk(u) − gk(u)
⏐⏐⏐ = Op

(
Ln +

L1n
h2

)
, sup

w∈GW

⏐⏐⏐m̂k(w) − mk(w)
⏐⏐⏐ = Op (Ln) . (13)

The rates of uniform convergence in probability of ĝk(·) to gk(·) and m̂k(·) to mk(·), and by consequence, those of ĝ(·)
to g(·) and m̂(·) to m(·) depend fundamentally on the degree of smoothness of the functions appearing in A4 and the
dimensions of the vectors Xi and Zi. Given Di for i = 1, . . . , 4 and Assumption A5, it is possible to obtain the necessary
smoothness in A4 that assures the results in Theorem 2. Furthermore, the given rate of convergence can be calculated as a
function of n. Therefore, the same uniform convergence rate, Op(Ln +

L1n
h2

), of the feasible estimator ĝk(Ûi) to the true value
gk(Ui) for any Ûi,Ui ∈ GU follows immediately by Mean Value Theorem as g(·) ∈ C1 and ∥Ûi − Ui∥E = Op(L1n). Similarly,
given Assumptions 3 and 8 in Newey et al. (1999), the rate of convergence in their Theorem 4.3 can also be calculated.8
An important difference between our results and theirs is that, in our case, the rate is obtained taking into account the
randomness of Ûi and the estimation of g(·) (λ(·) in their notation), whereas they take U = ū as fixed and the true g(·)
to be known.

Note that the first term in the order of |ĝk(u) − gk(u)| is not new, as it is just a sum of uniform orders for different
NW estimators. The h2 in the denominator of the second term comes from a Taylor expansion of the kernel evaluated at
the estimated residuals {Ûi}

n
i=1. With well chosen bandwidths in A5, it is essential to have that L2n,

( L1n
h2

)2
= o(n−1/2). This

result will help establish the asymptotic distribution of β̂:

√
n(β̂ − β) =

(
1
n
X̂

′

2η̂X̂2

)−1 1
√
n
X̂

′

2η̂(Ŷ − X̂2β). (14)

As we can see in (14), there are two components that need to be studied to establish the asymptotic properties of
√
n(β̂ − β). We need to (i) establish the asymptotic behavior of the matrix 1

n X̂
′

2η̂X̂2, and (ii) establish the asymptotic
normality of the term 1

√
n X̂

′

2η̂(Ŷ − X̂2β). Uniform orders of NW estimators derived in Theorem 2 will help take care of
(i). However, to establish asymptotic normality for the second term, we need to investigate the behavior of U-Statistics
up to degree 3. Yao and Martins-Filho (2015) provide a direct and convenient method to characterize the asymptotic
magnitude of each component in the H-decomposition (see Hoeffding, 1948) of a U-Statistic, and many places in our
proofs are based on their results. The next theorem establishes the asymptotic distribution of β̂ after suitable centering
and under

√
n-normalization.

Theorem 3. Under A1–A5, assuming that matrix Φ0 exists and is nonsingular, we have
√
n(β̂ − β)

d
−→ N

(
0,Φ−1

0 (Φ1 +Φ2)Φ−1
0

)
, (15)

where the matrices Φ0, Φ1, and Φ2 have typical elements given by

Φ0(j,k) = E
[
ηt
(
X2t,j − m2j(Wt ) − g2j(Ut ) + µ2j

)(
X2t,k − m2k(Wt ) − g2k(Ut ) + µ2k

)]
;

Φ1(j,k) = E
[
η2t
(
X2t,j − m2j(Wt ) − g2j(Ut ) + µ2j

)(
X2t,k − m2k(Wt ) − g2k(Ut ) + µ2k

)]
σ 2
v ;

Φ2(j,k) = E

[ D2∑
d=1

D2∑
δ=1

E
((
Π2j(Zi) −Π2j(Zt )

)
Ddg(Ut )ηt

⏐⏐Zi)
× E

((
Π2k(Zi) −Π2k(Zt )

)
Dδg(Ut )ηt

⏐⏐Zi)UidUiδ

]
, for j, k = 1, . . . ,D22.

8 As for our estimator, the exact rate of convergence of their spline estimators, as a function of n, depends on the degree of continuous
differentiability of m(·), g(·), and Π (·), the dimension of Z , W , and the rate at which the number of knots (K and L in their notation) diverges to
infinity. When the sequences of knots have the same order and for the DGPs used in our Section 4, we have calculated the exact rate of convergence
for both our estimator (n−1/3) and theirs (n−5/14).
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Remarks. 1. It follows directly from Theorem 3 that β̂ is consistent and asymptotically unbiased. The explicit structure
for the covariance of the limiting distribution allows for asymptotically valid inference and hypothesis testing when a
consistent estimator for the covariance is available. Given the structure of its component covariance matrices, we provide
consistent estimators for Φi, i = 1, 2, 3 as follows,

Φ̂0 =
1
n
X̂

′

2η̂X̂2 Φ̂1 =
1
n
X̂

′

2η̂η̂X̂2σ̂
2
v , Φ̂2 =

1
n
Q ′Q , (16)

where σ̂ 2
v ≡

1
n v̂

′
v̂, v̂ ≡ Y − X2β̂ − β̂0 − m̂ − ĝ , m̂ ≡ (m̂(W1), . . . , m̂(Wn))′, ĝ ≡ (ĝ(Û1), . . . , ĝ(Ûn))′, Q ≡ (Q1, . . . ,Qn)′,

Qi ≡
1
n (1nΠ̂

′

2(Zi) − Π̂2)′η̂DĝÛi, Π̂2(Zi) ≡ (Π̂21(Zi), . . . , Π̂2D22 (Zi))
′, Π̂2 ≡ (Π̂2(Z1), . . . , Π̂2(Zn))′, 1n ≡ (1, . . . , 1)′n×1,

Dĝ ≡ (D1ĝ, . . . ,DD2 ĝ), Ddĝ ≡ (Ddĝ(Û1), . . . ,Ddĝ(Ûn))′, and Ddĝ(Ûi) is the partial derivative of the estimator ĝ(u) with
respect to the dth element of u evaluated at Ûi. Given Eqs. (7) and (9), by taking partial derivatives, we have Ddĝ(Ûi) given
by

Ddĝ(u) = −
1

nhD2+1
2

1

f̂Û (u)

n∑
t=1

DdK2

(
Ût − u
h2

)[
η̂t (Yt − X2t β̂) − (ĝ1(u) − ĝ ′

2(u)β̂)
]
.

2. The covariance Φ−1
0 (Φ1+Φ2)Φ−1

0 differs from what one would obtain if U were observed. Hence, there is an asymptotic
cost in using Û in estimation. It manifests itself via the presence of Φ2, which would be zero if U were observed. In this
case, Theorem 3 gives

√
n(β̂−β)

d
−→ N

(
0,Φ−1

0 Φ1Φ
−1
0

)
which is similar to the limiting distribution claimed by Manzan

and Zerom (2005) for their estimator, under homoscedasticity of the regression error. The critical difference is that the
expectations that characterize the elements of Φ0 and Φ1 for our estimator include ηt and η2t , respectively. This follows
from the fact that the moment conditions we explore to construct our estimator must include η (see Eq. (6)). As we have
pointed out in Section 2.1, when, as in Manzan and Zerom (2005), η = 1 the asymptotic normality and semiparametric
efficiency of the proposed estimator remains unproven.
3. It is evident that the choice of L = η, which led to the moment conditions in Eq. (6) that we explored in our estimation
procedure, has a direct impact on the variance of the limiting distribution of

√
n(β̂ − β). In fact, other choices of L that

satisfies E(LX∗

2 |W ) = E(LX∗

2 |U) = 0 and can be estimated at a suitable rate, e.g., Op(Ln), would produce a class of estimators
for β that are asymptotically normal with covariance depending on L. We have not investigated whether it is possible
to obtain a minimum variance estimator in this class, leaving this important topic for future research. However, it seems
apparent that estimators motivated by moment conditions that do not satisfy E(LX∗

2 |W ) = E(LX∗

2 |U) = 0 are not in this
class.
4. The covariance matrix of the limiting distribution does not meet the semiparametric efficiency bound of Chamberlain
(1992), a characteristic that our estimator shares with that proposed in Li and Wooldridge (2002).9 This is also the case
for the class of estimators proposed in Mammen et al. (2016). In fact, since our estimation procedure explores the additive
structure of the nonparametric component, we expect based on sufficiency, that the variance of its asymptotic distribution
will be smaller than that derived by Mammen et al. (2016) for their estimator. However, due to the complexity of the
expressions for these variances we have been unable to theoretically establish their relative magnitudes.
5. Given Theorems 2, 3 and Eq. (9), we have the uniform convergence rate of ĝ(·) at Op(Ln + L1n/h2), which is generally
worse than that of the traditional NW estimator due to the presence of h2 in the second term.

The following theorem gives asymptotic normality of m̂(·) at the typical nonparametric rate, in our case,
√
nhD3

3 .

Theorem 4. Let Dq
j f (x) ≡

∂q

∂
q
j
f (x) and D0

j f (x) ≡ f (x), ∀ q ≥ 1, 1 ≤ j ≤ q. Under A1–A5 and if we assume that

E
(
v2m

⏐⏐W) = σ 2
vm < ∞, E

(
|vm|

2+δ
|W
)

≤ C < ∞ for some δ > 0, |k3(x)||x|2s3+1+a
→ 0 as |x| → ∞ for some a > 0,

and |k(1)3 (x)||x|s3 ≤ C for all x and some C < ∞, we have√
nhD3

3

(
m̂(w) − m(w) − bm(w)

)
d

−→ N
(
0,Φ3 +Φ4

)
,

where

bm(w) = hs3
3
µk3,s3

fW (w)

s3∑
k=0

1
k!(s3 − k)!

D3∑
j=1

Dk
j m(w)Ds3−k

j fW (w) + op(h
s3
3 ),

Φ3 =
σ 2
vm

fW (w)

∫
K 2
3 (γ ) dγ , Φ4 =

m2(w)
fW (w)

∫ (∫
K3(γ1)K3(γ1 + γ2) dγ1

)2

dγ2.

9 See Li (2000) for estimators that satisfy a semiparametric efficiency bound when all regressors are observed, i.e., in the absence of generated
regressors.
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Remarks. 1. Given the order and structure of the bias, it follows immediately from Theorem 4 that m̂(w)−m(w) = op(1).
2. The fact that η, β0, and β have to be estimated is costly asymptotically. In particular, the variance of the limiting

distribution contains the strictly positive term Φ4 added to Φ3. Φ3 can be immediately recognized as the covariance of
the limiting distribution of an ‘‘oracle’’ Nadaraya–Watson estimator constructed under the assumption that η, β0, and β
are known. Hence, m̂(·) is not oracle efficient. It may be possible to eliminate Φ4 by considering a new estimator that
explores a one-step backfitting procedure using ĝ(·), as suggested by Kim et al. (1999) and especially Yu et al. (2011). We
leave this potential improvement for future research.

4. Monte Carlo study

In this section, we provide some experimental evidence on the finite sample behavior of our estimators
(
β̂, m̂

)
and

contrast it to that of some alternative estimation procedures. We consider the following data generating processes (DGPs):

DGP1: Yi = ln(|X1i − 1| + 1) sgn(X1i − 1) + X ′

2iβ + β0 + εi,

DGP2: Yi =
exp(X1i)

1 + 3 exp(X1i)
+ X ′

2iβ + β0 + εi,

for i = 1, . . . , n. The sample size n is set at 100, 200, and 400. In both DGPs, Z1i and Z2i are generated independently from
N(0, 1) and we construct X1i = Z1i + Z2i + U1i and X2i = Z2

1i + Z2
2i + U2i. εi and Ui = (U1i,U2i)′ are generated as(

εi
Ui

)
∼ NID

⎛⎝0,

⎛⎝1 θ θ

θ 1 θ2

θ θ2 1

⎞⎠⎞⎠ ,
where the values θ = 0.3, 0.6, and 0.9 indicate weak, moderate, and strong endogeneity, respectively. It is easy to verify
that E(εi|Zi) = 0, E(Ui|Zi) = 0, and thus E(εi|Ui, Zi) = E(εi|Ui) =

θ

1+θ2
(U1i +U2i). We set the parameters β = 1, β0 = 1, and

perform 1000 repetitions for each experiment design.
The implementation of our estimators requires a choice of kernel function Ki(·) for i = 1, . . . , 4 and bandwidth

sequences. For all kernels, we use products of a univariate Gaussian kernel of appropriate orders, as we discussed in
Assumption A1. For both DPGs we have D1 = D2 = 2, D3 = 1 and D4 = 3. Setting s1 = 5, s2 = 3, s3 = 1, s4 = 4, we
choose bandwidths orders in accordance to A5. For the estimation of densities we choose rule-of-thumb (ROT) bandwidths
as proposed in Simonoff (1996, p. 105) giving hi = ciσ̂ (Mi)n−1/(2si+Di) for i = 2, 3, 4 with c2 = 1, c3 = 1.06, c4 = 0.96
and σ̂ (Mi) the sample standard deviation of the variable Mi, with M2 = Û , M3 = X1, and M4 = (X1, Û). Since D2 = 2
in the first stage regression estimation, we choose two ROT bandwidths that minimize an asymptotic approximation
for the weighted mean integrated squared error of the Nadaraya–Watson estimator (see Ruppert et al., 1995). Using
knowledge of DGPs 1 and 2 and the Gaussian kernel we set h1j = n−δ(2

√
π )−1/5cjn for j = 1, 2, and δ = 1/9, where

c1n = 0.76
(
max
1≤i≤n

{Z1i} − min
1≤i≤n

{Z1i}
)1/5

and c2n = 0.49
(
max
1≤i≤n

{Z1i} − min
1≤i≤n

{Z1i}
)1/5

.

We also implement the series estimators proposed by Newey et al. (1999), which we denote by (β̂SP , m̂SP ). It should
be noted that their estimator was developed for a model where β0 = 0, and the use of a trimming function w(τ ) (in their
notation), prevents the use of our assumption E(ε) = 0. Thus, we adapt their estimation procedure to the DGPs under
consideration and use B-splines throughout the implementation. We use the same number of knots to estimate Π (·),
m(·), and g(·), and follow their constraints on how fast the number of knots diverges to infinity to obtain the convergence
results in their Theorem 5.1. Specifically, given Di for i = 1, . . . , 4 in the DGPs we must select B-splines of order 7 with
s1 > 6. Hence, the smallest degree of differentiability permitted for Π (·) is s1 = 7, more than we need to assume to attain
the uniform rates of convergence for our nonparametric estimator of m(·). The higher degree of smoothness they must
assume provides some benefits, specifically, for the DGPs considered here, the rate of uniform convergence in probability
of our estimator is n−1/3 while theirs is n−5/14. In Table 1 we provide results on bias (B), standard deviation (S), root
mean squared error (R), and median of root squared error (D) for the estimation of β , and the mean of root mean squared
error (M) for estimating m(·) obtained by averaging across the realized values of X1i. We give results for

(
β̂, m̂

)
and for

comparison, we also provide results for the oracle estimators of β by taking m(·) as given using two different methods.
β̂2SLS is derived using the traditional two-stage least square (2SLS) method for linear models, while β̂IV is based on IV
estimation using the nonparametric proxies Π̂2 as in Section 2.2. Lastly, we provide results for the estimators proposed
by Robinson (1988), denoted here by (β̂Rob, m̂Rob), which ignore the endogeneity of Xi.10 To avoid any extreme estimates
or boundary bias in the nonparametric estimation, results on M for estimators of m(·) are only shown by the mean of
10 − 90% quantile range of sample estimates.11

10 We have also compared the performance of β̂ when U is observed to that of the estimator proposed by Manzan and Zerom (2005). For both
DGPs and all sample sizes, β̂ outperforms the estimator in Manzan and Zerom (2005) as measured by root mean squared error (R) and median of
root squared error (D). This superior performance is mainly driven by smaller biases. These simulation results are available from the authors upon
request.
11 Especially for the second DGP since it has a lower bound of zero for the range of the nonparametric component.
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Table 1
Finite sample performance.

θ = 0.3 θ = 0.6 θ = 0.9

B S R D M B S R D M B S R D M

DGP1 n = 100
(β̂, m̂) 0.068 0.058 0.090 0.070 0.290 0.104 0.056 0.118 0.102 0.272 0.120 0.053 0.131 0.122 0.266
(β̂SP , m̂SP ) 0.064 0.088 0.109 0.073 0.541 0.120 0.085 0.147 0.117 0.609 0.166 0.083 0.186 0.166 0.575
(β̂Rob, m̂Rob) 0.075 0.054 0.092 0.071 0.541 0.137 0.054 0.147 0.132 0.567 0.178 0.056 0.186 0.178 0.603
(β̂2SLS ,m) 0.015 0.763 0.763 0.156 0.028 0.496 0.496 0.160 0.056 0.488 0.491 0.174
(β̂IV ,m) 0.036 0.048 0.061 0.041 0.073 0.049 0.088 0.071 0.110 0.049 0.121 0.109

n = 200
(β̂, m̂) 0.054 0.040 0.067 0.055 0.270 0.083 0.038 0.091 0.083 0.251 0.096 0.035 0.103 0.097 0.243
(β̂SP , m̂SP ) 0.035 0.050 0.061 0.041 0.548 0.075 0.051 0.091 0.077 0.559 0.105 0.048 0.115 0.104 0.613
(β̂Rob, m̂Rob) 0.071 0.037 0.080 0.071 0.526 0.132 0.039 0.138 0.133 0.563 0.175 0.038 0.179 0.174 0.600
(β̂2SLS ,m) 0.041 0.546 0.547 0.175 0.039 0.526 0.527 0.164 0.072 0.495 0.500 0.176
(β̂IV ,m) 0.027 0.034 0.043 0.032 0.055 0.034 0.065 0.056 0.085 0.033 0.091 0.084

n = 400
(β̂, m̂) 0.047 0.028 0.054 0.048 0.261 0.066 0.027 0.071 0.065 0.235 0.076 0.024 0.080 0.076 0.230
(β̂SP , m̂SP ) 0.016 0.032 0.036 0.026 0.525 0.030 0.031 0.043 0.033 0.509 0.042 0.029 0.051 0.044 0.511
(β̂Rob, m̂Rob) 0.073 0.026 0.077 0.073 0.527 0.132 0.027 0.135 0.132 0.564 0.174 0.027 0.176 0.173 0.604
(β̂2SLS ,m) 0.029 0.627 0.627 0.159 0.053 0.603 0.605 0.167 0.074 0.944 0.946 0.177
(β̂IV ,m) 0.021 0.024 0.032 0.024 0.041 0.024 0.047 0.041 0.061 0.023 0.065 0.061

DGP2 n = 100
(β̂, m̂) 0.090 0.060 0.108 0.092 0.164 0.128 0.057 0.140 0.126 0.185 0.146 0.053 0.156 0.146 0.222
(β̂SP , m̂SP ) 0.062 0.090 0.109 0.075 0.339 0.122 0.086 0.149 0.120 0.318 0.167 0.084 0.187 0.167 0.332
(β̂Rob, m̂Rob) 0.076 0.053 0.092 0.076 0.254 0.136 0.055 0.147 0.133 0.279 0.175 0.054 0.183 0.176 0.321
(β̂2SLS ,m) 0.024 1.096 1.096 0.162 0.043 0.468 0.470 0.162 0.073 0.412 0.418 0.172
(β̂IV ,m) 0.037 0.048 0.061 0.043 0.073 0.051 0.089 0.070 0.109 0.048 0.119 0.109

n = 200
(β̂, m̂) 0.076 0.041 0.086 0.075 0.143 0.104 0.040 0.111 0.105 0.170 0.123 0.035 0.128 0.123 0.203
(β̂SP , m̂SP ) 0.040 0.052 0.066 0.045 0.342 0.075 0.052 0.092 0.077 0.322 0.104 0.047 0.115 0.103 0.283
(β̂Rob, m̂Rob) 0.074 0.038 0.083 0.072 0.245 0.134 0.038 0.139 0.133 0.277 0.175 0.039 0.179 0.175 0.317
(β̂2SLS ,m) 0.023 0.445 0.445 0.164 0.061 0.705 0.707 0.164 0.052 0.714 0.716 0.160
(β̂IV ,m) 0.029 0.034 0.045 0.030 0.057 0.035 0.066 0.057 0.085 0.033 0.091 0.084

n = 400
(β̂, m̂) 0.062 0.029 0.069 0.062 0.126 0.086 0.027 0.090 0.088 0.152 0.099 0.026 0.103 0.098 0.187
(β̂SP , m̂SP ) 0.017 0.034 0.038 0.027 0.246 0.031 0.031 0.044 0.034 0.297 0.043 0.029 0.052 0.044 0.230
(β̂Rob, m̂Rob) 0.071 0.025 0.076 0.071 0.239 0.132 0.027 0.135 0.131 0.272 0.171 0.028 0.173 0.171 0.320
(β̂2SLS ,m) 0.015 0.546 0.546 0.161 0.063 0.551 0.555 0.168 0.077 0.586 0.591 0.180
(β̂IV ,m) 0.021 0.024 0.032 0.024 0.041 0.024 0.048 0.041 0.061 0.023 0.065 0.061

Note: The mean of root mean squared error (M) is intended to be left blank for
(
β̂2SLS ,m

)
and

(
β̂IV ,m

)
since m is treated as known and will not

be estimated in these cases.

As shown in Table 1, the performances of
(
β̂, m̂

)
, (β̂SP , m̂SP ) and β̂IV improve with the sample size by all of the

aforementioned measures (e.g., for DGP1, when θ = 0.3, root mean squared error of β̂ drops nearly 40% from 0.090
to 0.054 when we increase the sample size from 100 to 400) for both DGPs. The performances of (β̂Rob, m̂Rob) and β̂2SLS
do not generally improve with sample size. For all DGPs, sample sizes and values of θ , our nonparametric estimators of
m outperforms m̂SP and, as expected, m̂Rob. The performance of β̂ relative to that of β̂SP is more nuanced. For DGP1 and
n = 100 it exhibits smaller B, S, R, and D than β̂SP for all θ . For n = 200 these results are reversed for B when θ = 0.3
and 0.6. For n = 400, β̂SP outperforms β̂ for all θ , except for S. For DGP2, the pattern is more or less similar.

We note that β̂ and β̂SP seem to adequately account for the endogeneity problem since, given the same DGP and sample
size, the performance of these estimators regarding bias (B) does not change significantly as the degree of endogeneity (θ )
increases, contrasting with the estimator β̂Rob. In the latter case, as θ increases from 0.3 to 0.9, the bias more than doubles.
The performance of β̂2SLS is the worst among the five estimators, even though it is derived assuming m(·) is known.
This result is not surprising since in 2SLS estimation we specify a linear structure when approximating the endogenous
variables, which in our DGPs it is not. This illustrates the importance of nonparametric estimation when we are not able to
specify the functional forms of interest. β̂IV avoids that potential misspecification and gives the best performance among
all estimators for β in every aspect, exactly as we expected.

To give a more visual description of the distribution of root squared error (RSE) for estimators of β across the simulated
samples, we estimate and plot its density for each linear estimator with n = 100, 200, and 400 for DGP1 in the top, middle,
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Fig. 1. Estimated densities for RSE of estimators of β for DGP1 with n = 100 (top row), n = 200 (middle row), and n = 400 (bottom row); θ = 0.3
(left column), θ = 0.6 (middle column) and θ = 0.9 (right column).

and bottom panels of Fig. 1. The left, middle, and right panels of Fig. 1 correspond to different degrees of endogeneity,
θ = 0.3, 0.6, and 0.9, respectively. Fig. 2 displays the same panels for DGP2. The density estimation is performed using the
gamma kernel density estimator proposed by Chen (2000) to avoid any boundary bias. It is apparent that the estimated
densities for the RSE of estimators β̂IV (dashed–dotted graph) are closest to the vertical axis, most concentrated around
zero, and exhibit thinnest tails to the right across all the panels in both figures. In Fig. 1 the density associated with our
estimator β̂ (solid graph) is closer to the vertical axis and has thinner tails especially when θ = 0.6 or 0.9. In Fig. 2, it is
β̂SP (dotted line) that is closer to the vertical axis with thinner tails. The densities associated with the other estimators
exhibit particularly bad behavior, especially for large θ .

5. Summary and conclusion

In this paper we contribute to the literature on the estimation of partially linear regression models with generated
covariates. We propose easily computable kernel-based estimators for the finite and infinite dimensional parameters of
the model and establish their asymptotic distributions. Two critical steps are needed to establish these results: first, the
choice of the normalizing function L(·) appearing in Section 2.1, and second the repeated use of the results on U-Statistics
obtained in Yao and Martins-Filho (2015). Besides its role in assuring asymptotic normality of the proposed estimators, the
choice of L(·) generates a class of estimators with different variances for their asymptotic distributions. Future research
should be done on selecting optimal (minimal variance) estimators from this class. In fact, further investigation of the
efficiency properties of these estimators may shed light on how to construct oracle efficient estimators for m(·) and
semiparametric efficient estimators for β .

Appendix A

This appendix presents the proofs of the main theorems and the supporting lemmas. For the proofs for the lemmas and
additional details on the proof of the theorems, e.g., analysis of the order of U-Statistics, we refer readers to the Online
Appendix (OA). For a scalar variable x, f ′(x) denotes the derivative of f (x) evaluated at x. For D × 1 vectors γ , β , define



X. Geng, C. Martins-Filho and F. Yao / Journal of Statistical Planning and Inference 208 (2020) 94–118 105

Fig. 2. Estimated densities for RSE of estimators of β for DGP2 with n = 100 (top row), n = 200 (middle row), and n = 400 (bottom row); θ = 0.3
(left column), θ = 0.6 (middle column) and θ = 0.9 (right column).

γ β =
∏D

d=1 γ
βd
d , |β| =

∑D
d=1 βd, Ddf (γ ) =

∂
∂d
f (γ ), D2

dkf (γ ) =
∂2

∂d∂k
f (γ ), Dβ f (γ ) =

∂ |β|

∂
β1
1 ···∂

βD
D

f (γ ). Jf (γ ) and Hf (γ ) denote

the Jacobian and Hessian matrix of f (γ ), respectively. Note that for a scalar function f (γ ), Jf (γ ) is the transpose of the
gradient vector of f (γ ). A × B denotes the Cartesian product of two sets A and B. χA denotes the indicator function for
the set A. P(A) denotes the probability of event A in the probability space (Ω,F , P), E(·) denotes expectation, and V(·)
denotes variance.

Proof of theorems

Proof of Theorem 1. We establish the uniform convergence order of f̂Û (u) by taking a Taylor expansion of the kernel
function up to order four. To obtain the desired order we explore the structure of the NW estimator that underlies the
calculation of Ût − Ut and study the order of a U-statistic of degree two.

By the uniform convergence rate of the Rosenblatt density estimator (see, e.g., Theorem 1.4 of Li and Racine, 2007), we
have supu∈GU

⏐⏐f̂U (u)−fU (u)
⏐⏐ = Op(L2n), supw∈GW

⏐⏐f̂W (w)−fW (w)
⏐⏐ = Op(L3n), and sup{w,u}∈GW×GU

⏐⏐f̂WU (w, u)−fWU (w, u)
⏐⏐ =

Op(L4n). Therefore, to prove the first equation in (12), we only need focus on |f̂Û (u) − f̂U (u)|.
Denote K2ti = K2

(
Ut−Ui
h2

)
, K̂2ti = K2

(
Ût−Ûi
h2

)
, K2t = K2

(
Ut−u
h2

)
, K̂2t = K2

(
Ût−u
h2

)
, and other kernels similarly. Since K2 is

4-times partially continuously differentiable, by Taylor’s Theorem,

f̂Û (u) − f̂U (u) =
1

nhD2
2

n∑
t=1

(
K̂2t − K2t

)
=

1

nhD2
2

n∑
t=1

⎛⎝ 3∑
|β|=1

Hβ

β!
DβK2t +

∑
|β|=4

Hβ

β!
DβK2

(
Ut − u
h2

+ λH
)⎞⎠ ≡

4∑
i=1

Ti,

where H ≡
1
h2
(Ût − Ut ) and λ ∈ (0, 1). Next, we examine the uniform order of Ti over GU for i = 1, . . . , 4 in four steps.
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Step 1: We first rewrite T1 as:

T1 =

D2∑
d=1

( 1

nhD2+1
2

n∑
t=1

(Ûtd − Utd)DdK2t

)
≡

D2∑
d=1

−T1d.

Given Π̂d(Zt ) = (nhD1
1 f̂Z (Zt ))−1∑n

l=1 K1ltXl,d, and f̂Z (Zt ) = (nhD1
1 )−1∑n

l=1 K1lt , we have

−(Ûtd − Utd) = Π̂d(Zt ) −Πd(Zt ) =
1

nhD1
1 fZ (Zt )

n∑
l=1

K1lt

(
Uld +Πd(Zl) −Πd(Zt )

)
+ Op(L21n) (A.1)

by the uniform order of f̂Z (Zt ) − fZ (Zt ) and Ûtd − Utd. Thus, we have

T1d =
1
n2

n∑
t=1

n∑
l=1

1

hD1
1 hD2+1

2 fZ (Zt )
K1ltDdK2tUld +

1
n2

n∑
t=1

n∑
l=1

1

hD1
1 hD2+1

2 fZ (Zt )
K1ltDdK2t

(
Πd(Zl) −Πd(Zt )

)
+ Op(L21n)

1

nhD2+1
2

n∑
t=1

|DdK2t | ≡ T1d1 + T1d2 + Op(L21n/h2),

T1d1 =
1
n2

n∑
t=1

1

hD1
1 hD2+1

2 fZ (Zt )
K1(0)DdK2tUtd +

1
n2

n∑
t=1

n∑
l=1

t ̸=l

1

hD1
1 hD2+1

2 fZ (Zt )
K1ltDdK2tUld ≡ E1n + E2n.

We can show that E1n = Op

(
(nhD1

1 h2)−1
)

uniformly over GU by Lemma 3, and E2n ≤ C |Un| = Op

(
(log n/n)1/2 +

(n2hD1
1 hD2+2

2 )−1/2
)
(see OA 1.1). Together, T1d1 = Op(L1n) uniformly by A5.

The order of T1d2 can be analyzed in the same way, given thatΠ and fZ are s1 times partially continuously differentiable,
and K1 is a multivariate kernel of order s1, we have T1d2 = Op

(
hs1
1 + (log n/n)1/2+ (n2hD1−2

1 hD2+2
2 )−1/2

)
= Op(L1n) uniformly

by A5. In sum, supu∈GU
T1 = Op(L1n).

Step 2: T2 =
∑

|β|=2

(
nhD2

2

)−1∑n
t=1 H

βDβK2t , when 1 appears in the dth and the kth position of β , we have

1

nhD2
2

n∑
t=1

HβDβK2t =
1

2nhD2+2
2

n∑
t=1

(Ûtd − Utd)(Ûtk − Utk)D2
dkK2t .

Since supZ∈GZ

⏐⏐⏐Ûtj − Utj

⏐⏐⏐ = Op(L1n), for j = d, k, we have T2 = Op
(
L21n/h

2
2

) (
nhD2

2

)−1∑n
t=1

⏐⏐D2
dkK2t

⏐⏐ ≡ Op
(
L21n/h

2
2

)
C2(u).

C2(u) = Op(1) as E(|C2(u)|) = O(1) uniformly over GU . Thus, supu∈GU
T2 = Op

(
L21n/h

2
2

)
.

Step 3: Similarly, supu∈GU
T3 = Op

(
L31n/h

3
2

)
.

Step 4: T4 is different from T2 and T3 in that supu∈GU
C4(u) = Op(1/h

D2
2 ), where C4(u) ≡

(
nhD2

2

)−1∑n
t=1

⏐⏐DβK ∗

2t

⏐⏐, for
any |β| = 4, and DβK ∗

2t ≡ DβK2((Ut − u)/h2 + λH). Thus, supu∈GU
T4 = Op

(
L41n
/
hD2+4
2

)
. By A5, it can be shown that

T2, T3, T4 = op(n−1/2), and T1 = Op(L1n) = Op(L2n), which gives us

sup
u∈GU

|f̂Û (u) − fU (u)| = Op(L2n).

The uniform order of
⏐⏐f̂WÛ (w, u) − fWU (w, u)

⏐⏐ can be derived in the similar way under A5, and consequently, here, we
omit the details. □

Proof of Theorem 2. We follow the proof of Theorem 1 using a Taylor expansion of the kernel function up to order
two to establish the uniform convergence rate of a NW estimator (e.g., ĝ2(u)). In addition to taking care of the estimated
covariate Ût appearing in the kernel, we need to deal with an estimated regressand such as η̂tX2t as well.

We start with the jth element of ĝ2(u) − g2(u). Note that

ĝ2j(u) − g2j(u) =
1

nhD2
2 f̂Û (u)

n∑
t=1

K̂2t η̂tX2t,j − g2j(u)

=
1

nhD2
2 f̂Û (u)

n∑
t=1

K̂2t

{
(η̂t − ηt )X2t,j + vg2t,j +

(
g2j(Ut ) − g2j(u)

)}
  

Cg2t
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=

{
1

nhD2
2 fU (u)

n∑
t=1

K2tCg2t +
1

nhD2+1
2 fU (u)

n∑
t=1

JK2t
(
Ût − Ut

)
Cg2t

+
1

nhD2
2 fU (u)

n∑
t=1

RtCg2t

}(
1 + Op(L2n)

)
(A.2)

≡

(
3∑

k=1

Tk

)(
1 + Op(L2n)

)
,

where Rt is the remainder term of a Taylor’s expansion of K̂2t at (Ut − u)/h2, and vg2t,j is the jth element of vg2t . We
complete the proof by showing in three steps that T1 = Op(Ln), T2 = Op (L1n/h2), and T3 = op(n−1/2).

Step 1: Let T1 ≡
∑3

k=1 T1k, corresponding to the three components in Cg2t separately. By Theorem 1 and A2, we have

sup
{Ût ,Ut ,Wt }∈GU×GU×GW

|η̂t − ηt | = ηtOp(L2n + L3n + L4n) ≡ ηtOp(Ln).

Thus T11 = Op(Ln)(nh
D2
2 )−1∑n

t=1 |K2tηtX2t,j| = Op(Ln) uniformly, since by A3 and A4,

E

(
1

nhD2
2

n∑
t=1

⏐⏐K2tηtX2t,j
⏐⏐) =

1

hD2
2

E
(⏐⏐K2t (g2j(Ut ) + vg2t,j)

⏐⏐)
≤

∫
|K2(γ )|(|g2j(u + h2γ )| + C)fU (u + h2γ ) dγ

≤ C |g2j(u)| + C
∫

|K2(γ )|(|g2j(u + h2γ )| − |g2j(u)|) dγ + C

≤ C |g2j(u)| + C h2

∫
|K2(γ )|

D2∑
d=1

|γd| dγ + C

≤ C |g2j(u)| + C, which is bounded uniformly over GU .

By Lemma 3, we have supu∈GU
|T12| = Op

(
(log n/nhD2

2 )1/2
)

= Op(L2n), given E(T12) = 0.

For T13, note that by Taylor’s Theorem, E(T13) = h−D2
2 f −1

U (u)E
(
K2t
(
g2j(Ut ) − g2j(u)

))
= f −1

U (u)
∫
K2(γ )

(
g2j(u + h2γ ) −

g2j(u)
)
fU (u + h2γ ) dγ = O(hs2

2 ) = O(L2n) uniformly over GU , given that K2 is of order s2, g2j, fU ∈ C s2 and all the
partial derivatives of g2j up to order s2 are uniformly bounded by A4. By Lemma 3, we have h−1

2 supu∈GU
|T13 − E(T13)| =

Op
(
(log n/(nhD2

2 ))1/2
)

= Op(L2n). Thus, supu∈GU
|T13| = Op(L2n), and we have T1 = Op(Ln) uniformly.

Step 2: For T2, similar to T11, we have

T2 =
1

nhD2+1
2 fU (u)

n∑
t=1

(
Ût − Ut

)
JK2tCg2t

= Op

( L1n
h2

) D2∑
d=1

1

nhD2
2 fU (u)

n∑
t=1

⏐⏐⏐⏐⏐DdK2t

(
(η̂t − ηt )X2t,j + vg2t,j +

(
g2j(Ut ) − g2j(u)

))⏐⏐⏐⏐⏐
= Op

( L1n
h2

)
.

Step 3: Rt is the remainder term of a Taylor’s expansion of K̂2t at (Ut − u)/h2, thus Rt =
∑3

|β|=2(β!)−1DβK2tHβ

+
∑

|β|=4(β!)−1DβK ∗

2tH
β , where DβK ∗

2t ≡ DβK2((Ut −u)/h2+λH), λ ∈ (0, 1), and H =
(
Ût −Ut

)
/h2. Thus, let T3 ≡

∑3
k=1 T3k,

with

T31 =

D2∑
d=1

D2∑
l=1

1

2nhD2+2
2 fU (u)

n∑
t=1

D2
dlK2t

(
Ûtd − Utd

)(
Ûtl − Utl

)
Cg2t

= Op

(
L21n
h2
2

) D2∑
d=1

D2∑
l=1

1

nhD2
2

n∑
t=1

⏐⏐D2
dlK2tCg2t

⏐⏐ = Op

(
L21n
h2
2

)
,

by A3. Similarly, T32 = Op
(
L31n/h

3
2

)
. By A1, T33 = Op

(
L41n/h

D2+4
2

) 1
n

∑n
t=1

⏐⏐Cg2t
⏐⏐ = Op

(
L41n/h

D2+4
2

)
. By A5, we can show that

T3 = Op
(
L21n/h

2
2 + L31n/h

3
2 + L41n/h

D2+4
2

)
= op(n−1/2) uniformly.
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Combining Steps 1 to 3, we have supu∈GU
|ĝ2(u) − g2(u)| = Op

(
Ln +

L1n
h2

)
. For m̂2j(w) − m2j(w), note that

m̂2j(w) − m2j(w) =
1

nhD3
3 f̂W (w)

n∑
t=1

K3t η̂tX2t,j − m2j(w)

=

{
1

nhD3
3 fW (w)

n∑
t=1

K3t

{
(η̂t − ηt )X2t,j + vm2t,j +

(
m2j(Wt ) − m2j(w)

)}
  

Cm2t

}(
1 + Op(L3n)

)
= Op(Ln), (A.3)

where the order can be found similarly to T1 in part 1. The uniform orders of ĝ1(u), m̂1(w), ĝ3(u), and m̂3(w) can be found
similarly by replacing η̂tX2t,j with η̂tYt or η̂t , respectively. Thus, the details of these proofs are not provided here. □

Proof of Theorem 3. The proof for the asymptotic normality of β̂ when suitably centered and standardized follows the
typical steps once we account for the difficulties encountered in the proofs of Theorems 1 and 2. Using estimated residuals
instead of the unknown errors leads to an additional term Φ2 in the variance of the asymptotic distribution of β̂ as will
be shown in Steps 4 and 5.

Denote the vector matrix format in bold face, e.g., m ≡
(
m(W1), . . . ,m(Wn)

)′. Note that m = m1 − m2β − β0 and
g = g1 − g2β − β0. Denote V Y ≡

∑
k={m,g,µ}

V k1 and V X ≡
∑

k={m,g,µ}
V k2, where Vm1 ≡ m̂1 − m1, V g1 ≡ ĝ1 − g1,

Vµ1 ≡ −(µ̂1 − µ1), Vm2 ≡ m̂2 − m2, V g2 ≡ ĝ2 − g2, and Vµ2 ≡ −(µ̂2 − µ2). Thus, since Ŷ = Y ∗
− V Y , X̂2 = X∗

2 − V X ,
and Ŷ − X̂2β = v −

∑
k={m,g,µ}

(V k1 − V k2β), we have

β̂ − β =
(1
n
X̂

′

2η̂X̂2
)−1 1

n
X̂

′

2η̂
(
Ŷ − X̂2β

)
,

where
1
n
X̂

′

2η̂X̂2 =
1
n
X∗′

2 η̂X∗

2 −
1
n
X∗′

2 η̂V X −
1
n
V ′

X η̂X
∗

2 +
1
n
V ′

X η̂V X ≡

4∑
k=1

Ak,

1
n
X̂

′

2η̂(Ŷ − X̂2β) =
1
n
X̂

′

2η̂v −
1
n
X̂

′

2η̂(Vm1 − Vm2β) −
1
n
X̂

′

2η̂(V g1 − V g2β) −
1
n
X̂

′

2η̂(Vµ1 − Vµ2β) ≡

4∑
k=1

Bk.

The proof has five steps:

(1) We show that A1
p

−→ Φ0 and A2, A3, A4 = op(1).
(2) We show that

√
nB1

d
−→ N (0,Φ1).

(3) We show that B2, B4 = op(n−1/2).
(4) We show that B3 =

1
n

∑n
i=1 ani + op(n−1/2), where ani ≡ −

∑D2
d=1(h

D1
1 hD2

2 )−1UidE
(
ηlX∗

2lDdK2tlK1il
fU (Ul)fZ (Zl)

Jg(Ul)
(Ut−Ul

h2

)⏐⏐Zi).
(5) Combining (1)–(4), we show that

√
n(β̂ − β)

d
−→ N

(
0,Φ−1

0 (Φ1 +Φ2)Φ−1
0

)
.

Step 1: By uniform order of |η̂i − ηi|, Kolmogorov’s LLN and A3, we have

A1 =
1
n

n∑
i=1

η̂iX∗

2iX
∗′

2i =
1
n

n∑
i=1

ηiX∗

2iX
∗′

2i + Op(Ln)
1
n

n∑
i=1

|X∗

2iX
∗′

2i |
p

−→ Φ0,

where Φ0(j,k) ≡ E(ηtX∗

2t,jX
∗

2t,k) = E
{
ηt (X2t,j − m2j(Wt ) − g2j(Ut ) + µ2j)(X2t,k − m2k(Wt ) − g2k(Ut ) + µ2k)

}
< ∞,

since {ηiX∗

2iX
∗′

2i }
n
i=1 is an IID sequence, and E|ηiX∗

2i,kX
∗

2i,j| < ∞ due to (i) ηi is uniformly bounded; (ii) E|X2i,jX2i,k| ≤(
E(X2

2i,j)E(X
2
2i,k)

)1/2
< ∞ by Cauchy–Schwarz Inequality; (iii) E|X2i,jm2k(Wi)| ≤

(
E(X2

2i,j)E(m
2
2k(Wi))

)1/2; (iv) E(m2
2k(Wi)) =

E
(
E(ηiX2i,k|Wi)2

)
≤ E

(
E(η2i X

2
2i,k|Wi)

)
= E(η2i X

2
2i,k) < ∞. By the non-singularity of Φ0 we have A−1

1
p

→ Φ−1
0 . And for

−A2 =
1
n

∑n
i=1 η̂iX

∗

2iV
′

Xi, the (k, j)th element is −A2(k,j) =
1
n

∑n
i=1 η̂iX

∗

2i,kVXi,j ≤ Op(Ln + L1n/h2) 1n
∑n

i=1 |X∗

2i,k| = op(1) by

Theorem 2. Similarly we have A3, A4 = op(1). Thus,
(

1
n X̂

′

2η̂X̂2

)−1 p
−→ Φ−1

0 .

Step 2: We rewrite B1 into four elements:

B1 =
1
n

n∑
i=1

X̂2iη̂ivi =
1
n

n∑
i=1

X∗

2iηivi −
1
n

n∑
i=1

VXi(η̂i − ηi)vi +
1
n

n∑
i=1

X∗

2i(η̂i − ηi)vi −
1
n

n∑
i=1

VXiηivi ≡

4∑
k=1

B1k,

and show that
√
nB1

d
−→ N (0,Φ1) by establishing that

√
nB11

d
−→ N (0,Φ1), and B12, B13, B14 = op(n−1/2).
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First, by Levy’s Central Limit Theorem and the Cramer–Wold device, we have
√
nB11

d
−→ N (0,Φ1), since (i) {X∗

2iηivi}
n
i=1

is IID; (ii) E(X∗

2iηivi) = 0; (iii) E(v2i |Zi,Ui) = σ 2
v ; (iv) V(X∗

2iηivi) = E(X∗

2iη
2
i v

2
i X

∗′

2i ) = σ 2
v E(η

2
i X

∗

2iX
∗′

2i ) ≡ Φ1 < ∞, where
Φ1(j,k) = σ 2

v E(η2t X
∗

2t,jX
∗

2t,k) = σ 2
v E
{
η2t (X2t,j − m2j(Wt ) − g2j(Ut ) + µ2j)(X2t,k − m2k(Wt ) − g2k(Ut ) + µ2k)

}
< ∞.

Second, given that |VXi|, |η̂i − ηi| = Op(Ln + L1n/h2), we have B12 = Op(L2n + L21n/h
2
2)

1
n

∑n
i=1 |vi| = op(n−1/2).

Third, the jth element of B13 is 1
n

∑n
i=1 G(Mi)(η̂i(Wi, Ûi) − ηi(Wi,Ui)), where G(Mi) ≡ X∗

2i,jvi and Mi ≡ (Xi, Zi,Ui, εi).
Note that since E(vi|Xi, Zi,Ui) = 0, E(G(Mi)|Xi, Zi,Ui) = 0. In addition, E(G2(Mi)) = E(X∗2

2i,jv
2
i ) < ∞ by A3. By A4, G(Mi) is

continuous, hence using Lemma 4, B13 = op(n−1/2).
Fourth, for B14, the jth element can be written as

−B14,j =
1
n

n∑
i=1

VXi,jηivi =
1
n

n∑
i=1

Vm2i,jηivi +
1
n

n∑
i=1

Vg2i,jηivi +
1
n

n∑
i=1

Vµ2i,jηivi ≡

3∑
k=1

B14k.

We show that B14k = op(n−1/2) for k = 1, 2, 3.
Note that B143 = −

1
n

∑n
i=1

(
µ̂2j − µ2j

)
ηivi = −

(
µ̂2j − µ2j

) 1
n

∑n
i=1 ηivi = Op(Ln)Op(n−1/2) = op(n−1/2).

For B141, given that
(
nhD3

3 fW (Wi)
)−1∑n

t=1 K3tiCm2ti = Op(Ln), and by the decomposition of m̂2j(Wi) − m2j(Wi) in (A.3)
from the proof of Theorem 2, we have

B141 =
1
n2

n∑
i=1

n∑
t=1

ηiviK3ti

hD3
3 fW (Wi)

Cm2ti,j +
1
n

n∑
i=1

⏐⏐ηivi⏐⏐Op(Ln)Op(L3n) ≡

3∑
k=1

B141k + op(n−1/2),

where B1411 =
1
n2

n∑
i=1

n∑
t=1

ηiviK3ti

hD3
3 fW (Wi)

(η̂t − ηt )X2t,j, B1412 =
1
n2

n∑
i=1

n∑
t=1

ηiviK3ti

hD3
3 fW (Wi)

vm2t,j,

B1413 =
1
n2

n∑
i=1

n∑
t=1

ηiviK3ti

hD3
3 fW (Wi)

(
m2j(Wt ) − m2j(Wi)

)
.

We have B141 = op(n−1/2) by showing B141k = op(n−1/2) for k = 1, 2, 3.

1.1. Let Qt ≡
1
n

∑n
i=1

(
hD3
3 fW (Wi)

)−1
ηiviK3ti. So B1411 =

1
n

∑n
t=1(η̂t − ηt )X2t,jQt . By Lemma 3, we can show that

Qt = Op(L3n) uniformly over GW , given A3 and E(Qt ) = 0. Given η̂t − ηt = ηtOp(Ln) uniformly, we have
B1411 = Op(Ln)Op(L3n) 1n

∑n
t=1 |ηtX2t,j| = op(n−1/2) by A5.

1.2. Let B1412 ≡
1
n2
∑n

i=1
∑n

t=1 ψnit ≡ E1n + E2n, where ψnit ≡
(
hD3
3 fW (Wi)

)−1
ηiviK3tivm2t,j. Thus, E1n =

1
n2
∑n

i=1 ψnii =

op(n−1/2) by Chebyshev’s Inequality, since E(E1n) = 0, V(E1n) =
1
n3
E(ψ2

nii) = O
(
n−3h−D3

3

)
= o(n−1). And |E2n| ≤ C |Un|,

where Un is a U-statistic of degree 2 such that Un =
(n
2

)
−1∑n

i=1
∑n

t=1
i<t

φnit with φnit ≡ ψnit + ψnti. Un is op(n−1/2) as

shown in OA 3.1. Thus, B1412 = op(n−1/2).
1.3. Given B1413 =

1
n2
∑n

i=1
∑n

t=1
i̸=t

ψnit , where ψnit = h−D3
3 f −1

W (Wi)ηiviK3ti
(
m2j(Wt ) − m2j(Wi)

)
, we have |B1413| ≤ C |Un| =

op(n−1/2) as shown in OA 3.2. Thus, we have B1413 = op(n−1/2).

For B142, as in the proof of Theorem 2, Vg2i,j = ĝ2j(Ûi) − g2j(Ui) ≡
(∑3

k=1 Tk
)
(1 + Op(L2n)), where T1 = Op(Ln),

T2 = Op (L1n/h2), and T3 = op(n−1/2). Thus, by the decomposition of Vg2i,j in (A.2), we have

B142 =
1
n

n∑
i=1

Vg2i,jηivi =

3∑
k=1

B142k +
1
n

n∑
i=1

|ηivi|

((
op(n−

1
2 ) + Op(Ln) + Op(L1n/h2)

)
Op(L2n)

)
≡

3∑
k=1

B142k + op(n−1/2) by A5,

where B1421 =
1
n2

n∑
i=1

n∑
t=1

ηivi

hD2
2 fU (Ui)

K2tiCg2ti, B1422 = −
1
n2

n∑
i=1

n∑
t=1

ηivi

hD2+1
2 fU (Ui)

JK2ti(Ûi − Ui)Cg2ti,

B1423 =
1
n2

n∑
i=1

n∑
t=1

ηivi

hD2+1
2 fU (Ui)

JK2ti(Ût − Ut )Cg2ti, Cg2ti = (η̂t − ηt )X2t,j + vg2t,j +
(
g2j(Ut ) − g2j(Ui)

)
.

Similar to B141 we just analyzed, we have B1421 = op(n−1/2), with Ui replacing Wi. B1422 and B1423 are similar in structure,
so here we only show that B1422 = op(n−1/2). Given the three components in Cg2ti, let B1422 =

∑3
k=1 B1422k.

We show that B1422k = op(n−1/2) for k = 1, 2, 3.
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2.1.

B14221 = −
1
n2

n∑
i=1

n∑
t=1

ηivi

hD2+1
2 fU (Ui)

JK2ti(Ûi − Ui)(η̂t − ηt )X2t,j

≤ Op(Ln)Op

(
L1n
h2

)
1
n2

n∑
i=1

n∑
t=1

D2∑
d=1

⏐⏐ηiviηtX2t,jDdK2ti
⏐⏐

hD2
2 fU (Ui)

= Op(Ln)Op

(
L1n
h2

)
= op(n−1/2), by A5.

2.2. By (A.1) in the proof of Theorem 1, we have

B14222 = −

D2∑
d=1

1
n2

n∑
i=1

n∑
t=1

ηivivg2t,jDdK2ti

hD2+1
2 fU (Ui)

(Ûid − Uid)

=

D2∑
d=1

{
1
n3

n∑
i=1

n∑
t=1

n∑
l=1

ηivivg2t,jDdK2tiK1li

hD1
1 hD2+1

2 fU (Ui)fZ (Zi)

(
Uld +

(
Πd(Zl) −Πd(Zi)

))
+Op(L21n)

1
n2

n∑
i=1

n∑
t=1

⏐⏐⏐⏐⏐ηivivg2t,jDdK2ti

hD2+1
2 fU (Ui)

⏐⏐⏐⏐⏐
}

≡

D2∑
d=1

(T1d + T2d) + op(n−1/2).

where the last equality follows by Markov’s Inequality and Op(L21n/h2) = op(n−1/2) by A5. We have B14222 = op(n−1/2)
by showing that T1d and T2d are op(n−1/2) in OA 3.3.

2.3. Similar to part 2.2, we have

B14223 = −

D2∑
d=1

1
n2

n∑
i=1

n∑
t=1

ηiviDdK2ti
(
g2j(Ut ) − g2j(Ui)

)
hD2+1
2 fU (Ui)

(Ûid − Uid)

=

D2∑
d=1

{
1
n3

n∑
i=1

n∑
t=1

n∑
l=1

ηiviDdK2tiK1li
(
g2j(Ut ) − g2j(Ui)

)
hD1
1 hD2+1

2 fU (Ui)fZ (Zi)

(
Uld +

(
Πd(Zl) −Πd(Zi)

))
+Op(L21n)

1
n2

n∑
i=1

n∑
t=1

⏐⏐⏐⏐⏐ηiviDdK2ti
(
g2j(Ut ) − g2j(Ui)

)
hD2+1
2 fU (Ui)

⏐⏐⏐⏐⏐
}

≡

D2∑
d=1

(T1d + T2d) + op(n−1/2).

We have B14223 = op(n−1/2) by showing that T1d and T2d are op(n−1/2) in OA 3.4. In sum, we have B142 = op(n−1/2).

Combining all the terms in Step 2, we have B1 = B11 + op(n−1/2), where
√
nB11

d
→ N (0,Φ1). Thus,

√
nB1

d
→ N (0,Φ1).

Step 3: We first show that B4 = op(n−1/2). Note that

−B4 =
1
n
X̂

′

2η̂(Vµ1 − Vµ2β) =
1
n
X̂

′

2ηVµ1 −
1
n
X̂

′

2ηVµ2β +
1
n
X̂

′

2(η̂ − η)(Vµ1 − Vµ2β) ≡

3∑
k=1

B4k.

By Theorems 1 and 2, we have |η̂i − ηi|, Vµ2i, Vµ1i = Op(Ln). Given that Vµ1i is the same across i, we have B41 =

Vµ1i
( 1
n

∑n
i=1 X

∗

2iηi −
1
n

∑n
i=1 VXiηi

)
= Op(Ln)

(
Op(n−1/2) + Op(Ln)

)
= op(n−1/2) by A5. B42 = op(n−1/2) follows similarly,

and B43 = Op(L2n) = op(n−1/2) by A5.
Then, we show B2 = op(n−1/2). Note

−B2 =
1
n
X̂

′

2ηVm1 −
1
n
X̂

′

2ηVm2β +
1
n
X̂

′

2(η̂ − η)(Vm1 − Vm2β) ≡

3∑
k=1

B2k.

B23 = Op(L2n) = op(n−1/2) by A5. B22 is of the same structure as B21, thus we only show that B21 = op(n−1/2).
Note that B21 =

1
n

∑n
i=1 X

∗

2iηiVm1i −
1
n

∑n
i=1 VXiηiVm1i ≡ B′

21 + op(n−1/2) by Theorem 2. By the decomposition of Vm1i,
similar to Vm2i given in (A.3) from the proof of Theorem 2, we have the jth element of B′

21 as

B′

21 =
1
n2

n∑
i=1

n∑
t=1

ηiX∗

2i,jK3ti

hD3
3 fW (Wi)

Cm1ti + Op(L3n)Op(Ln)
1
n

n∑
i=1

⏐⏐ηiX∗

2i,j

⏐⏐ ≡

3∑
k=1

B21k + op(n−
1
2 ),
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where B211 =
1
n2

n∑
i=1

n∑
t=1

ηiX∗

2i,jK3ti

hD3
3 fW (Wi)

(η̂t − ηt )Yt , B212 =
1
n2

n∑
i=1

n∑
t=1

ηiX∗

2i,jK3ti

hD3
3 fW (Wi)

vm1t ,

B213 =
1
n2

n∑
i=1

n∑
t=1

ηiX∗

2i,jK3ti

hD3
3 fW (Wi)

(
m1(Wt ) − m1(Wi)

)
.

We show that B21k = op(n−1/2) for k = 1, 2, 3.

3.1. Let Qt ≡
1
n

∑n
i=1

(
hD3
3 fW (Wi)

)−1
ηiX∗

2i,jK3ti. So B211 =
1
n

∑n
t=1(η̂t − ηt )YtQt . By Lemma 3, we can show that

Qt = Op(L3n) uniformly over GW , given A3 and E(Qt ) = 0. Given η̂t − ηt = ηtOp(Ln) uniformly, we have
B211 = Op(Ln)Op(L3n) 1n

∑n
t=1 |ηtYt | = op(n−1/2) by A5.

3.2. B212 =
1
n2
∑n

i=1
∑n

t=1 h
−D3
3 f −1

W (Wi)ηiX∗

2i,jK3tivm1t ≡
1
n2
∑n

i=1
∑n

t=1 ψnit ≡ E1n + E2n, where E1n =
1
n2
∑n

i=1 ψnii =

1
n2
∑n

i=1 h
−D3
3 f −1

W (Wi)ηiX∗

2i,jK3(0)vm1i = Op
(
(nhD3

3 )−1
)

= op(n−1/2), and |E2n| ≤ C |Un| = op(n−1/2) as shown in OA 3.5
with Un =

(n
2

)
−1∑n

i=1
∑n

t=1
i̸=t

ψnit . We have B212 = op(n−1/2).

3.3. |B213| ≤ C |Un| = op(n−1/2) as shown in OA 3.6, where Un =
(n
2

)
−1∑n

i=1
∑n

t=1
i̸=t

ψnit with

ψnit ≡ h−D3
3 f −1

W (Wi)ηiX∗

2i,jK3ti
(
m1(Wt ) − m1(Wi)

)
.

By 3.1–3.3, we have B21 = op(n−1/2).

Step 4: For B3, we have −B3 =
1
n X̂

′

2η(V g1 − V g2β) + op(n−1/2) ≡ B31 + B32 + op(n−1/2). We will focus on B31 here, since
B32 has a similar structure to B31 and could be analyzed accordingly. By Theorem 2, we have B31 =

1
n

∑n
i=1 X

∗

2iηiVg1i −
1
n

∑n
i=1 VXiηiVg1i ≡ B′

31 + op(n−1/2). Similar to (A.2) given in the proof of Theorem 2, by Taylor’s Theorem, we have

Vg1i = ĝ1(Ûi) − g1(Ui) =

{
1

nhD2
2 fU (Ui)

n∑
t=1

K2tiCg1ti +
1

nhD2+1
2 fU (Ui)

n∑
t=1

JK2ti

(
Ût − Ut −

(
Ûi − Ui

))
Cg1ti

+
1

nhD2
2 fU (Ui)

n∑
t=1

RtiCg1ti

}(
1 + Op(L2n)

)
,

where Cg1ti ≡ (η̂t − ηt )Yt + vg1t +
(
g1(Ut ) − g1(Ui)

)
, and Rti is the remainder term of a Taylor’s expansion of K̂2ti at

(Ut − Ui)/h2.
Similar to the T3 term in the proof of Theorem 2, we have (nhD2

2 fU (Ui))−1∑n
t=1 RtiCg1ti = op(n−1/2) uniformly. Thus, we

have the jth element of B′

31 as

B′

31,j =
1
n

n∑
i=1

X∗

2i,jηiVg1i =

3∑
k=1

B31k +
1
n

n∑
i=1

|ηiX∗

2i,j|

((
op(n−

1
2 ) + Op(Ln) + Op(L1n/h2)

)
Op(L2n)

)
≡

3∑
k=1

B31k + op(n−1/2) by A5,

where B311 =
1
n2

n∑
i=1

n∑
t=1

ηiX∗

2i,j

hD2
2 fU (Ui)

K2tiCg1ti, B312 = −
1
n2

n∑
i=1

n∑
t=1

ηiX∗

2i,j

hD2+1
2 fU (Ui)

JK2ti
(
Ûi − Ui

)
Cg1ti,

B313 =
1
n2

n∑
i=1

n∑
t=1

ηiX∗

2i,j

hD2+1
2 fU (Ui)

JK2ti
(
Ût − Ut

)
Cg1ti.

We show that B311, B313 = op(n−1/2) and B312 =
1
n

∑n
i=1 a1ni,j + op(n−1/2), where

a1ni,j =

D2∑
d=1

Uid

hD1
1 hD2

2

E

(
ηlX∗

2l,jDdK2tlK1il

fU (Ul)fZ (Zl)
Jg1(Ul)

(Ut − Ul

h2

)⏐⏐⏐⏐⏐Zi
)
.

B311 is of similar structure as B141 with Ui replacing Wi, ηiX∗

2i,j replacing ηivi, Cg1ti replacing Cm2ti,j, and E(ηiX∗

2i,j|Ui) = 0
replacing E(ηivi|Wi) = 0. By the same arguments in 1.1 − 1.3, we have B311 = op(n−1/2). Given the three components in
Cg1ti, let −B312 ≡

∑3
k=1 B312k, with

B3121 =
1
n2

n∑
i=1

n∑
t=1

ηiX∗

2i,j

hD2+1
2 fU (Ui)

JK2ti
(
Ûi − Ui

)
(η̂t − ηt )Yt , B3122 =

1
n2

n∑
i=1

n∑
t=1

ηiX∗

2i,j

hD2+1
2 fU (Ui)

JK2ti
(
Ûi − Ui

)
vg1t ,
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B3123 =
1
n2

n∑
i=1

n∑
t=1

ηiX∗

2i,j

hD2+1
2 fU (Ui)

JK2ti
(
Ûi − Ui

)(
g1(Ut ) − g1(Ui)

)
.

We show that B3121, B3122 = op(n−1/2), and B3123 =
1
n

∑n
i=1 a1ni,j + op(n−1/2).

4.1. Given η̂t − ηt = Op(Ln) and Ûi − Ui = Op(L1n) uniformly, by Markov’s Inequality and A5, we have

B3121 = Op(Ln)Op

(
L1n
h2

)
1
n2

n∑
i=1

n∑
t=1

D2∑
d=1

⏐⏐ηiX∗

2i,jηtYtDdK2ti
⏐⏐

hD2
2 fU (Ui)

= op(n−1/2).

4.2. By (A.1) in the proof of Theorem 2, we have

B3122 =

D2∑
d=1

1
n2

n∑
i=1

n∑
t=1

ηiX∗

2i,jvg1tDdK2ti

hD2+1
2 fU (Ui)

(Ûid − Uid)

= −

D2∑
d=1

{
1
n3

n∑
i=1

n∑
t=1

n∑
l=1

ηiX∗

2i,jvg1tDdK2tiK1li

hD1
1 hD2+1

2 fU (Ui)fZ (Zi)

(
Uld +

(
Πd(Zl) −Πd(Zi)

))
+ Op(L21n)

1
n2

n∑
i=1

n∑
t=1

⏐⏐⏐⏐⏐ηiX∗

2i,jvg1tDdK2ti

hD2+1
2 fU (Ui)

⏐⏐⏐⏐⏐
}

≡ −

D2∑
d=1

(T1d + T2d) + op(n−1/2).

We have B3122 = op(n−1/2) by showing that T1d and T2d are op(n−1/2) in OA 3.7.
4.3.

B3123 =

D2∑
d=1

1
n2

n∑
i=1

n∑
t=1

ηiX∗

2i,j

(
g1(Ut ) − g1(Ui)

)
DdK2ti

hD2+1
2 fU (Ui)

(Ûid − Uid)

= −

D2∑
d=1

{
1
n3

n∑
i=1

n∑
t=1

n∑
l=1

ηiX∗

2i,j

(
g1(Ut ) − g1(Ui)

)
DdK2tiK1li

hD1
1 hD2+1

2 fU (Ui)fZ (Zi)

(
Uld +

(
Πd(Zl) −Πd(Zi)

))
+ Op(L21n)

1
n2

n∑
i=1

n∑
t=1

⏐⏐⏐⏐⏐ηiX∗

2i,j

(
g1(Ut ) − g1(Ui)

)
DdK2ti

hD2+1
2 fU (Ui)

⏐⏐⏐⏐⏐
}

≡ −

D2∑
d=1

(W1d + W2d) + op(n−1/2).

We show that
∑D2

d=1 W1d =
1
n

∑n
i=1 a1ni,j + op(n−1/2) and W2d = op(n−1/2) in OA 3.8 and OA 3.9 respectively, where

W1d =
1
n3

n∑
i=1

n∑
t=1

n∑
l=1

ηiX∗

2i,j

(
g1(Ut ) − g1(Ui)

)
DdK2tiK1li

hD1
1 hD2+1

2 fU (Ui)fZ (Zi)
Uld,

W2d =
1
n3

n∑
i=1

n∑
t=1

n∑
l=1

ηiX∗

2i,jDdK2tiK1li

hD1
1 hD2+1

2 fU (Ui)fZ (Zi)

(
g1(Ut ) − g1(Ui)

)(
Πd(Zl) −Πd(Zi)

)
.

By 4.1–4.3, we have B312 =
1
n

∑n
i=1 a1ni,j + op(n−1/2). For B313, the analysis is exactly similar to B312, but note that for the

term having order Op(n−1/2) in B3123, the corresponding term in B3133, denoted as W ′

1d, is

W ′

1d =
1
n3

n∑
i=1

n∑
t=1

n∑
l=1

ηiX∗

2i,j

(
g1(Ut ) − g1(Ui)

)
DdK2tiK1lt

hD1
1 hD2+1

2 fU (Ui)fZ (Zt )
Uld.

The difference here is we have Zt instead of Zi, such that E(ψnitl|Pl) = 0 in that E(ηiX∗

2i,j|Ui) = 0. Thus, by the same
arguments for the rest of terms, we have B313 = op(n−1/2).

As to B32, the analysis is similar to B31 given above. For the component with order Op(n−1/2), we can actually combine
that in B31 and the one in B32 together to have a more intuitive result. Note that

Vg1i − Vg2iβ =

{
1

nhD2
2 fU (Ui)

n∑
t=1

K̂2ti

[
(η̂ − ηt )(Yt − X2tβ) + (vg1t − vg2tβ)

+

((
g1(Ut ) − g1(Ui)

)
−
(
g2(Ut ) − g2(Ui)

)
β

)]}(
1 + Op(L2n)

)
,
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and the component of order Op(n−1/2) involves the third term in brackets, which is
(
g1(Ut ) − g2(Ut )β − β0

)
−
(
g1(Ui) −

g2(Ui)β − β0
)

= g(Ut ) − g(Ui). Thus using
(
g(Ut ) − g(Ui)

)
instead of

(
g1(Ut ) − g1(Ui)

)
in W1d, we have

B3 = −
1
n

n∑
i=1

ani + op(n−1/2),

where ani =

D2∑
d=1

Uid

hD1
1 hD2

2

E

(
ηlX∗

2lDdK2tlK1il

fU (Ul)fZ (Zl)
Jg(Ul)

(Ut − Ul

h2

)⏐⏐⏐⏐⏐Zi
)
.

Step 5: Combining orders of B1, B2, B3, B4, we have 1
n X̂

′

2η̂(Ŷ − X̂2β) = B11 −
1
n

∑n
i=1 ani + op(n−1/2). Next we investigate

√
n(B11 −

1
n

∑n
i=1 ani).

Let λ ∈ RD2 be a non-stochastic vector such that λ′λ = 1. Denote B11+
1
n

∑n
i=1 ani =

1
n

∑n
i=1(X

∗

2iηivi+ani) ≡
1
n

∑n
i=1 bni,

and we have E(λ′bni) = 0 as E(X∗

2iηivi), E(ani) = 0, and E(λ′bnib′

niλ) = λ′E(X∗

2iη
2
i v

2
i X

∗′

2i )λ+λ′E(ania′

ni)λ = λ′Φ1λ+λ′E(ania′

ni)λ.
Denote X2i,j = Π2j(Zi) + U2i,j, the jth element of ani can be written as

ani,j =

D2∑
d=1

Uid

hD1
1 hD2

2

E

(
ηlX∗

2l,jDdK2tlK1il

fU (Ul)fZ (Zl)
Jg(Ul)

(Ut − Ul

h2

)⏐⏐⏐⏐⏐Zi
)

=

∫
1

hD1
1 hD2

2

(
Π2j(Zl) + U2l,j − m2j(Wl) − g2j(Ul) + µ2j

) D2∑
d=1

UidDdK2tlK1ilJg(Ul)
(
Ut − Ul

h2

)

×
η(Wl,Ul)
fU (Ul)fZ (Zl)

fU (Ut )fZUW (Zl,Ul,Wl) dUt dZl dUl dWl

=

∫ (
Π2j(Zi − h1γ ) + U2t,j − h2ψ2j − m2j(Wl) − g2j(Ut − h2ψ) + µ2j

) D2∑
d=1

UidDdK2(ψ)K1(γ )

× Jg(Ut − h2ψ)ψ
η(Wl,Ut − h2ψ)

fU (Ut − h2ψ)fZ (Zi − h1γ )
fU (Ut )fZUW (Zi − h1γ ,Ut − h2ψ,Wl) dγ dψ dUt dWl

→

∫ (
Π2j(Zi) + U2t,j − m2j(Wl) − g2j(Ut ) + µ2j

) D2∑
d=1

Uid (−Ddg(Ut )) η(Wl,Ut )fUW |Z (Ut ,Wl|Zi) dUi dWi

= −

D2∑
d=1

E

((
Π2j(Zi) + U2t,j − m2j(Wt ) − g2j(Ut ) + µ2j

)
Ddg(Ut )ηt

⏐⏐⏐Zi)Uid

= −

D2∑
d=1

E

((
Π2j(Zi) −Π2j(Zt )

)
Ddg(Ut )ηt

⏐⏐⏐Zi)Uid.

The convergence follows by A3, and that
∫
DdK2(ψ)ψdψ = (0, . . . ,−1, . . . , 0)′, where −1 appears on the dth position of

the vector. The last equation follows by E(ηtX∗

2t |Ut ) = 0. Hence, the (j, k)th element of E(ania′

ni) converges to

Φ2(j,k) ≡ E

[ D2∑
d=1

D2∑
δ=1

E

((
Π2j(Zi) −Π2j(Zt )

)
Ddg(Ut )ηt

⏐⏐⏐Zi) E

((
Π2k(Zi) −Π2k(Zt )

)
Dδg(Ut )ηt

⏐⏐⏐Zi)UidUiδ

]
.

By Lyapunov’s Central Limit Theorem, we have
√
n
(
B11 −

1
n

∑n
i=1 ani

) d
−→ N (0,Φ1 + Φ2), provided

limn→∞

∑n
i=1 E

⏐⏐n−1/2λ′ani
⏐⏐2+δ = 0 for some δ > 0. Note that by Cr Inequality,

n∑
i=1

E
⏐⏐n−1/2λ′ani

⏐⏐2+δ = n−δ/2 1
n

n∑
i=1

E

⏐⏐⏐⏐⏐⏐
D22∑
j=1

λjani,j

⏐⏐⏐⏐⏐⏐
2+δ

≤ n−δ/2D1+δ
22

D22∑
j=1

λ2+δj E|ani,j|2+δ,

where E|ani,j|2+δ →

∫ ⏐⏐⏐⏐⏐
D2∑
d=1

E
((
Π2j(Zi) + U2t,j − m2j(Wt ) − g2j(Ut ) + µ2j

)
Ddg(Ut )ηt

⏐⏐⏐Zi)
⏐⏐⏐⏐⏐
2+δ

× |Uid|
2+δ fZU (Zi,Ui) dZi dUi
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≤ C
D2∑
d=1

∫ ⏐⏐⏐E((Π2j(Zi) + U2t,j − m2j(Wt ) − g2j(Ut ) + µ2j
)⏐⏐⏐Zi)⏐⏐⏐2+δ |Uid|

2+δ fZU (Zi,Ui) dZi dUi

< ∞ since E
(
|Uid|

2+δ
|Zi
)
< C < ∞ and E|X2i,j|

2+δ < ∞.

Thus limn→∞

∑n
i=1 E

⏐⏐n−1/2λ′ani
⏐⏐2+δ = 0 for some δ > 0, and we have 1

n X̂
′

2η̂(Ŷ − X̂2β)
d

−→ N (0,Φ1 + Φ2). From Step 1,

we have
(

1
n X̂

′

2η̂X̂2

)−1 p
−→ Φ−1

0 . All together, we have
√
n(β̂ − β)

d
−→ N

(
0,Φ−1

0 (Φ1 +Φ2)Φ−1
0

)
. □

Proof of Theorem 4. m̂(w) can be written as m̂(w) = m̂1(w) − m̂′

2(w)β̂ − m̂3(w)β̂0, where

m̂3(w) ≡ (nhD3
3 f̂W (w))−1

n∑
t=1

K3

(
Wt − w

h3

)
η̂t .

Then by Eq. (4), we have

m̂(w) − m(w) =
(
m̂1(w) − m1(w)

)
−
(
m̂2(w) − m2(w)

)′
β −

(
m̂3(w) − 1

)
β0

−
(
m̂2(w) − m2(w)

)′(
β̂ − β

)
−
(
m̂3(w) − 1

)(
β̂0 − β0

)
− m2(w)′

(
β̂ − β

)
−
(
β̂0 − β0

)
.

Since, by Theorems 2 and 3, β̂0 − β0 = Op(n−1/2), β̂ − β = Op(n−1/2), and m̂2(w) − m2(w) = op(1), the last four terms in
m̂(w) − m(w) when multiplied by (nhD3

3 )1/2 are op(1). Thus,√
nhD3

3

(
m̂(w) − m(w)

)
=

√
nhD3

3

(
(m̂1(w) − m1(w)) −

(
m̂2(w) − m2(w)

)′
β −

(
m̂3(w) − 1

)
β0

)
+ op(1).

We first investigate
√
nhD3

3

(
m̂1(w) − m1(w)

)
, and then the asymptotic distribution of m̂(w) follows immediately due to

the similar structure of m̂(w) and m̂1(w). Given the expressions for m̂1(w) and f̂W (w), and the uniform order of f̂W (w),
letting K3t ≡ K3

(
Wt−w

h3

)
, we have

m̂1(w) − m1(w) =

{
1

nhD3
3 fW (w)

n∑
t=1

K3t

((
m1(Wt ) − m1(w)

)
+
(
ηtYt − m1(Wt )

)
+ (η̂t − ηt )Yt

)}(
1 + Op(L3n)

)
≡

{
3∑

k=1

Tk

}(
1 + Op(L3n)

)
.

The proof has four steps:

(1) We show that T1 = bm1,1(w), where bm1,1(w) ≡ hs3
3
µk3,s3
fW (w)

∑s3
k=1

1
k!(s3−k)!

∑D3
j=1 D

k
j m1(w)Ds3−k

j fW (w) + op(h
s3
3 ).

(2) We show that
√
nhD3

3 T2
d

−→ N (0,Φm1,1), where Φm1,1 ≡
σ2
vm1

fW (w)

∫
K 2
3 (γ ) dγ .

(3) We show that
√
nhD3

3

(
T3−bm1,2(w)

) d
−→ N (0,Φm1,2), where bm1,2(w) ≡ hs3

3
µk3,s3
fW (w)

1
s3!

∑D3
j=1 m1(w)Ds3

j fW (w)+op(h
s3
3 ),

Φm1,2 ≡
m2

1(w)
fW (w)

∫ (∫
K3(γ1)K3(γ1 + γ2) dγ1

)2 dγ2.

(4) Combining (1)-(3), we show that
√
nhD3

3

(
m̂1(w) − m1(w) − bm1(w)

) d
−→ N (0,Φm1,1 + Φm1,2), where bm1(w) =

bm1,1(w) + bm1,2(w).

Step 1: By Taylor’s Theorem, we have

T1 =
1

nhD3
3 fW (w)

n∑
t=1

K3t
(
m1(Wt ) − m1(w)

)
=

1

nhD3
3 fW (w)

n∑
t=1

K3t

⎛⎝ s3∑
|β|=1

1
β!

Dβm1(w)(Wt − w)β +

∑
|β|=s3+1

1
β!

Dβm1(w̃)(Wt − w)β

⎞⎠ ≡

s3+1∑
|β|=1

T1,|β|,

where w̃ ≡ w + λ(Wt − w), for some λ ∈ (0, 1). For each |β| = 1, . . . , s3, we rewrite T1,|β| as

T1,|β| =
h|β|

3

|β|!fW (w)

∑
|β|

Dβm1(w)t|β|, where t|β| ≡
1

nhD3
3

n∑
t=1

K3t

(
Wt − w

h3

)β
.



X. Geng, C. Martins-Filho and F. Yao / Journal of Statistical Planning and Inference 208 (2020) 94–118 115

Using Lemma 3 and the assumptions on the statement of the theorem, supw∈GW
|t|β| − E(t|β|)| = Op

((
log n/nhD3

3

)1/2)
. If

|β| = 1, by Taylor’s Theorem and given that k3 is of order s3, we have

E(t1) =

∑
|β|=1

∫
K3(γ )γ β fW (w + h3γ ) dγ

=

∑
|β|=1

∫
K3(γ )γ β

⎛⎝fW (w) +

s3−1∑
|α|=1

1
α!

Dα fW (w)(h3γ )α +

∑
|α|=s3

1
α!

Dα fW (w̃)(h3γ )α

⎞⎠ dγ

= hs3−1
3

µk3,s3

(s3 − 1)!

D3∑
j=1

Ds3−1
j fW (w) + o

(
hs3−1
3

)
.

Thus, given that h3 = n−1/(2s3+D3), we have h3(log n/nh
D3
3 )1/2 = o(hs3

3 ), and

T11 = hs3
3
µk3,s3

fW (w)
1

(s3 − 1)!

D3∑
j=1

Djm1(w)Ds3−1
j fW (w) + op(h

D3
3 ).

Similarly, if |β| = 2 and 2 is in the jth position of the vector β , 0 elsewhere, we have E(t|β|) = hs3−2
3

µk3,s3
(s3−2)!D

s3−2
j fW (w) +

o
(
hs3−2
3

)
. And for any remaining β such that |β| = 2, E(t|β|) = o

(
hs3−2
3

)
. Thus,

T12 = hs3
3
µk3,s3

fW (w)
1

2!(s3 − 2)!

D3∑
j=1

D2
j m1(w)Ds3−2

j fW (w) + op(h
D3
3 ).

In a similar manner, we have,

T1,|β| = hs3
3
µk3,s3

fW (w)
1

|β|!(s3 − |β|)!

D3∑
j=1

D|β|

j m1(w)Ds3−|β|

j fW (w) + op(h
D3
3 ), for any |β| = 1, . . . , s3.

For |β| = s3 + 1, we have T1,(s3+1) =
h
s3+1
3

nh
D3
3 fW (w)

∑n
t=1 K3t

(∑
|β|=s3+1

1
(s3+1)!D

βm1(w̃)
(

Wt−w
h3

)β)
= op(h

s3
3 ), by Markov’s

Inequality and E|T1,(s3+1)| = O(hs3+1
3 ) = o(hs3

3 ) since m1(w) ∈ C s3+1. Combining all the T1,|β| terms, we have

T1 = bm1,1(w), where bm1,1(w) ≡ hs3
3
µk3,s3

fW (w)

s3∑
k=1

1
k!(s3 − k)!

D3∑
j=1

Dk
j m1(w)Ds3−k

j fW (w) + op(h
s3
3 ).

Step 2: Given ηtYt = m1(Wt ) + vm1t , we have T2 =
∑n

t=1 a1tn, where a1tn ≡ (nhD3
3 fW (w))−1K3tvm1t . Since E(vm1t |Wt ) = 0

and E(v2m1t |Wt ) = σ 2
vm1 < ∞, we have E(a1tn) = 0, and V(a1tn) = n−2h−D3

3 f −2
W (w)σ 2

vm1

∫
K 2
3 (γ )fW (w + h3γ ) dγ . Let

S21n ≡
∑n

t=1 V(a1tn) = (nhD3
3 )−1f −2

W (w)σ 2
vm1

∫
K 2
3 (γ )fW (w + h3γ ) dγ . Then, by Lyapunov’s CLT, if

∑n
t=1 E|a1tn/S1n|

2+δ
→ 0

for some δ > 0 as n → ∞, we have
∑n

t=1 a1tn/S1n
d

−→ N (0, 1), i.e., given
√
nhD3

3 S1n → Φ
1/2
m1,1,√

nhD3
3 T2

d
−→ N (0,Φm1,1), where Φm1,1 ≡

σ 2
vm1

fW (w)

∫
K 2
3 (γ ) dγ .

Given that nhD3
3 S21n → Φm1,1 > 0 and E(|vm1t |

2+δ
|Wt ) < C , Lyapunov’s condition is satisfied since

n∑
t=1

E
⏐⏐⏐⏐a1tnS1n

⏐⏐⏐⏐2+δ =

(
nhD3

3

)δ/2+1(
nhD3

3 S21n
)δ/2+1

n∑
t=1

E

⎛⎝⏐⏐⏐⏐⏐ K3tvm1t

nhD3
3 fW (w)

⏐⏐⏐⏐⏐
2+δ
⎞⎠ ≤ C

(
nhD3

3

)−δ/2 ∫
|K3(γ )|2+δ dγ → 0, as n → ∞.

Step 3: Denote f̂Û (Ût ) = f̂Ût
, f̂W (Wt ) = f̂Wt , f̂WÛ (Wt , Ût ) = f̂Wt Ût

, fU (Ut ) = fUt , fW (Wt ) = fWt , fWU (Wt ,Ut ) = fWtUt . According
to the uniform order of these density estimators from Theorem 1 and L2n, (L1n/h2)2 = o(n−1/2) by A5, we have

η̂t − ηt =
1

f 2WtUt

(
fWtUt fWt (f̂Ût

− fUt ) − fUt fWt (f̂Wt Ût
− fWtUt ) + fWtUt fUt (f̂Wt − fWt )

)
+ op(n−1/2).

Since T3 = (nhD3
3 fW (w))−1∑n

t=1 K3t
(
(η̂t − ηt )Yt

)
, and (nhD3

3 fW (w))−1∑n
t=1

⏐⏐K3tYt
⏐⏐ = Op(1), we have

T3 =

3∑
k=1

T3k + op
(
n−1/2),
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where T31 =
1

nhD3
3 fW (w)

n∑
t=1

1
fUt

(f̂Ût
− fUt )K3tηtYt , T32 = −

1

nhD3
3 fW (w)

n∑
t=1

1
fWtUt

(f̂Wt Ût
− fWtUt )K3tηtYt ,

T33 =
1

nhD3
3 fW (w)

n∑
t=1

1
fWt

(f̂Wt − fWt )K3tηtYt .

From Theorem 1, we have
⏐⏐f̂Ût

− fUt

⏐⏐ = Op(L2n) and |f̂Wt Ût
− fWtUt | = Op(L4n) uniformly. Thus,

√
nhD3

3 T31 = Op

(√
nhD3

3 L2n
)

= op(1) by Assumption A5(iii). Similarly,
√
nhD3

3 T32 = Op

(√
nhD3

3 L4n
)

= op(1). Let T33 = T331 + T332, where

T331 =
1

nhD3
3 fW (w)

n∑
t=1

1
fWt

(
E(f̂Wt ) − fWt

)
K3tηtYt , T332 =

1

nhD3
3 fW (w)

n∑
t=1

1
fWt

(
f̂Wt − E(f̂Wt )

)
K3tηtYt .

We show that T331 contributes to a bias and T332 to a normal distribution.
For T331, given that E(f̂Wt ) − fWt = hs3

3
µk3,s3
s3!

∑D3
j=1 D

s3
j fW (Wt ) + o(hs3

3 ) by Taylor’s Theorem and the high order of kernel
k3, we have

T331 = hs3
3
µk3,s3

s3!

D3∑
j=1

tj + o(hs3
3 ), where tj =

1

nhD3
3 fW (w)

n∑
t=1

1
fWt

Ds3
j fW (Wt )K3tηtYt .

Since ηtYt = vm1t + (m1(Wt ) − m1(w)) + m1(w), let tj =
∑3

k=1 tjk, where

tj1 =
1

nhD3
3 fW (w)

n∑
t=1

1
fWt

Ds3
j fW (Wt )K3tvm1t , tj2 =

1

nhD3
3 fW (w)

n∑
t=1

1
fWt

Ds3
j fW (Wt )K3t

(
m1(Wt ) − m1(w)

)
,

tj3 =
m1(w)

nhD3
3 fW (w)

n∑
t=1

1
fWt

Ds3
j fW (Wt )K3t .

By Markov’s Inequality and E(tj1) = 0, E(t2j1) = O
(
(nhD3

3 )−1
)
due to E(vm1t |Wt ) = 0 and E(v2m1t |Wt ) ≤ C , we have

tj1 = Op
(
(nhD3

3 )−1/2
)

= op(1). And tj2 = Op(h3) = op(1) since E|tj2| ≤ Ch−D3
3 E

⏐⏐K3t
(
m1(Wt ) − m1(w)

)⏐⏐ = O(h3). For tj3, since
E(tj3) = m1(w)fW (w)−1

∫
Ds3

j fW (w + h3φ)K3(φ) dφ → m1(w)f −1
W (w)Ds3

j fW (w), and E(t2j3) = O
(
(nhD3

3 )−1
)

= o(1), we have
tj3 = m1(w)f −1

W (w)Ds3
j fW (w) + op(1). In sum, T331 = hs3

3
µk3,s3
fW (w)

1
s3!

∑D3
j=1 m1(w)Ds3

j fW (w) + op(h
s3
3 ) ≡ bm1,2(w).

For T332, we show that (nhD3
3 )1/2T332 = (nhD3

3 )1/2
∑n

t=1 a2tn + op(1)
d

−→ N (0,Φm1,2), where

a2tn = (nh2D3
3 )−1m1(w)E

(
f −1
Wi

(
K3it − Et (K3it )

)
K3i

⏐⏐⏐Wt

)
, Φm1,2 ≡

m2
1(w)

fW (w)

∫ (∫
K3(γ1)K3(γ1 + γ2) dγ1

)2 dγ2.

Since f̂Wt − E(f̂Wt ) = (nhD3
3 )−1∑n

i=1

(
K3ti − Ei(K3ti)

)
, we have T332 = T3321 + T3322, where

T3321 =
1

n2h2D3
3 fW (w)

n∑
t=1

1
fWt

(
K3(0) − Ei(K3ti)

)
K3tηtYt , T3322 =

1

n2h2D3
3 fW (w)

n∑
t=1

n∑
i=1

t ̸=i

1
fWt

(
K3ti − Ei(K3ti)

)
K3tηtYt .

Since Ei(K3ti) = O(hD3
3 ), we have T3321 ≤ C(nhD3

3 )−2
n∑

t=1
|K3tηtYt | = Op

(
(nhD3

3 )−1
)
, thus (nhD3

3 )1/2T3321 = op(1).

For T3322, we have T3322 =
1
n2
(n
2

)
Un =

n−1
n

1
2Un, where Un ≡

(n
2

)
−1∑n

t=1
∑n

i=1
t<i

φnti = θn + 2H (1)
n + H (2)

n , φnti = ψnti + ψnit ,

and ψnti = (h2D3
3 fWt fW (w))−1

(
K3ti − Ei(K3ti)

)
K3tηtYt . Then θn = E(φnti) = 0, σ 2

2n = V(φnti) ≤ CE(ψ2
nti) = O(h−2D3

3 ),
H (2)

n = Op
(
(σ 2

2n/n
2)1/2

)
= Op

(
(nhD3

3 )−1
)
, and we have (nhD3

3 )1/2H (2)
n = op(1). For H (1)

n = n−1∑n
t=1 E(ψnit |Wt ), given that

E(ηiYi|Wi) = m1(Wi), we have H (1)
n = Q1 + Q2, where

Q1 ≡
1

nh2D3
3

n∑
t=1

E
( 1
fWi fW (w)

(
K3it − Et (K3it )

)
K3i
(
m1(Wi) − m1(w)

)⏐⏐⏐Wt

)
,

Q2 ≡
m1(w)

nh2D3
3

n∑
t=1

E
( 1
fWi fW (w)

(
K3it − Et (K3it )

)
K3i

⏐⏐⏐Wt

)
.

Since E(Q1) = 0, E(Q 2
1 ) = O

(
(nhD3

3 )−1h3
)
, we have (nhD3

3 )1/2Q1 = Op(h
1/2
3 ) = op(1). Since Q2 =

∑n
t=1 a2tn, let

Ztn = (nh2D3
3 )−1m1(w)Ei

(
(fWi fW (w))−1K3itK3i

)
, and µn = (nh2D3

3 )−1m1(w)E
(
(fWi fW (w))−1K3itK3i

)
, so that a2tn = Ztn − µn
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and E(Ztn) = µn. Then, we have Ztn = (nhD3
3 )−1m1(w)f −1

W (w)
∫
K3(γ1)K3

(
Wt−w

h3
+ γ1

)
dγ1, µn = n−1m1(w)f −1

W (w)
∫

K3(γ1)K3(γ1 +γ2) dγ1 dγ2 = O(n−1), and V(a2tn) = E(Z2
tn)−µ

2
n = n−2h−D3

3 m2
1(w)f −2

W (w)
∫ (∫

K3(γ1)K3(γ1 +γ2) dγ1
)2fW (w+

h3γ2) dγ2−µ2
n. Letting S22n ≡

∑n
t=1 V(a2tn), we have nhD3

3 S22n = m2
1(w)f −2

W (w)
∫ (∫

K3(γ1)K3(γ1+γ2) dγ1
)2fW (w+h3γ2) dγ2−

n2hD3
3 µ

2
n → Φm1,2. Thus, by Lyapunov’s CLT, if

∑n
t=1 E|a2tn/S2n|

2+δ
→ 0 for some δ > 0 as n → ∞, we have∑n

t=1 a2tn/S2n
d

−→ N (0, 1), i.e., combining previous results on other terms in T3,√
nhD3

3

(
T3 − bm1,2(w)

) d
−→ N (0,Φm1,2), where Φm1,2 ≡

m2
1(w)

fW (w)

∫ (∫
K3(γ1)K3(γ1 + γ2) dγ1

)2 dγ2.

Given that nhD3
3 S22n → Φm1,2 > 0, Lyapunov’s condition is satisfied since

n∑
t=1

E
⏐⏐⏐⏐a2tnS2n

⏐⏐⏐⏐2+δ ≤
C
(
nhD3

3

)δ/2+1(
nhD3

3 S22n
)δ/2+1

n∑
t=1

E(|Ztn|2+δ) ≤ C
(
nhD3

3

)−δ/2
→ 0, as n → ∞.

Step 4: Combining results from (1) to (3), we have
√
nhD3

3

(
m̂1(w) − m1(w) − bm1(w)

)
=

√
nhD3

3
∑n

t=1(a1tn + a2tn),
where bm1(w) = bm1,1(w) + bm1,2(w) = hs3

3
µk3,s3
fW (w)

∑s3
k=0

1
k!(s3−k)!

∑D3
j=1 D

k
j m1(w)Ds3−k

j fW (w) + op(h
s3
3 ). Reapplying Lyapunov’s

CLT, given that S2n ≡ V
(∑n

t=1(a1tn + a2tn)
)

= S21n + S22n + 2
∑n

t=1 Cov(a1tn, a2tn) = S21n + S22n as E(a1tna2tn) = 0, and

nhD3
3 S2n → Φm1,1 +Φm1,2, we have

√
nhD3

3

(
m̂1(w)−m1(w)− bm1(w)

) d
−→ N (0,Φm1,1 +Φm1,2). Lyapunov’s condition can

be easily verified using Cr Inequality.
Next, we extend this result for m̂1(w) to m̂(w). Recall that,

m̂1(w) =
1

nhD3
3 fW (w)

n∑
t=1

K3t η̂tYt , m̂(w) =
1

nhD3
3 fW (w)

n∑
t=1

K3t η̂t
(
Yt − X ′

2tβ − β0
)
.

We see that m̂(w) shares a similar structure as m̂1(w) except using η̂t
(
Yt − X ′

2tβ − β0
)
instead of η̂tYt as the regressand.

Given that ηt
(
Yt − X ′

2tβ − β0
)

= m(Wt ) + vmt , E(v2mt |Wt ) = σ 2
vm ≤ C , and E(|vmt |

2+δ
|Wt ) ≤ C , by repeating Step 1–

4, we have
√
nhD3

3

(
m̂(w) − m(w) − bm(w)

) d
−→ N (0,Φ3 + Φ4), where bm(w) = hs3

3
µk3,s3
fW (w)

∑s3
k=0

1
k!(s3−k)!

∑D3
j=1 D

k
j m(w)

× Ds3−k
j fW (w) + op(h

s3
3 ), Φ3 =

σ2
vm

fW (w)

∫
K 2
3 (γ ) dγ , Φ4 =

m2(w)
fW (w)

∫ (∫
K3(γ1)K3(γ1 + γ2) dγ1

)2 dγ2. □

Lemmas

We start by noting that for any kernel K that satisfies Assumption A1, and for any function f (x) : RD
→ R such that∫

|f (γ )| dγ < ∞, we have that if x is a point of continuity of f (x),∫
K (γ )f (x + hnγ ) dγ → f (x)

∫
K (γ ) dγ as n → ∞.

This result follows directly from Theorem 1A in Parzen (1962).

Lemma 1. Assume that K (x) : RD
→ R is a product kernel K (x) =

∏D
j=1 k(xj) with k(x) : R → R such that: (a) k(x) is

continuously differentiable everywhere; (b) |k(x)||x|3 ≤ C, for any x ∈ R and some C > 0; (c) |k(1)(x)||x|3 ≤ C, for any x ∈ R
and some C > 0. Thus, for any |β| = 0, . . . , 3, K (x)xβ satisfies a local Lipschitz condition, i.e., for any x ̸= y ∈ A, where A ⊂ RD

is a bounded convex set, we have |K (x)xβ − K (y)yβ | ≤ C∥x − y∥E , for some C > 0.

Lemma 2. Let {Xi}
n
i=1 be a sequence of independent and identically distributed (IID) random variables, Gn(Xi, x) : R×RK

→ R
such that: (a) |Gn(Xi, x) − Gn(Xi, x′)| ≤ Bn(Xi)∥x−x′

∥ for all x, x′ and Bn(Xi) > 0 with E(Bn(Xi)) < C < ∞; (b) E(Gn(Xi, x)) < ∞

and E (|Gn(Xi, x) − E(Gn(Xi, x))|p) ≤ Cp−2p!E
(
(Gn(Xi, x) − E(Gn(Xi, x)))2

)
< ∞ for some C > 0 for all i = 1, 2, . . . and

p = 3, 4, . . .. Then, if Sn(x) =
1
n

∑n
i=1 Gn(Xi, x), for x ∈ Gx, an arbitrary convex compact subset of RK ,

sup
x∈Gx

|Sn(x) − E(Sn(x))| = Op

(( log n
n

)1/2)
.

Lemma 3. Assume that K (x) : RD
→ R is a product kernel K (x) =

∏D
j=1 k(xj) with k(x) : R → R such that: (a) k(x) is

continuously differentiable everywhere; (b) |k(x)||x|7+a
→ 0 as |x| → ∞ for some a > 0; (c) |k(1)(x)||x|3 ≤ C for all x and

some C < ∞. In addition, assume that (1) {(Xt , εt )′}t=1,2,... is an independent and identically distributed sequence of random
vectors; (2) The joint density of Xt and εt is given by fXε(x, ε) = fX (x)fε|X (ε|x); (3) fX (x) is everywhere continuous and uniformly
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bounded. Let w(Xt − x; x) : RD
→ R and g(ε) : R → R be measurable functions. Define

s(x) =
1

nhD
n

n∑
t=1

K
(
Xt − x
hn

)(
Xt − x
hn

)β
w(Xt − x; x)g(εt ),

where |β| = 0, 1, 2, 3. If

(i) E
(
|g(εt )|a

⏐⏐Xt
)

≤ C < ∞ for some a ≥ 2;
(ii) w(Xt − x; x) satisfies a Lipschitz condition of order 1 in x, i.e., |w(Xt − x; x) − w(Xt − xk; xk)| ≤ C∥x − xk∥E for some

C > 0, and |w(Xt − x, x)| < C for all x ∈ RD.

Then, for an arbitrary compact set G ⊆ RD, we have supx∈G |s(x) − E(s(x))| = Op

((
log n
nhDn

)1/2)
, provided that hn → 0,

nhD+2
n → ∞ and nhDn

log n → ∞ as n → ∞.

Lemma 4. Let {Mi}
n
i=1 be a sequence of independent and identically distributed random vectors with the same distribution as

M = (X Z U ε ) and G(M) a continuous function of M with E(G2(W )|Z) ≤ C < ∞. Then, if the joint density fM of M is
continuous,

Sn =
1
n

n∑
i=1

G(Mi)
(
η̂(Wi, Ûi) − η(Wi,Ui)

)
=

⎧⎪⎨⎪⎩
op(n−1/2), if E(G(Mi)|Xi, Zi,Ui) = 0

Op

(
n−1/2

+

4∑
i=1

hsi
i

)
, if E(G(Mi)|Xi, Zi,Ui) ̸= 0.

Appendix B. Supplementary material: proofs of lemmas and technical details

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jspi.2020.02.002.
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