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 A UNIFIED APPROACH TO ASYMPTOTIC EQUIVALENCE OF
 AITKEN AND FEASIBLE AITKEN INSTRUMENTAL

 VARIABLES ESTIMATORS*

 BY DAVID M. MANDY AND CARLOS MARTINS-FILHO1

 Asymptotic equivalence of Aitken and feasible Aitken estimators in linear
 models with nonscalar identity error covariance matrices is usually established
 in a tedious case-by-case manner. Some general sufficient conditions for this
 equivalence exist, but there are problems with the extant conditions. These
 problems are discussed, and new widely applicable sufficient conditions are
 presented and applied to a variety of error structures.

 1. INTRODUCTION

 Consider the linear statistical model yn = X, J + u n, where Y n is an (n x 1)
 stochastic vector, Xn is an (n x k) (possibly stochastic) almost everywhere full
 column rank regressor matrix, /3 is a (k x 1) vector of unknown nonstochastic

 parameters, and U n is an (n x 1) error vector with E(un) = 0 and E(unun) = fn ,
 an arbitrary symmetric positive definite (n x n) matrix. If Z, is an (n x k) almost
 everywhere full column rank instrument matrix then an instrumental variables (IV)
 version of the Aitken (1935) estimator is

 An (Zn~nXn) -'Ynnln

 which is henceforth called an Aitken IV estimator. When fln is unknown a feasible
 estimator must be constructed, usually entailing a parameterization that assumes

 fin is a known function of an unknown (r x 1) vector 0 with true value 00, so that
 E(unu) = fl, (00). Then, an IV version of the feasible Aitken estimator for /3
 based on an estimator f 'n for 00 is

 f3 n (Zn On (t) -1n )17 fi'n 0 n) - lYn

 which is henceforth called a feasible Aitken IV estimator.
 The small sample properties of fB are often unknown, so many estimation

 problems involve searching for an estimator O'n such that at least asymptotic

 normality of \/n(/(3, - /8) can be established. One frequently employed approach
 is to show that V/non based on an estimator 0" converges in probability to \/n
 An since, in many applications, known sufficient conditions for consistency and
 asymptotic normality of /3 , can be assumed. 8,3 also may possess certain asymptotic
 efficiency properties. Thus, under the sufficient conditions, if Vn(,3n - fin) converges

 * Manuscript received April 1992; revised February 1994.

 1 We gratefully acknowledge helpful comments from Richard Baillie, Gregory Duncan, and an
 anonymous referee, none of whom bear any responsibility for remaining errors.
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 958 DAVID M. MANDY AND CARLOS MARTINS-FILHO

 in probability to zero for a particular estimator On then the feasible estimator 3,,

 inherits the asymptotic properties of 3n.

 Proving convergence in probability in specific cases is often a tedious prospect,

 so it is useful to establish general sufficient conditions on the structure of fl,(0) that
 apply in many cases and are relatively easy to check. Two sets of sufficient

 conditions have appeared in the literature, but neither offers a complete solution to

 the problem. Section 2 reviews these extant results and discusses their shortcom-

 ings. We show that the asymptotic properties of certain widely-used estimators that

 were heretofore thought to be known are in fact unresolved issues. Section 3

 develops new sufficient conditions that summarize the properties of some familiar

 models that are important in establishing asymptotic equivalence of Aitken and

 feasible Aitken IV estimators. Section 4 demonstrates how the sufficient conditions

 of Section 3 are easily applied to familiar models of heteroscedasticity, autocorre-

 lation, seemingly unrelated regressions, and three-stage least squares. Some results

 for models that have not previously appeared in the literature are also established

 via the new sufficient conditions, as well as some of the unresolved properties from

 Section 2. Hence, the new conditions provide a convenient method for establishing
 asymptotic properties in existing and as yet unexplored models.

 2. EXISTING CONDITIONS FOR ASYMPTOTIC EQUIVALENCE OF /3en AND /3n

 One set of sufficient conditions for asymptotic equivalence of bn and /3, builds
 on sufficient conditions for asymptotic normality of \/n(/3,, - /3). Schmidt (1976,
 p. 101) provides conditions for this asymptotic normality (and hence consistency of

 3,8) when ft,(00) = In. Restating his conditions for the case of a general fln(00)
 matrix yields

 1 d
 (Al) -Z' 4l,(00)1u, --> N(0, Q) for some symmetric (k x k) matrix Q

 an-

 (A2) plim - Z'n fn (0 0) - 1Xn = Qzx, a finite positive definite matrix.
 new n

 V( d
 The proof that these conditions imply /nB - N(0, QzxQQzx) is
 straightforward and parallels the proof provided by Schmidt. Theil (1971, p. 399)
 states additional conditions that, along with (Al) and (A2), are jointly sufficient for

 plimn,,,, '\(/30, - 3,) = 0 for a standard GLS model, in which Xn is
 nonstochastic and Zn = Xn. 2 White (1984, p. 163) notes that Theil's theorem may
 be extended to the case of general instrumental variables with little difficulty. In
 particular, (Al) and (A2) combine with

 (1) plim -Z'n Z(fn (0 l) -n ( 0?) ')Xn = 0
 net n

 2 Theil actually uses conditions that imply (Al) and (A2), but this does not affect the conclusion.
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 FEASIBLE AITKEN IV ESTIMATORS 959

 (2) plim Z- n) - n f(0))un = 0
 n-*oo n

 to provide sufficient conditions for plimn, \/n(3n - an) =
 There are two main problems to be overcome in verifying equations (1) and (2).

 First, consistency of an cannot be combined with Slutsky's Theorem (as argued,

 for example, by Parks 1967, pp. 505-506) to establish equation (1) because

 (lIn)Z'n Qn(6'n) -X, is a function of an that directly depends on n, while Slutsky's
 Theorem assumes the function is independent of the sample size. This problem

 arises in equation (2) as well, but a second difficulty with equation (2) is that

 Chebyschev's Inequality cannot be easily applied because the potential statistical

 dependence between on and un results in a complicated second moment matrix
 even if Zn is nonstochastic, as in a standard GLS model. This is a serious problem
 since o n and un are statistically dependent in most applications. Hence, consis-
 tency of o'n is sufficient for neither equation (1) nor equation (2), as demonstrated

 conclusively by Schmidt's (1976, p. 69) counter-example. Nevertheless, an ap-
 proach like Theil's theorem can be successfully employed in a number of well-

 known cases with a consistent estimator 6 n (for example, seemingly unrelated

 regressions Zellner 1962; finite order autoregressive errors Fuller 1976, pp. 424-

 425; and grouped heteroscedasticity Taylor 1977), and White applies his extension

 on a case-by-case to IV estimation of seemingly unrelated regressions with and
 without particular forms of heteroscedastic and autoregressive errors.

 Since equations (1) and (2) involve only slightly simpler probability limits than
 the original problem, more easily verified sufficient conditions would be useful.

 Fuller and Battese (1973, Theorem 3, hereafter FB3) propose a second set of

 sufficient conditions for the standard GLS model. Their conditions are relatively

 easy to apply because only ordinary limits, differentiability, continuity, and the
 order in probability of 0'n - 00 are involved. FB3 is used to establish asymptotic
 equivalence of Aitken and feasible Aitken estimators in standard GLS models by

 several authors in addition to Fuller and Battese (Swamy and Mehta 1977; Magnus
 1978; Raj, Srivastava, and Ullah 1980; and Scott and Holt 1982).

 Unfortunately, FB3 overlooks both of the aforementioned problems encountered

 in verifying equations (1) and (2). Crockett (1985, p. 203) notices that the proof of

 FB3 neglects the potential dependence between On and u n, but does not demon-
 strate that the conclusion of FB3 is incorrect. In the Appendix, we establish

 conclusively that FB3 is incorrect by constructing a counter-example in which
 on is nonstochastic, so that the statistical dependence issue does not arise, but

 (1In)X' fn(t nlXn and (1I\/A)Xfn(On)-un still fail to converge to
 (lIn)X' tnn(0) - Xn and (1I\In)X',fln(00)-lun, respectively, because of their

 3 White relies on different conditions for the asymptotic normality than (Al) and (A2), and lists three

 conditions rather than equations (1) and (2) above. This is because he expresses his instruments as Z'n =
 XIn Z' for some observable (n X k) matrix Zn, which allows White to
 state conditions in terms of the components Xn f Qn, and Zn of Zn . With this choice of instruments
 White's three conditions are sufficient for equations (1) and (2) above, which in turn are sufficient for

 plimn-- \/7i(3,n - f3n) = 0 (assuming (Al) and (A2)). Hence, under (Al) and (A2), equations (1) and (2)
 are at least as general as White's three conditions.
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 dependence on n. Hence, the conditions of FB3 do not assure that either of the

 difficulties of equations (1) and (2) are solved, and this deficiency means that more

 convenient conditions than equations (1) and (2) remain unknown. The breakdown

 of FB3 also means that estimators whose properties are established via FB3 may
 not possess the advertised properties. This is particularly troublesome for the panel

 estimation techniques of Swamy and Mehta (1977) and the two-step estimator of

 Magnus (1978) since these procedures are widely cited. Cragg (1992, p. 181) also
 overlooks the problems in verifying (1) and (2), as the example in the Appendix

 satisfies his assumptions but not his conclusions.

 3. NEW SUFFICIENT CONDITIONS FOR ASYMPTOTIC EQUIVALENCE OF f3n AND f

 Despite the known insufficiency of plimO a = 00 for plimno -\n(',1 - f3n) =
 0, Theil's approach and White's extension are successful in many particular models

 when O'n is consistent. Our conditions clarify why plimo /(f3,B - fn) = 0 in many
 familiar special cases of fln(0) when o n is consistent by summarizing the structure of
 these special cases that is important in proving the asymptotic equivalence.

 The dependence on n can be partially addressed through an extension of

 Slutsky's Theorem provided by Amemiya (1985, Theorem 4.1.5) to the case of a

 sequence of functions that depend on n. The key to this extension is uniform

 convergence of the sequence as n -> oo. Uniform convergence of individual
 elements of ftn (0)6-) holds in many models because these functions frequently do
 not even depend on n. For future reference, Amemiya's theorem for our context is
 restated here without proof.

 LEMMA 1 (Amemiya 1985, Theorem 4.1.5). Let iDn (0) -> 9p( 0) uniformly on an
 open set S containing 00, where (p is real-valued and continuous at 00. If plimnO
 = 00, then plimn- >Po(0Pn ) - p(00)

 The dependence on n is not completely resolved by this lemma because the

 dimensions of Zn, fln(0) 1, Xn, and un still depend on n. This leads to
 summations with n2 terms in equations (1) and (2), which is problematic since the
 denominator of equation (1) in only 0(n) and the denominator of equation (2) is

 only 0(n 1/2). In many models the number of nonzero elements in Dn (0) -1 is 0(n)
 so that the sums in equations (1) and (2) really have only 0(n) terms, but even with

 0(n) terms the denominators of (1) and (2) may be inadequate for convergence
 unless the terms in the sums converge in some uniform manner. Often there are a

 finite number of distinct elements in ftn (0) -1 that simply repeat as n -> oo. This
 imposes the needed uniformity provided the individual elements of ftn (0) -1 also
 satisfy Lemma 1, and the other random variables in the sums satisfy some routinely
 encountered "regularity" and "stability" conditions. In particular, equation (1)
 relies on certain fourth moments between the regressors and instruments possess-
 ing a uniform upper bound. Equation (2) relies on uniform boundedness of the

 second absolute moments of each instrument, error covariances conditional on the
 instruments that are uniformly bounded relative to the corresponding unconditional
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 FEASIBLE AITKEN IV ESTIMATORS 961

 covariances, and absolutely convergent column-wise sums of the inverse covari-

 ance. This last condition is sometimes implied by stability of a stochastic process,

 and the conditional covariance condition is always true for a standard GLS model.

 The statistical dependence between 0n and un is manageable if terms involving
 elements of (ln(0 )1 - _ n(00)-1 can be factored from the summations in
 equation (2), which include elements of un . This factoring occurs in most models as
 a consequence of the finite number of distinct functions in fln (0) - I. Hence, a finite

 number of distinct functions in fln(0)- can assist in two problems: the depen-
 dence between on and un, and the need for uniformity in the convergence of the
 terms of the sums.

 Sufficiency of these properties for equations (1) and (2) is verified by the

 following theorem.

 THEOREM 1. In addition to (Al) and (A2), assume the following:

 (A3) fln(0)- has at most W < oo distinct nonzero elements for every n, denoted
 by gwn(0) for w = 1, ..., W. That is, there are n2 - W elements that are
 either zero or duplicates of other nonzero elements in fl n(0) For each w,

 gwn(0) converges uniformly as n -0o0 to a real-valued function gw(0) on an
 open set S containing 00, where gw is continuous at 00.

 (A4) The number of nonzero elements in each column (and row) of an (0) is
 uniformly bounded by N < 0o as n -> oo.

 (A5) There exists C < oo such that XIn I w)iI < C for every n = 1, 2, ... andj =
 l, ..., n, where w11 is the (i, j) element of fln(00).

 (A6) There exists B < oo such that

 (i) E(zjhXtqZihxTq) B for i, j, t, X = 1, 2, ... and h, q = 1, ..., k

 (ii) E(iZjhZ ih) < B for i, j = 1, 2, ... and h = 1, ... , k
 (iii) IE(uutuIZjh, Zih)I < BI wTI for i, j, t, r = 1, 2, ...; h = 1, ..., k; and

 almost every realization of (zjh, Zih),

 where zjh is the (j, h) element of Zn, xtq is the (t, q) element of Xn, and ut is the tth A ~~~~~~~d
 element of un. Under (Al) through (A6), if plimO. on = 00 then \/3,n - /3) ->
 N(O, Q-1 QQij1). That is, (Al) through (A6) are sufficient for the feasible Aitken
 estimator based on a consistent estimator of 00 to be asymptotically equivalent to
 the Aitken IV estimator (and hence consistent and asymptotically normal under
 (Al) and (A2)).

 PROOF. Since (Al) and (A2) are holding, White's result shows that it is sufficient

 to verify equations (1) and (2). Denote the (i, j) element of fn1(08) byfAin(0) and
 let go(0) --0 be the zero function. We must show ahq and ah are op(l) for
 arbitrary (h, q), where ahq is the (h, q) element of the left side of (1) and ah is the

 hth element of the left side of (2). Letting Iiwn {j = 1 2, *.. , n : fiJn(0)
 gwn(0)} be the index set of elements in row i of fl (0Y) that are equal to gwn(0),
 we have
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 n n

 a hq =- Z ih Xjq (f ijn (6) fn ( 0))
 n1=1 j=1

 n W

 n , 2, Z+ ihj~t( Z)-qfijn(O ))

 i~~~~~~~~n ~0n
 -- ~~~~ Z ih Xjq (fijn(O "fijn (60))

 ni= 1 w =1 jEI i,,,

 i n~~~~~~n

 + - ZihXjq(ij(ijn( -fijn(f()) )
 jiwUW=nIiwn

 W n

 =- E E 2 ZZih Xjq (fijn( )fijn ( 0))
 n W=1 i=1 jEIiw,,

 i n

 +[- w ZnihnXjqw(fijn( O) -i Z ]))
 n i= 1 jOtUWlIiwn

 W n

 E m i Z3ihXjqg(()wn(0 =) -(gwn () 0))
 nw= 1 i= 1 jE-Iiwn

 i n

 + -: E ZihX)q(90 (O 0))

 i=1 jeI 1jOUWIjW

 1 IE~iwn Zih~jq 2 ^= Tl jiww~in

 1 W 1

 =_E (gwn(O n) -gwn (O0)) E E Z ih Xjq.
 n W=i i= l jEIiwn

 By Lemma I and (A3), gwn(0 ? - gwn(2 ) = (gwn(A
 gwn(O?)) = op(l) for every w = 1, ..,W. Since W is fixed as n ->oo, we need
 only show that

 n

 E E ZihXjq = Op (I)
 n i= jEijsWn

 for arbitrary w. Taking the expectation of the square yields

 E [n 2 E E Zih Xjq = n2E E E E E( Zih Zjh Xtq x T
 n i= 1 jE=I iwn n i= 1 j= 1 tE-Ijwn TEI iwn

 n n

 n2E2 E2 B by (A6(i))
 i= 1 j= 1 tE-Ijw,, rEIiwn,

 N N2B by (A4),
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 since each index set Ij,, and Ii,, contains no more than N elements.
 Since the second moment bound is independent of n, applying Chebyschev's

 Inequality centered at 0 shows that (1/n) Xin1 Xi Iiwn ZihXjq = Op(l). The same
 manipulations used above show that

 W n

 ah = [(gwn)0 )wn(o ) E E ZihUjI]
 Cn = 1 = 1 jE-Ii,,

 so we need only show that (1/V/n) 2in I Ej.Ii, ZihUj = Op(l) for arbitrary w.
 Taking the expectation of the square yields

 \= l '~w 1=1 j=1 tEljwn TEfiwn

 in

 n I [ T En IE(znhzihE(utuTlzihzih))

 n i= 1 jE=-Ii,, n i~~~~= 1 j 1tE-Ij ,, i E=-1xIiwn

 1 n

 S- E E E E JE(ZjhZihIE(utuTjZjhZih)I)
 nj= 1 tE-Ij,, i= 1 TE-Iiwn

 E E Z ~E(IzJhzihjJ~trZhi)

 nj~ TEIZ Z E(IZjhzihl)IwtTI] by (A6(iii))
 nj= 1 teiiwn i= 1 Teiiwn

 g 2 n n

 s IE w t, by (A6(ii)).
 j=1 tEIjwn i=j1 TE iwn

 By (A4), each r belongs to at most N different index sets Iiwn for given w and n
 because the rth column of 1(00) 1 has no more than N nonzero elements. Thus,

 n n

 Z Z IwtTINt N |T sNC by(A5),
 i= 1 rEIiwn T1

 which implies

 1 n B~ B2 ~ B 2 n~
 Eln gE j ZhUj |- n i 1 NC - - N2C-B2N2C.
 1f\= 1 ~nj= 1 tEl~jwn J=1

 Since the second moment bound is independent of n, applying Chebyschev's

 Inequality centered at 0 shows that ( 1/V') X!n I Ei Iiwn ZihUj = Op(l). F* D

 REMARK. Asymptotic equivalence also means that (Al) through (A6) are
 sufficient for the feasible Aitken IV estimator to possess the asymptotic efficiency

 of the Aitken IV estimator, whether this be among: (i) linear unbiased estimators

 (even though the feasible estimator may be neither linear nor unbiased), as in a

 FEASIBLE AITKEN IV ESTIMATORS 963
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 standard GLS model with (potentially) nonnormal un; (ii) consistent uniformly

 asymptotically normal estimators, as when f3, is asymptotically equivalent to the
 maximum likelihood estimator; (iii) the class of IV estimators, as in White (1984,

 Theorem 4.57); or (iv) some other class of estimators.

 The example in the Appendix satisfies (Al) through (A6) for the choice of

 instruments Zn = Xn, with the exception of (A3). This verifies the importance of
 (A3). To appreciate the importance of (A4), consider the following example. Let 0

 be a scalar and the (i, j) element of fln(0)- betf>(0) = 0 for i # j andfi (0) =
 1 + 0, for n = 1, 2, ... and i, j = 1, ... , n. Suppose Xn is a vector of ones and
 00 = 0. Since fln(60) = In, (Al), (A2), (AS), and (A6) are easily satisfied with
 instruments Zn = Xn provided the elements of Un satisfy a central limit theorem.
 Since there are only two distinctfij functions, which are uniformly continuous on
 bounded sets and independent of n, (A3) is also satisfied. However, (A4) fails since

 fin (0) - 1 has n 2 nonzero elements. This leads to (l/n)Z'n(n ( 0 n )-l
 fin (0) - )Xn = nO n', which does not converge unless o'n = op(n1). In partic-
 ular, equation (1) can fail for consistent fin, such as fin = (1/V/n).

 FB3 uses a Taylor series expansion to approach the problem of establishing

 asymptotic equivalence of Aitken and feasible Aitken estimators. The Taylor series

 approach can be used to prove a variant of Theorem 1 provided that most of the

 boundedness assumptions of Theorem 1 still hold. Writing the elements of fn (6) - 1
 as Taylor series about 00 essentially provides another method to accomplish the
 factoring of terms involving elements of fn (6n) -1 - fQn (60) -1 from the sums,
 thereby obtaining the needed uniformity and separation of o'n and u n . One property
 needed to obtain the uniformity that assures convergence of the Taylor expansions

 is uniformly bounded derivatives of the elements in fn( 60) - 1 at 00 as n -> oo. This
 holds for most models, but even with bounded derivatives the Taylor residuals

 depend on o't. Thus, the Taylor residuals are statistically dependent on un, and this
 confounds attempts to use Chebyschev's Inequality. The only way to completely
 avoid the dependence problem is to factor all terms involving 6'n from the sums

 involving Un . The finite number of distinct elements assumed in (A3) facilitates this
 factoring, but without (A3) the Taylor series will accomplish this only if the Taylor

 residual disappears. That is, the elements of ln(6)-1 must be proportional to
 polynomials in 0. Formally, Theorem 1 holds if (A3) is replaced by

 (A3') The (i, j) element Of fl(6) 1 can be expressed gn(9)fijn(6), where

 (i) gn is a sequence of functions, independent of (i, j), that converges uniformly
 to a real-valued function g(6) as n -> oo on an open set S containing 00, where
 g is continuous at 00.

 (ii) Ain is a polynomial of degree less than nz (z an integer), whose partial
 derivatives D j, ... , ,fiin (0) at 00 (1 ? nz) are all bounded by W for every i,
 j, n (including 1 = 0. That is, including the function itself).

 We will not repeat here the proof of Theorem 1 under this alternate assumption-a
 detailed proof is available from the authors on request. The alternate version of
 Theorem 1 may be useful in models where the number of distinct elements in

 fin (6) -1 is not fixed.
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 4. APPLICATIONS

 This section demonstrates that Theorem 1 applies to many familiar models and

 also most of the models that heretofore relied on FB3. Assumption (A3) is usually
 easier to verify and more widely applicable than (A3'), so we focus on applying the
 version of Theorem 1 proven above and simply note here that (A3') may also be
 used in some of the models. Most of the asymptotic properties established in this

 section are not new, although some are, and the method of proof using Theorem 1

 is new and demonstrates that the theorem is widely applicable precisely because

 many familiar models have the basic structure embodied in assumptions (A3)
 through (A5). This structure forms the basis for the previous case-by-case proofs of
 the known asymptotic properties.

 To check the assumptions of Theorem 1, first recall that whenever asymptotic

 normality is investigated in a linear model (Al) must be established. This is usually
 accomplished by imposing assumptions more primitive than (Al) on the model and
 then utilizing a central limit theorem (CLT). For example, in a standard GLS model
 in which the transformed errors are IID, the Lindberg-Feller CLT applies.

 Alternatively, if the transformed errors are independent with bounded second and

 absolute third moments, use can be made of Liapunov's CLT. Schmidt (1976, p. 99)
 uses Schoenfeld's (1971) CLT to establish (Al) in the autoregressive model, while
 Campos (1986) uses Hannan's (1976) CLT to establish (Al) in a simultaneous
 equations model with lagged endogenous variables and VARMA errors. White

 (1984, Sections V.4 and V.5) discusses useful extensions of CLT's that rely on

 mixing distributions and martingale difference sequences. These extensions are
 particularly useful for IV estimators. Since (Al) is not our primary concern and the
 approach to (Al) varies depending on the model, we assume throughout this section

 that (Al) holds. Assumption (A2) is standard, while the regularity/stability assump-
 tion (A6) involves only moments and often cannot be verified or refuted. Therefore

 we assume throughout this section that assumptions (Al), (A2), and (A6) (hereafter

 called the maintained assumptions) hold, although there are well-known cases in
 which they fail. For instance, both (A2) and (A6) can fail if a time trend is included

 in the Xn matrix, while (Al) can fail if Xn is used for instruments when it is
 stochastic. In any particular context assumptions sufficient for the maintained
 assumptions must be in place before proceeding to apply Theorem 1. Given the

 maintained assumptions we must confirm (A3) through (A5) for any given covari-

 ance structure fn (6).
 The applications center around a seemingly unrelated regressions (SUR) model

 of m equations: yi = Xi4l3 + ui for i = 1, ..., n, where yi and ui are (m x 1)
 vectors of dependents and errors, respectively, for observation i on all m
 equations;

 0'0

 ', X i2 ci
 Xi =

 [O 0. X
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 966 DAVID M. MANDY AND CARLOS MARTINS-FILHO

 is the (m x k) (possibly stochastic) matrix of regressors for observation i on all m

 equations (xij is the (ki x 1) vector of regressors for observation i on equation,
 the zero vectors are of conformable dimensions, and k = Yin: ki); and f3 =

 (W31, ... f3n)' is the (k x 1) vector of unknown parameters composed of the m
 (ki x 1) subvectors f3i for each equation. Stacking the n observations yields the

 usual expression Yn = XJf3 + un where Yn and Un are (nm x 1) and Xn is
 (nm x k), and E(un) = 0 with E(UnU'n) = n(f )

 4.1. Autoregressive Errors. Suppose ui follows the pth order vector autore-
 gressive (VAR(p)) process

 ui = Rjui-I + R2ui-2 + -- + Rpuip + vi for i = 0, ?1, ?2,

 where each Ri is an unknown (m x m) parameter matrix and vi - IID (0, E ) for
 a symmetric positive definite (m x m) matrix E. Verification of (A3) and (A4)

 requires knowledge of the structure of fn (0) -, where 0 consists of the distinct
 elements of E and each R1. Following Guilkey and Schmidt (1973) and Judge

 et al. (1985, Section 12.3), since E is nonsingular Cholesky decomposition may

 be used to choose a lower triangular (pm x pm) matrix A such that

 AE([u' uI]'[u/ ... u])A' = Ip 0 E. It is straightforward to verify that the
 (mn x mn) transformation matrix

 A

 - - -- I - - -

 -Rp ... -RRI Im

 Pn=

 _I] -Rp -R Im

 yields transformed errors PnUn satisfying E(Pnun(Pnun)') = In 0 X, so
 fnM0)-1 = P'n(In 0 Y--)Pn .4 Carrying out this multiplication reveals that the
 upper left (pm x pm) block of fQn(61) - I is A'(Ip X - 1 )A + B'(Ip 0 E1)B and
 the lower right (p m x p m) block is T'(Ip 0 E - 1) T, where

 4 For the m = 1 and p = 2 case the (2, 1) element of A disagrees with the transformation provided
 by Fomby et al. (1988, p. 218) and Greene (1993, p. 429) but agrees with the transformation given by Fuller

 (1976, p. 423) and Judge et al. (1985, p. 294).
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 WpRp_1 ... ... R, Ro ... ... O-
 O *0 . *p Air R2 R, *. Aft cR 0.

 B =. *p. p. In.. , T= . .

 . .. *. I. RP-R ... ... Rn. O

 o * o Rp p p * R1 R0

 and we have defined Ro = -Im for notational convenience. The (m x m) block of
 f,(O)-' in the (i, j) position (in terms of (m x m) blocks) is XJ-'i?i1
 R'- 'Rt+lijl forp < max {i, j} and min {i, j} c n - p. where it is understood
 that this sum is zero when p - Ii - jl < 0. Hence all elements of fl (6) 1 that lie
 more than p (m x m) blocks off the main diagonal are zero, verifying (A4) with

 N = m(2p + 1). Since the blocks of f,(0) -1 are independent of n there are at
 most W = pm(pm + 1) + (p + 1)m2 distinct functions in fn (0) - 1, all of which
 are independent of n for n ? W (implying uniform convergence trivially) and
 continuous at 00 because the operations involved in obtaining the blocks from 0 are
 continuous at 00 when X is nonsingular. This verifies (A3).

 All that remains is to verify (A5). Following Anderson (1971, p. 177) the
 mr-dimensional VAR(p) process may be rewritten as a pm-dimensional VAR(1)

 process ei = Re i + si, where e1 = (up +1 ... u)' and sj = (O' ... O'vi)' are
 (pm x 1) vectors, and

 o Im 0 0.. 0

 0

 o 0 Im

 Rp Rp_1 .. ... .. R1

 is an (mp x mp) matrix. If the process is covariance stationary then the absolute
 eigenvalues of R are less than one, and also E(eie) - R IiJ-IE(ete') for arbitrary
 t (Anderson 1971, p. 182). From the definition of ej, the sum Xin = IE(ujuj)I is the
 lower right (m x m) block of YQn=l IE(ejej)I, where I 1 denotes the element-wise
 absolute value. So, if the elements of the latter sum are bounded independently of

 j as n -> oc then (A5) holds. Since

 n n n

 > IE(eej)I <2 2 > IE(eieo)l < 2 2 IRil E(eoe'b)I.
 i=_ i=O i=O

 rewriting IR1l in the Jordan Canonical Form yields
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 968 DAVID M. MANDY AND CARLOS MARTINS-FILHO

 n n

 E E(eje;)j C< 21J| E JA'j IJ-'1 IE(eoeO)I,
 i=1 \i=O

 where A is a block diagonal matrix involving the eigenvalues of R and J is a fixed

 matrix depending only on R. Since the absolute eigenvalues are less than one 0
 IA1j converges, which verifies (A5).

 We have shown that, if the VAR(p) error process is covariance stationary and the

 maintained assumptions hold, then Theorem 1 applies and any feasible Aitken IV

 estimator based on consistent estimators of the contemporaneous covariance X and

 the VAR parameters R i possesses the same asymptotic properties as the Aitken IV
 estimator. To our knowledge, this result has not previously appeared in the

 literature at the level of generality presented here. Consistent estimators for the

 VAR(1) case are discussed by Guilkey and Schmidt (1973) and Judge et al. (1985,

 section 12.3), and Theorem 1 verifies the asymptotic distribution of the feasible

 Aitken estimator for this case. Zellner's (1962) estimator and its variants (Zellner

 and Huang 1962) are all consistent, so Theorem 1 establishes Zellner's result for his

 special case of p = 0. Parks (1967) (whose results are suspect due to the reliance

 on Slutsky's Theorem to establish equations (1) and (2)) considers an SUR model
 with AR(1) errors. All of these models are special cases of the error structure

 considered here and are in the standard GLS rather than the IV context, as are

 typical treatments of single equation models with AR errors (for example, Fuller

 1976, Theorem 9.7.1, who provides a consistent estimator of 00 for the AR(p) case).
 Anderson (1971, section 10.3.2) provides consistent estimators of the covariances

 of a stationary error process, but his approach does not assume a VAR(p) structure

 and also assumes the standard GLS context. Moreover, Anderson does not

 investigate feasible Aitken estimation of f3. One unresolved problem with the
 general VAR(p) case is that, as far as we know preliminary consistent estimators of

 E and the R1's for use in a two-step estimator for if have not been proposed.
 The exact inverse n(0) -1 derived by Uppuluri and Carpenter (1969) when u n

 follows an MA(1) process satisfies neither (A3) nor (A4), so Theorem 1 does not
 generally apply to VARMA error processes. To our knowledge, asymptotic
 equivalence of Aitken and feasible Aitken estimators has not been established for

 a general consistent estimator an when un is VARMA without a distributional
 assumption on un, even for the single equation nonstochastic regressor context
 with MA(1) errors.5 Zinde-Walsh and Galbraith (1991) consider general ARMA

 errors but only do so for one equation and compare the feasible Aitken and

 maximum likelihood estimators with normal un, rather than the Aitken and feasible
 Aitken estimators with no particular error distribution. Amemiya (1973a) considers
 ARMA errors in a standard GLS model, but only establishes results for a specific
 estimator fi. Campos (1986) considers VARMA errors in a general simultaneous
 equations model, but does not examine feasible Aitken estimation of f3.

 Note finally that some approaches to estimation with AR(p) errors unnecessarily
 rely on normality to obtain fln(0)1 (Siddiqui 1958, Galbraith and Galbraith 1974,

 5However, Fuller (1976, p. 425) mentions this problem.
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 FEASIBLE AITKEN IV ESTIMATORS 969

 Shaman 1975), or on approximations (Shaman 1975), and some approaches give

 alternative estimators for f3 that are consistent and asymptotically normal when

 errors are AR(p) or VAR(p) (Durbin 1960, Pierce 1971, White 1984 section VII.4,

 Campos 1986), but do not establish asymptotic equivalence of feasible Aitken and

 Aitken estimators, particularly for an arbitrary consistent estimator 6 '. All of the

 previous approaches to autocorrelation mentioned in this subsection except

 Guilkey and Schmidt, Parks, White, and Campos are for the single equation

 context, and all but White and Campos are for the standard GLS rather than the IV

 context.

 4.2. Heteroscedasticity. Suppose now that ui is heteroscedastic with E(uiu ')
 = Li for symmetric positive definite (m x m) matrices >i and E(uiu)) = 0 for
 i # j. Then n(0) and Q n((0) are block diagonal with diagonal blocks Xi and
 i-1, respectively, so (A4) holds with N = m and (A5) holds provided the
 contemporaneous covariances have an upper bound as n --> o. This is an
 assumption that is likely to be placed on any heteroscedastic model and may be
 implied by other assumptions for any given heteroscedastic structure, leaving only

 assumption (A3) as a serious problem in heteroscedastic models. White (1984,

 section VII.3) extends Taylor's (1977) model of constant variances within sub-
 groups of observations to the SUR IV context. In this model 0 consists of the

 distinct elements of a fixed number of distinct >i matrices. This yields a fixed
 number of distinct elements in n(0) -1, none of which depend on n and all of
 which are continuous at 00 since each Li is nonsingular. Hence (A3) is satisfied,
 and any consistent estimator of the contemporaneous covariance matrices in this
 model yields a consistent and asymptotically normal feasible Aitken IV estimator of

 ,3 under the maintained assumptions. Taylor provides a consistent estimator of 00
 for the single equation standard GLS case, and White provides a consistent

 estimator for the SUR IV context. Note that n -> oo in this model by letting the size
 of one or more subgroups of observations grow while keeping the number of
 subgroups fixed. Depending on the estimator an, it may be necessary to let the size
 of all subgroups approach Xo in order to establish consistency of On

 Alternatively, suppose all n >Li matrices are distinct. Models of this type are
 frequently estimated by assuming some parametric structure for the heteroscedas-

 ticity of the form -hq = g(6'V q) where O-hIq is the (h, q) element of Xi and V/q is
 a vector of nonstochastic explanatory variables (for single equation models, see
 Goldberger 1964, Park 1966, Glejser 1969, Goldfeld and Quandt 1972, Amemiya
 1973b, Harvey 1976, and Amemiya 1977; while multiple equation models are
 discussed by Singh and Ullah 1974 and Mandy and Martins-Filho 1993, who also
 discuss panel data models). In general, (A3) fails in these models because the

 number of distinct elements in fn (0) - 1 increases with n. However, this is partially
 a product of the way the limiting process is envisioned. If the limiting process on

 Vn -V1 1 . m m 1 1 . m m ...V I I . .. VmM]

 is "constant in repeated samples" (CRS; see Theil 1971, pp. 364-365) then the
 sample size is p n, where p is the number of repeated samples, and the sample size

 tends to infinity by letting p -> mo. Hence, asp X-> o we can set W = m(m + 1)n/2

This content downloaded from 
             198.11.30.153 on Wed, 03 Mar 2021 23:21:31 UTC              

All use subject to https://about.jstor.org/terms



 970 DAVID M. MANDY AND CARLOS MARTINS-FILHO

 and the model behaves like Taylor's "constant within subgroups" model asymp-

 totically. By this argument Theorem 1 applies to any model with a block diagonal

 covariance matrix if the maintained assumptions hold and the blocks repeat as n -> 00.
 Therefore, in parametric heteroscedastic models under CRS we need only obtain a

 consistent estimator of 00 in order to immediately establish the asymptotic
 properties of feasible Aitken IV estimators via Theorem 1. Consistent estimators of

 00 are readily available (Judge et al. 1985, pp. 431-441 provides a summary of single
 equation estimators, while consistent multiple equation and panel data estimators

 are discussed by Singh and Ullah 1974 and Mandy and Martins-Filho 1993).

 Note that the Hildreth-Houck (1968) random coefficients model is included in this

 conclusion as a special case in which there is one equation, g(6'v v = 6'v l, and

 vll = (xA2 ... x32), even though previous proofs of asymptotic normality of the
 Hildreth-Houck estimator have required an estimator fi of 00 satisfying fin -
 60 = Op((pn) -1/2) (Crockett 1985, Mandy and Martins-Filho 1993). Thus,
 asymptotic normality of the Hildreth-Houck estimator persists with weaker con-

 vergence of fin provided the limiting process is CRS. This conclusion holds only

 because of the CRS assumption. Without CRS (A3) fails in the Hildreth-Houck

 model and therefore Theorem 1 is inapplicable. Hence, Theorem 1 does not provide

 a stronger result than Crockett or Mandy and Martins-Filho. Rather, Theorem 1

 permits substitution of the CRS assumption for the stronger convergence of 0fn

 required by these authors. These authors obtain the result without the CRS

 assumption because their stronger convergence, working through the theorem by

 Carroll and Ruppert (1982), provides an alternative to the fixed number of distinct

 elements used by Theorem 1 to enable application of Chebyschev's Inequality in

 overcoming the statistical dependence problem of equation (2). Carroll and Ruppert

 construct an application of Chebyschev's Inequality for equation (2) under hetero-

 scedasticity when there is not a fixed number of distinct elements in fl n (0) - 1, but
 only with convergence assumptions that require fin = O ((pn) -1/2) rather than

 the weaker consistency of an.

 The CRS assumption could help prove asymptotic equivalence with other, not

 necessarily heteroscedastic, error structures. In general, if this assumption fixes the

 number of distinct elements in the inverse covariance matrix as n --> 0, then it will
 assist in establishing (A3).

 Note also that, with the exception of White, the heteroscedastic models

 considered in this subsection were originally developed in a standard GLS context,
 and many have only been proposed in single equation models, but the asymptotic
 properties from Theorem 1 hold in any multiple equation IV context with

 heteroscedastic errors provided a consistent estimator of f n is available and the

 maintained assumptions are satisfied as well as (A3). The main difference between the
 results for heteroscedastic models presented here and those of White is our emphasis

 on the structure of fln(0) to establish the asymptotic distribution of \/(1n - /3).

 4.3. Special Cases. The three stage least squares estimator for a simultaneous
 equations model with or without lagged endogenous variables is a feasible Aitken

 IV estimator in an SUR system; with the particular choice of instruments Zn =
 (D(D'D) 1D D' 0 Im)Xn, where D is the (n x I) matrix of T c k predetermined
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 FEASIBLE AITKEN IV ESTIMATORS 971

 variables in the system; and the particular consistent estimator for the (h, q)

 element of the contemporaneous correlation matrix (1/n) i (Yih - X ih Ph)
 (Yiq - XiqPq), where Yih is the hth element of yi and Ph is the two stage least
 squares estimator of P8h. Hence the proof of consistency and asymptotic normality

 of the three stage least squares estimator can be viewed as a special case of

 Theorem 1. Note that (A2) is satisfied in this context if all equations are identified

 by exclusion restrictions (Schmidt 1976, p. 205), while (A6) is usually unverifiable

 and therefore a pure assumption. However, some conditions on the instruments are

 needed for a general result like Theorem 1 even though they may not ordinarily be

 assumed when examining properties of three stage least squares. For example,

 White (1984, p. 171) notes that his results apply to three stage least squares with
 lagged endogenous variables provided his unverifiable assumptions on the instru-

 ments hold, and Campos (1986, Appendix B) also imposes assumptions on the

 instruments in a dynamic simultaneous equations model.

 More importantly, no additional effort is required to conclude from Theorem 1

 that the error variance structure in a simultaneous equations model need not be
 restricted to contemporaneous correlation in order to obtain a consistent and

 asymptotically normal system estimator for ,3 via feasible Aitken IV estimation. All
 that is required is that instruments satisfying the maintained assumptions be

 available; the error structure satisfy (A3) through (A5), as is the case with the

 VAR(p) and heteroscedastic structures considered above; and a consistent estima-

 tor for the covariance matrix parameters be available. Note, however, that there

 may be additional identification considerations with such a model (see Harvey

 1990, pp. 347-348). Similarly, two stage least squares modified to accommodate

 autoregressive or heteroscedastic errors in the equation is a consistent and
 asymptotically normal estimator for a single equation provided the maintained

 assumptions hold and a consistent estimator On is available.

 The discussion of SUR models in the previous subsections also shows that the

 asymptotic distribution of the feasible Aitken IV estimator in any stochastic
 regressor model can be established via Theorem 1 when errors are autoregressive

 or heteroscedastic, provided instruments satisfying the maintained assumptions are
 available. This proviso may be difficult to overcome, however, as discussed by

 Schmidt (1976, Chapter 3). As a special case, the standard single equation
 autoregressive model (Schmidt 1976, section 3.2) is included in this conclusion.

 Another area of application for Theorem 1 is models that heretofore relied upon
 FB3. All of these models were originally treated in a standard GLS context, so

 when Theorem 1 applies we have a generalization of the original results to the IV

 context. The nested-error models considered by Fuller and Battese (1973) and the
 two-stage sampling model of Scott and Holt (1982) both have block diagonal

 covariance matrices. Thus, as discussed in the subsection on heteroscedasticity,
 Theorem 1 applies provided the blocks repeat as n -> oo. For Fuller and Battese,
 this means that n must approach oo by letting the number of "individuals" approach

 oo while the numbers of "measurements" and "determinations" are bounded. For

 Scott and Holt, the number of "clusters" must approach oo while the size of the
 clusters is bounded. Neither paper mentions this type of restriction because both
 rely on FB3, but the general need for a restriction of this type is not surprising in

 light of the discussion by Anderson and Hsiao (1982). Fuller and Battese propose
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 972 DAVID M. MANDY AND CARLOS MARTINS-FILHO

 consistent estimators for the parameters of their covariance matrix. Swamy and
 Mehta (1977) use FB3 on a covariance matrix that has n(n+ 1)/2 distinct elements,

 so none of the assumptions (A3) through (A5) necessarily hold. Since Raj et al.

 (1980) rely on Swamy and Mehta, the asymptotic properties of the estimators

 considered in both of these papers remain unknown unless a further restriction is

 added. The CRS assumption added to either of these models establishes the
 asymptotic properties, as discussed in the previous subsection, and both papers
 provide consistent estimators for the covariance matrix parameters. Unfortunately,

 Magnus (1978) has little assumed structure on the covariance matrix, so Theorem
 1 does not reestablish the properties of his two-step estimator unless further

 restrictions are placed on the model. The general covariance structure considered

 by Magnus must be assumed to satisfy assumptions (A3) through (A5) in order for

 Theorem 1 to reestablish the asymptotic properties of his estimator. In general,
 Theorem 1 does not apply whenever the number of nonzero elements in the inverse

 covariance matrix may not be O(n). The proof of Theorem 1 suggests that there is
 little hope for establishing asymptotic equivalence when the number of nonzero
 elements in the inverse covariance matrix is not O(n) unless some additional
 convergence property is available to further restrict the convergence in probability
 of the terms in the sums in equations (1) and (2).

 5. SUMMARY

 Since the small sample properties of feasible Aitken IV estimators are usually too

 complicated to establish, only asymptotic properties are known for most estimators
 under nonscalar identity error covariance structures. These properties are usually

 established through a tedious case-by-case process of showing convergence in

 probability of the feasible Aitken IV estimator to the Aitken IV estimator. This

 process is further complicated by the presence of incorrect extant sufficient

 conditions for convergence of the two estimators. We introduce new sufficient

 conditions that greatly ease the task of demonstrating convergence in probability.
 These new sufficient conditions arise from the observation that in many models

 where asymptotic properties are known, the properties follow from three basic

 conditions: consistency of the estimator for the parameters of the covariance
 matrix, O(n) nonzero elements composed of a fixed number of distinct elements in
 the inverse covariance matrix (or elements that are proportional to a polynomial in

 the covariance matrix parameters), and absolutely convergent column-wise sums of

 the covariance matrix. Since the new sufficient conditions are derived from existing

 models, they provide a unified method for proving asymptotic equivalence of
 Aitken and feasible Aitken estimators in many familiar models. Since the new

 conditions apply in IV contexts rather than only standard GLS contexts, they

 extend many GLS results to the IV framework. Moreover, the new conditions have

 the potential to quickly demonstrate asymptotic equivalence of Aitken and feasible

 Aitken estimators in linear models with heretofore unexplored error structures.

 University of Missouri and University of Tennessee, U.S.A.
 Oregon State University, U.S.A.
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 APPENDIX

 THEOREM (Fuller and Battese 1973, p. 629, Theorem 3). Assume the three

 "regularity conditions:"

 (Rl) For every n, the elements of n (0) are continuously differentiable with
 respect to each component of 0 in an open sphere S containing 00. Denote
 the matrix of derivatives with respect to the ith component of 0 by Gni (0) for
 i = 1, ..., r.

 (R2) limn - (1In)Xj n (0) -1Xn is a nonsingular matrix for every 0 E S, and the
 elements of

 lim -X' Gni (0 )Xn
 n ye n

 are continuous functions of 0 for i = 1, ..., r.

 (R3) For every n, fln (on) is nonsingular, and there exists 8 > 0 such that f _
 00 = Op (n - )-

 Then, fn possesses the same asymptotic distribution as /n3.
 Fuller and Battese seek to prove this theorem by showing that On - f3n =

 OP (n - 1/2-8). Unfortunately, this order in probability does not follow, as the
 following counter-example demonstrates.

 A. 1. Example. Let Xn be an (n x 1) vector of ones and assume for this
 example that un is normal with

 ln (0 ) = diagf() fh(Wh ) MO0) ,
 where 0 is a scalar and

 2 1 ~~2 ( t + ] t + c ct )
 t 2C( t1) 12(+ + t

 ft(H) = | t (t + l ,)) '0E( +

 2 ( (+ 1 0t) ' H GE 1+ '+ +c]

 ct = 2t(t + 1).

 A graph offt(O) is given in Figure 1. Assume 02 = 0 and let On = (1/n) be our
 estimator for 00.
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 A.1.1. Remarks.

 1. ft(0) is constructed from parabolas whose slopes are equal where they join.
 Hence, ft (0) is continuously differentiable on 9f for t = 1, 2,

 2. As t increases, the height of the "spike" increases at a rate of t and the
 spike moves left and narrows.

 3. 1I(t + 1) + 4Ict < 1I(t - 1) for t > 1. Hence, the entire spike occurs
 between 1I(t + 1) and 1I(t - 1), and is centered at lit.

 4. Xn (0) 'Xn = ytnl ft(0).
 5. XY Gn (O)Xn = X1 ft(O), which exists by remark 1.

 A. 1.2. Verification of Regularity Conditions (RI) through (R3).

 (RI) This holds for any 00 and S = 9A, by remark 1.
 (R2) ft(O) = 1 for 0 E (-mo, 0] U [(3/2), mo) for every t. Thus, for 0 in this part

 of the domain

 1 +t -

 1+ - - 2 -

 ft(O * .

 I I~ ~~I

 t~l tAlt I

 - 3

 t+1 C , +1 Ct

 1+ 2 =1
 7+1 +Ct = I 1

 FIGR I
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 1 I n I n

 lim -X'nfn(0) lXn = lim - , ft(0)= lim - 1 = 1.
 n- n n->n t=1 nf> n t=1

 For 0 E (0, (3/2)), let no = max {n: 0 < 1I(n - 1)} where 1/0 is to be regarded
 as oo so that no = 1 for 0 E [1, (3/2)). Note that no exists and is finite for every
 0 E (0, (3/2)), and that ft(0) = 1 for t > n 0. Thus, for 0 E (0, (3/2))

 1 in I o

 lim-X'nfn(H')-IXn = lim- f,( 0) = lim-E f,(0) + lim- MOf(H
 nx n n n n n t=n+l

 I no I n

 clim - > (1 + t) + lim - > 1 since
 n>o n t=1 n- n t=no+1

 1 + t is the maximum offt(0) on 9

 lim n( +n) lim n-n =0+ 1= 1.
 n->oo n no n

 Similarly,

 1 in
 lim - X'nfn (0) -'Xn 2 lim - E f (0) since f (0) > 0 on 9f for every t.
 no n n->o n t=no+l

 n - n6
 =lim =1 .

 n->oo n

 Thus,

 lim -X, fn(0| 'Xn =1 V 0 E 1,
 no n

 and 1 is invertible, so the first part of condition (R2) is verified. To verify the second

 part, note that if 0 E (-oo, 0] U [(3/2), oo) thenf'(0) = 0 for every t. Thus, for
 0 in this part of the domain

 1 i~~~~~~~n
 lim -X'nGn(0)Xn = lim- f'f(0) = 0.
 n n-o n-> oo n n->oo n t=1

 For 0 E (0, (3/2)), note thatf'(0) = 0 for t > no, so
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 1 I n I n
 lim - Xn Gn X lim - ,f( ) li-|,( ) fl-400 O)n lfl-f400o f- E0 I t1t( n->oc) n n->o nt=-1 no t=1

 I n

 s lim - > tc, since tc, is the maximum of If'(0)I on N

 c lim - (ncCn) = O.
 n-4o

 Thus, limnx (1In)X'Gn(0)Xn = 0 for every 0 E 9R, which is a continuous
 function of 0 on 9R, so the second part of condition (R2) is verified.

 (R3) Clearly n - = O,(n'), SO 8 = 1. In fact, n is nonstochastic so that

 -n _ 00 = O(n-1). Moreover, ln(0n) - exists for all n sinceft(0) > 0 for
 every 0 E 9R and t = 1, 2,

 A.1.3. Demonstration that A - p3n # Op(n 128). Rather than writing a
 Taylor expansion as in Fuller and Battese, we shall examine directly the difference

 f3,, - -X~(? = ~)lnn(?

 n n

 A f A(n)u A n)0?U

 t=1 t=1

 - _______- where u, is the tth element of un

 n ~ ~~ -X n -

 E~~~'n fX' )l (O f.( ) '

 t=1 t=1

 n

 E ft( )uA

 -=__ _ - - n u, since f,(0?) =f,(0) - 1 for every t

 t=1 ~ ~ t=

 n n1

 Sft ( A)

 n (ftn) - t00

 t=1

 =~~~- E / ( sic -t (O)ft() oreer

 ft ( Ain)
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 FEASIBLE AITKEN IV ESTIMATORS 977

 fn n) | n-1 )+nt-

 since ft(I/n) 1 for t < n by remark 3,

 ( + n) _ _ _ _ _ _ _

 (n 1)+ (1+ n) n + (- 1) + (1 )

 t= 1

 Therefore,

 (on On) = n U 7> Ut.
 2 2Cnt=1

 Now, E(1/(2\/n) y tn1 Ut) = 0 and

 ti ni U i2 1 in 1 1
 Var I - Ut I =-> E(ut)=-> = -

 2 /n t = 4n t=1 4n tI ft (0 0) 4n t=I ft (0) 4

 where we have used the zero covariance of the out's and the fact that ft(0) = 1 for
 every t. Thus, by Chebyschev's Inequality (1/(2\/<)) _= Ut is bounded in
 probability. But

 Un= n(In n) + ut

 -2i in YC+-n sE a in

 n I nCnI f u t

 WIPn A nl + Op(M),

 so if (\/iI2)un is unbounded in probability then \/A(fn - fi) is also unbounded
 in probability. But P((\1I2)IUn i < B) is the area under a N(O, 1) density between
 -(2B/n) and (2BI\/- ) for any B > 0, so limn- P((\/nI2)Iunl < B) = 0 and
 (\/'l2)u is unbounded in probability. Therefore, f3n - f3n is not Op(n112) and
 is also not Op(n- 1/2-8) = Op(n- 3/2). Thus, the conclusion that An possesses the
 same asymptotic distribution as cannot be established through reliance on An -
 On = Op (n - 1/2-8). In fact, in the present example \/n(On - /3) - N(O, 1) for every
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 n while n(n - ) - N(O, (n + 3)/4), which does not converge in distribution
 toN(O, 1). LI
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