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A UNIFIED APPROACH TO ASYMPTOTIC EQUIVALENCE OF
AITKEN AND FEASIBLE AITKEN INSTRUMENTAL
VARIABLES ESTIMATORS*

By Davip M. ManDY AND CARLOS MARTINS-FILHO!

Asymptotic equivalence of Aitken and feasible Aitken estimators in linear
models with nonscalar identity error covariance matrices is usually established
in a tedious case-by-case manner. Some general sufficient conditions for this
equivalence exist, but there are problems with the extant conditions. These
problems are discussed, and new widely applicable sufficient conditions are
presented and applied to a variety of error structures.

1. INTRODUCTION

Consider the linear statistical model y, = X,,8 + u,, where y, is an (n X 1)
stochastic vector, X, is an (n X k) (possibly stochastic) almost everywhere full
column rank regressor matrix, 8 is a (k X 1) vector of unknown nonstochastic
parameters, and «,, is an (n X 1) error vector with E(u,) = 0 and E(u,u}) = Q,,
an arbitrary symmetric positive definite (n X n) matrix. If Z,, is an (n X k) almost
everywhere full column rank instrument matrix then an instrumental variables (IV)
version of the Aitken (1935) estimator is

B.=(Z,0,'X,)7'2,0,y,,

which is henceforth called an Aitken IV estimator. When Q,, is unknown a feasible
estimator must be constructed, usually entailing a parameterization that assumes
Q, is a known function of an unknown (r X 1) vector 8 with true value 6%, so that
E(u,uy) = Q ,,(00). Then, an IV version of the feasible Aitken estimator for 8
based on an estimator 8" for 6° is

Bn=(Z20,(6M7'X,)7'Z;,Q,(6") 1y,

- which is henceforth called a feasible Aitken IV estimator.

The small sample properties of B, are often unknown, so many estimation
problems involve searching for an estimator 6" such that at least asymptotic
normality of \/;(f-} » — B) can be established. One frequently employed approach
is to show that V/nf, based on an estimator 8" converges in probability to Vn
B, since, in many applications, known sufficient conditions for consistency and
asymptotic normality of [§ » can be assumed. f3 . also may possess certain asymptotic
efficiency properties. Thus, under the sufficient conditions, if \/Z([s . — B,) converges
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958 DAVID M. MANDY AND CARLOS MARTINS-FILHO

in probability to zero for a particular estimator §, then the feasible estimator B,
inherits the asymptotic properties of j,.

Proving convergence in probability in specific cases is often a tedious prospect,
so it is useful to establish general sufficient conditions on the structure of 2,,(9) that
apply in many cases and are relatively easy to check. Two sets of sufficient
conditions have appeared in the literature, but neither offers a complete solution to
the problem. Section 2 reviews these extant results and discusses their shortcom-
ings. We show that the asymptotic properties of certain widely-used estimators that
were heretofore thought to be known are in fact unresolved issues. Section 3
develops new sufficient conditions that summarize the properties of some familiar
models that are important in establishing asymptotic equivalence of Aitken and
feasible Aitken IV estimators. Section 4 demonstrates how the sufficient conditions
of Section 3 are easily applied to familiar models of heteroscedasticity, autocorre-
lation, seemingly unrelated regressions, and three-stage least squares. Some results
for models that have not previously appeared in the literature are also established
via the new sufficient conditions, as well as some of the unresolved properties from
Section 2. Hence, the new conditions provide a convenient method for establishing
asymptotic properties in existing and as yet unexplored models.

2. EXISTING CONDITIONS FOR ASYMPTOTIC EQUIVALENCE OF f3,, AND B,

One set of sufficient conditions for asymptotic equivalence of B, and B, builds
on sufficient conditions for asymptotic normality of Vn(B, — B). Schmidt (1976,
‘p. 101) provides conditions for this asymptotic normality (and hence consistency of
B,) when Q,(6°) = I,,. Restating his conditions for the case of a general Q,,(6°)
matrix yields

1 d
(A1) T Z,0,(0% 'u, — N(0, Q) for some symmetric (k X k) matrix Q
n

1
(A2) plim-Z,0,(0%7'X, = Qzx, a finite positive definite matrix.

n—>o

The proof that these conditions imply \/;(B )] 4 N, 073007%) is
straightforward and parallels the proof provided by Schmidt. Theil (1971, p. 399)
states additional conditions that, along with (A1) and (A2), are jointly sufficient for
plim,,_, \/;([3,, — B,) = 0 for a standard GLS model, in which X, is
nonstochastic and Z,, = X,,.2 White (1984, p. 163) notes that Theil’s theorem may
be extended to the case of general instrumental variables with little difficulty. In
particular, (A1) and (A2) combine with

! A
5 plim ~ Z;,(2,(6") ' = 2,(09 ™)X, =0

n—>o

2 Theil actually uses conditions that imply (A1) and (A2), but this does not affect the conclusion.
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FEASIBLE AITKEN IV ESTIMATORS 959

1
(2) plim —= Z3,(Q,(8" ™'~ Q,(6%) u, =0

n—w N

to provide sufficient conditions for plim,_,. Vna(8, — B,) = 0.3

There are two main problems to be overcome in verifying equations (1) and (2).
First, consistency of 8" cannot be combined with Slutsky’s Theorem (as argued,
for example, by Parks 1967, pp. 505-506) to establish equation (1) because
(1/n)Z',Q,,(8") "1 X, is a function of 8" that directly depends on n, while Slutsky’s
Theorem assumes the function is independent of the sample size. This problem
arises in equation (2) as well, but a second difficulty with equation (2) is that
Chebyschev’s Inequality cannot be easily applied because the potential statistical
dependence between 8" and u, results in a complicated second moment matrix
even if Z, is nonstochastic, as in a standard GLS model. This is a serious problem
since " and u, are statistically dependent in most applications. Hence, consis-
tency of " is sufficient for neither equation (1) nor equation (2), as demonstrated
conclusively by Schmidt’s (1976, p. 69) counter-example. Nevertheless, an ap-
proach like Theil’s theorem can be successfully employed in a number of well-
known cases with a consistent estimator 8" (for example, seemingly unrelated
regressions Zellner 1962; finite order autoregressive errors Fuller 1976, pp. 424—
425; and grouped heteroscedasticity Taylor 1977), and White applies his extension
on a case-by-case to IV estimation of seemingly unrelated regressions with and
without particular forms of heteroscedastic and autoregressive errors.

Since equations (1) and (2) involve only slightly simpler probability limits than
the original problem, more easily verified sufficient conditions would be useful.
Fuller and Battese (1973, Theorem 3, hereafter FB3) propose a second set of
sufficient conditions for the standard GLS model. Their conditions are relatively
easy to apply because only ordinary limits, differentiability, continuity, and the
order in probability of §” — 6° are involved. FB3 is used to establish asymptotic
equivalence of Aitken and feasible Aitken estimators in standard GLS models by
several authors in addition to Fuller and Battese (Swamy and Mehta 1977; Magnus
1978; Raj, Srivastava, and Ullah 1980; and Scott and Holt 1982).

Unfortunately, FB3 overlooks both of the aforementioned problems encountered
in verifying equations (1) and (2). Crockett (1985, p. 203) notices that the proof of
FB3 neglects the potential dependence between 8" and u », but does not demon-
strate that the conclusion of FB3 is incorrect. In the Appendix, we establish
conclusively that FB3 is incorrect by constructing a counter-example in which
6" is nonstochastic, so that the statistical dependence issue does not arise, but
1U/n)X,Q,(0M " 'X, and (1/VmX,Q,(0")  'u, still fail to converge to
/)X, Q,(0°) "' X, and (1/Vm)X,Q,(0% ~'u,, respectively, because of their

3 White relies on different conditions for the asymptotic normality than (A1) and (A2), and lists three
conditions rather than equations (1) and (2) above. This is because he expresses his instruments as Z), =
X,Q,(6Mm~1Z,(Z',0,(6"~'Z,)"1Z, for some observable (n x k) matrix Z,, which allows White to
state conditions in terms of the components X, Q,, and Z,, of Z,. With this choice of instruments
White’s three conditions are sufficient for equations (1) and (2) above, which in turn are sufficient for
plim,,_, \/;([3 n- E,,) = 0 (assuming (A1) and (A2)). Hence, under (A1) and (A2), equations (1) and (2)
are at least as general as White’s three conditions.
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960 DAVID M. MANDY AND CARLOS MARTINS-FILHO

dependence on n. Hence, the conditions of FB3 do not assure that either of the
difficulties of equations (1) and (2) are solved, and this deficiency means that more
convenient conditions than equations (1) and (2) remain unknown. The breakdown
of FB3 also means that estimators whose properties are established via FB3 may
not possess the advertised properties. This is particularly troublesome for the panel
estimation techniques of Swamy and Mehta (1977) and the two-step estimator of
Magnus (1978) since these procedures are widely cited. Cragg (1992, p. 181) also
overlooks the problems in verifying (1) and (2), as the example in the Appendix
satisfies his assumptions but not his conclusions.

3. NEW SUFFICIENT CONDITIONS FOR ASYMPTOTIC EQUIVALENCE OF B n AND ﬁ n

Despite the known insufficiency of plim,,_,. 8" = 6° for plim,._,., \/r—t(ﬁ w— By =
0, Theil’s approach and White’s extension are successful in many particular models
when 8" is consistent. Our conditions clarify why plim,,_,., \/r_t(ﬁ,, — B,) = 0in many
familiar special cases of Q,,(6) when 6" is consistent by summarizing the structure of
these special cases that is important in proving the asymptotic equivalence.

The dependence on n can be partially addressed through an extension of
Slutsky’s Theorem provided by Amemiya (1985, Theorem 4.1.5) to the case of a
sequence of functions that depend on n. The key to this extension is uniform
convergence of the sequence as n — . Uniform convergence of individual
elements of Q,(8) ~! holds in many models because these functions frequently do
not even depend on n. For future reference, Amemiya’s theorem for our context is
restated here without proof.

LEMMA 1 (Amemiya 1985, Theorem 4.1.5). Let ¢, (8) — ¢(0) uniformly on an
open set S containing 8°, where ¢ is real-valued and continuous at 0°. If plim,_,,
6" = 0%, then plim,_,. ¢,(8") = ¢(8°).

The dependence on n is not completely resolved by this lemma because the
dimensions of Z,, Q,(0)"!, X,, and u, still depend on n. This leads to
summations with n2 terms in equations (1) and (2), which is problematic since the
denominator of equation (1) in only O(n) and the denominator of equation (2) is
only O(n'?). In many models the number of nonzero elements in ,,(8) ~! is O(n)
so that the sums in equations (1) and (2) really have only O(r) terms, but even with
O(n) terms the denominators of (1) and (2) may be inadequate for convergence
unless the terms in the sums converge in some uniform manner. Often there are a
finite number of distinct elements in Q,(8) ~! that simply repeat as n — . This
imposes the needed uniformity provided the individual elements of Q,(0) ~1 also
satisfy Lemma 1, and the other random variables in the sums satisfy some routinely
encountered ‘‘regularity’’ and ‘‘stability’’ conditions. In particular, equation (1)
relies on certain fourth moments between the regressors and instruments possess-
ing a uniform upper bound. Equation (2) relies on uniform boundedness of the
second absolute moments of each instrument, error covariances conditional on the
instruments that are uniformly bounded relative to the corresponding unconditional
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FEASIBLE AITKEN IV ESTIMATORS 961

covariances, and absolutely convergent column-wise sums of the inverse covari-
ance. This last condition is sometimes implied by stability of a stochastic process,
and the conditional covariance condition is always true for a standard GLS model.

The statistical dependence between 6" and u,, is manageable if terms involving
elements of Q ,,(9") R 01 ,,(00) =1 can be factored from the summations in
equation (2), which include elements of u,,. This factoring occurs in most models as
a consequence of the finite number of distinct functions in Q,,(6) ~1 Hence, a finite
number of distinct functions in £,(0) ! can assist in two problems: the depen-
dence between 6" and u,,, and the need for uniformity in the convergence of the
terms of the sums.

Sufficiency of these properties for equations (1) and (2) is verified by the
following theorem.

THEOREM 1. In addition to (A1) and (A2), assume the following:

(A3) Q,(0)"! has at most W < = distinct nonzero elements for every n, denoted
by g,,(0) forw = 1, ..., W. That is, there are n* — W elements that are
either zero or duplicates of other nonzero elements in Q,(0) =1 For each w,
9wn(0) converges uniformly as n — « to a real-valued function g,,(6) on an
open set S containing 6°, where g,, is continuous at 0°.

(A4) The number of nonzero elements in each column (and row) of Q,(6) ~1s
uniformly bounded by N < © as n — .

(AS) There exists C < © such that 3L, |w;| = C for everyn =1,2, ...and j =
1, ..., n, where wy; is the (i, j) element ofﬂn(eo).

(A6) There exists B < ® such that

@) E@pxigZintng) < Bfori,jot, 1=1,2, coandh, g =1, ., k
(i) E(zjnzin) = B fori,j=1,2, coandh =1, ., k
(iii) |EQuouqlzn, 2in)| < Blog,| fori, j, t, 7=1,2, ... ; h =1, ..., k; and

almost every realization of (zjn, Zin),

where zjy, is the (j, h) element of Z,,, x,, is the (t, q) element of X,,, and u, is the tt‘l'il
element of u,. Under (Al) through (A6), if plim, . 6" = 6° then \/;L(B,, -B—
NQO, Q73 007%). That is, (A1) through (A6) are sufficient for the feasible Aitken
estimator based on a consistent estimator of 8° to be asymptotically equivalent to

the Aitken IV estimator (and hence consistent and asymptotically normal under
(A1) and (A2)).

ProoF. Since (A1) and (A2) are holding, White’s result shows that it is sufficient
to verify equations (1) and (2). Denote the (i, j) element of €1 ,(8) 1oy fijn(6) and
let go(6) = 0 be the zero function. We must show a,, and aj are op(l) for
arbitrary (k, q), where a,, is the (k, q) element of the left side of (1) and is the
hth element of the left side of (2). Letting I;,,, = {j =1, 2, ..., n : f;;(8) =
Jwn(0)} be the index set of elements in row i of ,(6) =1 that are equal to g,,,(6),
we have
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By Lemma 1 and (A3), 9,,,(8") = 94n(8°) = (g,n(8") — 9,(8%) + (g,(8°) =
gwn(e°)) = 0p(1) for every w = 1, ... , W. Since W is fixed as n — =, we need
only show that

1 n
=2 2 X = 0,(1)

i=1 j€liwn

S

for arbitrary w. Taking the expectation of the square yields

2

1 non
z 2 ZihXjq =_222 z z E(Zihzjhxth‘rq)

i=1 j€lwn R 21 j=1 t€ljm €L

> >, B by (A6()

1 j=1 t€Ljwn 7€Lwn

M:

1
n?

l/\

i

= N2B by (A4),
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FEASIBLE AITKEN IV ESTIMATORS 963

since each index set /;,,, and I;,, contains no more than N elements.

Since the second moment bound is independent of n, applying Chebyschev’s
Inequality centered at 0 shows that (1/n) 2 /21 Yjer,,, 2inXjq = Op(1). The same
manipulations used above show that

1 w . n
ap =T 2 (gwn(on)_gwn(oo)) 2 2 ZinlUj s -
n w1 i=1 j€lin

so we need only show that (1/Vn) 3/L, 2jet,, 2intj = Op(1) for arbitrary w.
Taking the expectation of the square yields

2

1 n 1 n n
E; > 2zl =;22 > > E(zjnzinuiu,)

i=1 j€lwn i=1 j=1 t€ljwn 7E€liwn

A
S| =
.Mx
M=

|E(zjnzinE(urur|zjnzin))|

J=1 t€Ljwn |i=1 7€Iiwn

n

1 n
5;;2 > 1> > ElzmzanllE@ur]znzin))

Jj=1 t€Ljwn |i=1 7€l

n

> 2 |2 X El(znzi)le.|| by (A6(ii)

j=1 t€lLwn |i=1 7E€Lwn

=—2 2 |2 X lonl| by (A6Gi).

j=1 t€Ljwn |i=1 1E€Ln

By (A4), each 7 belongs to at most N different index sets 1;,,, for given w and n
because the 7th column of ©(6°) ~! has no more than N nonzero elements. Thus,

n n
> > low|=N 2 |o.|=NC by (AS),

i=1 1€l =1
which implies
2
1 n BZ n BZ n
E|-|Y 3> zauj| |=— 2 > NC=—> N2C=BNC.
n i=1 j€lLiwn n J=1 t€Ljwn n Jj=1

Since the second moment bound is independent of n, applying Chebyschev’s
Inequality centered at 0 shows that (1/Vn) /Ly 5 jer,, Zinj = 0p(1). O

REMARK. Asymptotic equivalence also means that (Al) through (A6) are
sufficient for the feasible Aitken IV estimator to possess the asymptotic efficiency
of the Aitken IV estimator, whether this be among: (i) linear unbiased estimators
(even though the feasible estimator may be neither linear nor unbiased), as in a
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964 DAVID M. MANDY AND CARLOS MARTINS-FILHO

standard GLS model with (potentially) nonnormal «,; (ii) consistent uniformly
asymptotically normal estimators, as when é,, is asymptotically equivalent to the
maximum likelihood estimator;. (iii) the class of IV estimators, as in White (1984,
Theorem 4.57); or (iv) some other class of estimators.

The example in the Appendix satisfies (A1) through (A6) for the choice of
instruments Z,, = X,, with the exception of (A3). This verifies the importance of
(A3). To appreciate the importance of (A4), consider the following example. Let 6
be a scalar and the (i, j) element of (2,,(49)‘1 be f;;(6) = 0 fori # j and f;;(0) =
1+ 6,forn=1,2,..andi,j=1, ..., n. Suppose X, is a vector of ones and
6% = 0. Since Q,(8%) = I,,, (Al), (A2), (A5), and (A6) are easily satisfied with
instruments Z, = X, provided the elements of u, satisfy a central limit theorem.
Since there are only two distinct f;; functions, which are uniformly continuous on
bounded sets and independent of n, (A3) is also satisfied. However, (A4) fails since
Q,(0)"! has n? nonzero elements. This leads to (l/n)Z’,,(Q,,(lA9")_1 -
Q,0° X, = nd", which does not converge unless " = op(n_l). In partic-
ular, equation (1) can fail for consistent 8", such as " = (1/Vn).

FB3 uses a Taylor series expansion to approach the problem of establishing
asymptotic equivalence of Aitken and feasible Aitken estimators. The Taylor series
approach can be used to prove a variant of Theorem 1 provided that most of the
boundedness assumptions of Theorem 1 still hold. Writing the elements of Q,,(8) ™!
as Taylor series about §° essentially provides another method to accomplish the
factoring of terms involving elements of Q,,(@")‘1 - Q,,((:?o)‘1 from the sums,
thereby obtaining the needed uniformity and separation of 8" and u »- One property
needed to obtain the uniformity that assures convergence of the Taylor expansions
is uniformly bounded derivatives of the elements in ,,(8) ! at 6° as n — . This
holds for most models, but even with bounded derivatives the Taylor residuals
depend on 6" . Thus, the Taylor residuals are statistically dependent on u,,, and this
confounds attempts to use Chebyschev’s Inequality. The only way to completely
avoid the dependence problem is to factor all terms involving 8" from the sums
involving u,. The finite number of distinct elements assumed in (A3) facilitates this
factoring, but without (A3) the Taylor series will accomplish this only if the Taylor
residual disappears. That is, the elements of ,(8) "' must be proportional to
polynomials in 6. Formally, Theorem 1 holds if (A3) is replaced by

(A3’) The (i, j) element of Q,(6) ~1 can be expressed 9n(0)fijn(0), where

(i) g, is a sequence of functions, independent of (i, j), that converges uniformly
to a real-valued function g(8) as n — « on an open set .S containing 6°, where
g is continuous at 6°.

(i) fij» is a polynomial of degree less than nz (z an integer), whose partial
derivatives D, ..., f,,-,,(e") at 8° (I = nz) are all bounded by W for every i,
Jj, n (including [ = 0. That is, including the function itself).

We will not repeat here the proof of Theorem 1 under this alternate assumption—a
detailed proof is available from the authors on request. The alternate version of
Theorem 1 may be useful in models where the number of distinct elements in
Q,(6) 7! is not fixed.
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FEASIBLE AITKEN IV ESTIMATORS 965

4. APPLICATIONS

This section demonstrates that Theorem 1 applies to many familiar models and
also most of the models that heretofore relied on FB3. Assumption (A3) is usually
easier to verify and more widely applicable than (A3'), so we focus on applying the
version of Theorem 1 proven above and simply note here that (A3’) may also be
used in some of the models. Most of the asymptotic properties established in this
section are not new, although some are, and the method of proof using Theorem 1
is new and demonstrates that the theorem is widely applicable precisely because
many familiar models have the basic structure embodied in assumptions (A3)
through (AS). This structure forms the basis for the previous case-by-case proofs of
the known asymptotic properties.

To check the assumptions of Theorem 1, first recall that whenever asymptotic
normality is investigated in a linear model (A1) must be established. This is usually
accomplished by imposing assumptions more primitive than (A1) on the model and
then utilizing a central limit theorem (CLT). For example, in a standard GLS model
in which the transformed errors are IID, the Lindberg-Feller CLT applies.
Alternatively, if the transformed errors are independent with bounded second and
absolute third moments, use can be made of Liapunov’s CLT. Schmidt (1976, p. 99)
uses Schoenfeld’s (1971) CLT to establish (A1) in the autoregressive model, while
Campos (1986) uses Hannan’s (1976) CLT to establish (Al) in a simultaneous
equations model with lagged endogenous variables and VARMA errors. White
(1984, Sections V.4 and V.5) discusses useful extensions of CLT’s that rely on
mixing distributions and martingale difference sequences. These extensions are
particularly useful for I'V estimators. Since (A1) is not our primary concern and the
approach to (A1) varies depending on the model, we assume throughout this section
that (A1) holds. Assumption (A2) is standard, while the regularity/stability assump-
tion (A6) involves only moments and often cannot be verified or refuted. Therefore
we assume throughout this section that assumptions (A1), (A2), and (A6) (hereafter
called the maintained assumptions) hold, although there are well-known cases in
which they fail. For instance, both (A2) and (A6) can fail if a time trend is included
in the X, matrix, while (A1) can fail if X, is used for instruments when it is
stochastic. In any particular context assumptions sufficient for the maintained
assumptions must be in place before proceeding to apply Theorem 1. Given the
maintained assumptions we must confirm (A3) through (AS) for any given covari-
ance structure ,(0).

The applications center around a seemingly unrelated regressions (SUR) model
of m equations: y; = X;B8 + u; fori = 1, ..., n, where y; and u; are (m X 1)
vectors of dependents and errors, respectively, for observation i on all m
equations;

x;] OI eee OI
0! x;2 eee OI

X,' =
I-()’ cee 0/ x;'m
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966 DAVID M. MANDY AND CARLOS MARTINS-FILHO

is the (m X k) (possibly stochastic) matrix of regressors for observation i on all m
equations (x;; is the (k; X 1) vector of regressors for observation i on equation j,
the zero vectors are of conformable dimensions, and k = >/2; k;); and B =
(B1, ..., By)' is the (k X 1) vector of unknown parameters composed of the m
(k; x 1) subvectors B; for each equation. Stacking the n observations yields the
usual expression y, = X,B + u,, where y, and u, are (nm X 1) and X, is
(nm x k), and E(u,) = 0 with E(u,u’) = 9,(0°).

4.1. Autoregressive Errors. Suppose u; follows the pth order vector autore-
gressive (VAR(p)) process

U; =R1u,~_1 +R2u,~_2 + e +Rpu,~_p + v; fori= 0, =1, £2, ...,

where each R; is an unknown (m X m) parameter matrix and v; ~ IID (0, X)) for
a symmetric positive definite (m X m) matrix .. Verification of (A3) and (A4)
requires knowledge of the structure of Q,(0) ~1, where 6 consists of the distinct
elements of > and each R;. Following Guilkey and Schmidt (1973) and Judge
et al. (1985, Section 12.3), since 2. is nonsingular Cholesky decomposition may
be used to choose a lower triangular (pm X pm) matrix A such that
AE([uy oo up)'[uy .. upDA' = I, ® 3. It is straightforward to verify that the
(mn X mn) transformation matrix

- Rp vee -R; I m |
yields transformed errors P,u, satisfying E(P,u,(P,u,)') = I, ® X, so
Q07! =PI, ® 3" )P,.4 Carrying out this multiplication reveals that the
upper left (pm X pm) block of Q,(6) ' isA'(I, ® X 1A + B'(I, ® T ")B and
the lower right (pm X pm) block is T'(I, ® >~ !)T, where

4 For the m = 1 and p = 2 case the (2, 1) element of A disagrees with the transformation provided
by Fomby et al. (1988, p. 218) and Greene (1993, p. 429) but agrees with the transformation given by Fuller
(1976, p. 423) and Judge et al. (1985, p. 294).
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(R, Rp-1 Ry 7] [~ Ry 0 0
0 R, R,
B=
- R,y 0
;0 0 R, | _Rp_l -~ R, ROJ
and we have defined Ry = —I,, for notational convenience. The (m x m) block of

Q,(0)"' in the (i, j) position (in terms of (m x m) blocks) is YA
R;Z'IRHli_jl for p < max {i, j} and min {i, j} < n — p, where it is understood
that this sum is zero when p — |i — j| < 0. Hence all elements of Q,,(8) ™! that lie
more than p (m X m) blocks off the main diagonal are zero, verifying (A4) with
N = m(2p + 1). Since the blocks of Q,(8) ! are independent of r there are at
most W = pm(pm + 1) + (p + 1)m? distinct functions in Q,,(8) ~!, all of which
are independent of n for n = W (implying uniform convergence trivially) and
continuous at 6° because the operations involved in obtaining the blocks from  are
continuous at #° when Y, is nonsingular. This verifies (A3).

All that remains is to verify (A5). Following Anderson (1971, p. 177) the
m-dimensional VAR(p) process may be rewritten as a pm-dimensional VAR(1)
processe; = Re;_1 + &;, where e; = (uj_p41 .- ;) and g; = (0’ ... 0'v})’ are
(pm x 1) vectors, and

[0 1, O 0]
R =
0
0o - .. .. o I,
R, R,.i - - Ry
- y 1]

is an (mp X mp) matrix. If the process is covariance stationary then the absolute
eigenvalues of R are less than one, and also E(e;e;) = RI= IE(e,e’,) for arbitrary
t (Anderson 1971, p. 182). From the definition of e;, the sum 3./X; |E(u;u})| is the
lower right (m X m) block of 3/ |E(e;e;)|, where |-| denotes the element-wise
absolute value. So, if the elements of the latter sum are bounded independently of
j as n — o then (A5) holds. Since

n
2 IR

i=0

n n
> |E(eie))| =2 3 |E(esep)| <2 |E(eoeb)|,
i=1

i=0

rewriting |R’| in the Jordan Canonical Form yields
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968 DAVID M. MANDY AND CARLOS MARTINS-FILHO

n n
> |E(eied)| =210 | S |AY ||[T7Y |Eeqed)l,
i=1 i=0

where A is a block diagonal matrix involving the eigenvalues of R and J is a fixed
matrix depending only on R. Since the absolute eigenvalues are less than one >.;Z,
|Af| converges, which verifies (AS). v

We have shown that, if the VAR(p) error process is covariance stationary and the
maintained assumptions hold, then Theorem 1 applies and any feasible Aitken IV
estimator based on consistent estimators of the contemporaneous covariance >, and
the VAR parameters R; possesses the same asymptotic properties as the Aitken IV
estimator. To our knowledge, this result has not previously appeared in the
literature at the level of generality presented here. Consistent estimators for the
VAR(1) case are discussed by Guilkey and Schmidt (1973) and Judge et al. (1985,
section 12.3), and Theorem 1 verifies the asymptotic distribution of the feasible
Aitken estimator for this case. Zellner’s (1962) estimator and its variants (Zellner
and Huang 1962) are all consistent, so Theorem 1 establishes Zellner’s result for his
special case of p = 0. Parks (1967) (whose results are suspect due to the reliance
on Slutsky’s Theorem to establish equations (1) and (2)) considers an SUR model
with AR(1) errors. All of these models are special cases of the error structure
considered here and are in the standard GLS rather than the IV context, as are
typical treatments of single equation models with AR errors (for example, Fuller
1976, Theorem 9.7.1, who provides a consistent estimator of §° for the AR(p) case).
Anderson (1971, section 10.3.2) provides consistent estimators of the covariances
of a stationary error process, but his approach does not assume a VAR(p) structure
and also assumes the standard GLS context. Moreover, Anderson does not
investigate feasible Aitken estimation of 8. One unresolved problem with the
general VAR(p) case is that, as far as we know preliminary consistent estimators of
2 and the R;’s for use in a two-step estimator for 8 have not been proposed.

The exact inverse Q,(8) ~! derived by Uppuluri and Carpenter (1969) when u,,
follows an MA(1) process satisfies neither (A3) nor (A4), so Theorem 1 does not
generally apply to VARMA error processes. To our knowledge, asymptotic
equivalence of Aitken and feasible Aitken estimators has not been established for
a general consistent estimator §” when u, is VARMA without a distributional
assumption on u,, even for the single equation nonstochastic regressor context
with MA(1) errors.5 Zinde-Walsh and Galbraith (1991) consider general ARMA
errors but only do so for one equation and compare the feasible Aitken and
maximum likelihood estimators with normal u,,, rather than the Aitken and feasible
Aitken estimators with no particular error distribution. Amemiya (1973a) considers
ARMA errors in a standard GLS model, but only establishes results for a specific
estimator §". Campos (1986) considers VARMA errors in a general simultaneous
equations model, but does not examine feasible Aitken estimation of 3.

Note finally that some approaches to estimation with AR(p) errors unnecessarily
rely on normality to obtain £, (6) -1 (Siddiqui 1958, Galbraith and Galbraith 1974,

5 However, Fuller (1976, p. 425) mentions this problem.
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Shaman 1975), or on approximations (Shaman 1975), and some approaches give
alternative estimators for B that are consistent and asymptotically normal when
errors are AR(p) or VAR(p) (Durbin 1960, Pierce 1971, White 1984 section VII.4,
Campos 1986), but do not establish asymptotic equivalence of feasible Aitken and
Aitken estimators, particularly for an arbitrary consistent estimator 8”. All of the
previous approaches to autocorrelation mentioned in this subsection except
Guilkey and Schmidt, Parks, White, and Campos are for the single equation
context, and all but White and Campos are for the standard GLS rather than the IV
context.

4.2. Heteroscedasticity. Suppose now that u; is heteroscedastic with E(u;u?})
= >; for symmetric positive definite (m X m) matrices ; and E(u;uj) = 0 for
i # j. Then Q,(8) and Q,(6) =1 are block diagonal with diagonal blocks >; and
> !, respectively, so (A4) holds with N = m and (AS) holds provided the
contemporaneous covariances have an upper bound as n — . This is an
assumption that is likely to be placed on any heteroscedastic model and may be
implied by other assumptions for any given heteroscedastic structure, leaving only
assumption (A3) as a serious problem in heteroscedastic models. White (1984,
section VII.3) extends Taylor’s (1977) model of constant variances within sub-
groups of observations to the SUR IV context. In this model 6 consists of the
distinct elements of a fixed number of distinct >; matrices. This yields a fixed
number of distinct elements in Q,(8) !, none of which depend on n and all of
which are continuous at 6° since each 3, ; is nonsingular. Hence (A3) is satisfied,
and any consistent estimator of the contemporaneous covariance matrices in this
model yields a consistent and asymptotically normal feasible Aitken IV estimator of
B under the maintained assumptions. Taylor provides a consistent estimator of §°
for the single equation standard GLS case, and White provides a consistent
estimator for the SUR IV context. Note that n — « in this model by letting the size
of one or more subgroups of observations grow while keeping the number of
subgroups fixed. Depending on the estimator ", it may be necessary to let the size
of all subgroups approach o« in order to establish consistency of 8”.

Alternatively, suppose all n >; matrices are distinct. Models of this type are
frequently estimated by assuming some parametric structure for the heteroscedas-
ticity of the form o7, = g((-)'v,';q), where a};q is the (h, q) element of >.; and v};q is
a vector of nonstochastic explanatory variables (for single equation models, see
Goldberger 1964, Park 1966, Glejser 1969, Goldfeld and Quandt 1972, Amemiya
1973b, Harvey 1976, and Amemiya 1977, while multiple equation models are
discussed by Singh and Ullah 1974 and Mandy and Martins-Filho 1993, who also
discuss panel data models). In general, (A3) fails in these models because the
number of distinct elements in £2,,(9) ~1increases with n. However, this is partially
a product of the way the limiting process is envisioned. If the limiting process on

(- 1/ 1,2 2 2 nr
Vn - [vll e UmmU11 oo Umm <0 V11 oo vmm]

is ‘‘constant in repeated samples’’ (CRS; see Theil 1971, pp. 364-365) then the

sample size is pn, where p is the number of repeated samples, and the sample size
tends to infinity by letting p — «. Hence, as p — © we can set W = m(m + 1)n/2
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970 DAVID M. MANDY AND CARLOS MARTINS-FILHO

and the model behaves like Taylor’s ‘‘constant within subgroups’’ model asymp-
totically. By this argument Theorem 1 applies to any model with a block diagonal
covariance matrix if the maintained assumptions hold and the blocks repeat as n — .
Therefore, in parametric heteroscedastic models under CRS we need only obtain a
consistent estimator of 6° in order to immediately establish the asymptotic
properties of feasible Aitken IV estimators via Theorem 1. Consistent estimators of
6° are readily available (Judge et al. 1985, pp. 431441 provides a summary of single
equation estimators, while consistent multiple equation and panel data estimators
are discussed by Singh and Ullah 1974 and Mandy and Martins-Filho 1993).

Note that the Hildreth-Houck (1968) random coefficients model is included in this
conclusion as a special case in which there is one equation, g(8'v{,) = 0’vf1, and
v = (x,-21 xizk), even though previous proofs of asymptotic normality of the
Hildreth-Houck estimator have required an estimator 6" of 6° satisfying 8" —
8° = 0,((pn)~?) (Crockett 1985, Mandy and Martins-Filho 1993). Thus,
asymptotic normality of the Hildreth-Houck estimator persists with weaker con-
vergence of 6" provided the limiting process is CRS. This conclusion holds only
because of the CRS assumption. Without CRS (A3) fails in the Hildreth-Houck
model and therefore Theorem 1 is inapplicable. Hence, Theorem 1 does not provide
a stronger result than Crockett or Mandy and Martins-Filho. Rather, Theorem 1
permits substitution of the CRS assumption for the stronger convergence of 6"
required by these authors. These authors obtain the result without the CRS
‘assumption because their stronger convergence, working through the theorem by
Carroll and Ruppert (1982), provides an alternative to the fixed number of distinct
elements used by Theorem 1 to enable application of Chebyschev’s Inequality in
overcoming the statistical dependence problem of equation (2). Carroll and Ruppert
construct an application of Chebyschev’s Inequality for equation (2) under hetero-
scedasticity when there is not a fixed number of distinct elements in Q,(6) "}, but
only with convergence assumptions that require §" = O,((pn) ~172y rather than
the weaker consistency of 6".

The CRS assumption could help prove asymptotic equivalence with other, not
necessarily heteroscedastic, error structures. In general, if this assumption fixes the
number of distinct elements in the inverse covariance matrix as n — o, then it will
assist in establishing (A3).

Note also that, with the exception of White, the heteroscedastic models
considered in this subsection were originally developed in a standard GLS context,
and many have only been proposed in single equation models, but the asymptotic
properties from Theorem 1 hold in any multiple equation IV context with
heteroscedastic errors provided a consistent estimator of 8" is available and the
maintained assumptions are satisfied as well as (A3). The main difference between the
results for heteroscedastic models presented here and those of White is our emphasis
on the structure of ,(6) to establish the asymptotic distribution of \/;z(B,, - PB.

4.3. Special Cases. The three stage least squares estimator for a simultaneous
equations model with or without lagged endogenous variables is a feasible Aitken
IV estimator in an SUR system; with the particular choice of instruments Z, =
(D(D'D)'D'®I m)Xn, where D is the (n X T) matrix of T =< k predetermined

This content downloaded from
198.11.30.153 on Wed, 03 Mar 2021 23:21:31 UTC
All use subject to https://about.jstor.org/terms



FEASIBLE AITKEN IV ESTIMATORS 971

variables in the system; and the particular consistent estimator for the (k, q)
element of the contemporaneous correlation matrix (1/n) X/X1 (yin — XinBn)
(yiq — xiqBq), Where y;, is the hth element of y; and B, is the two stage least
squares estimator of 8,. Hence the proof of consistency and asymptotic normality
of the three stage least squares estimator can be viewed as a special case of
Theorem 1. Note that (A2) is satisfied in this context if all equations are identified
by exclusion restrictions (Schmidt 1976, p. 205), while (A6) is usually unverifiable
and therefore a pure assumption. However, some conditions on the instruments are
needed for a general result like Theorem 1 even though they may not ordinarily be
assumed when examining properties of three stage least squares. For example,
White (1984, p. 171) notes that his results apply to three stage least squares with
lagged endogenous variables provided his unverifiable assumptions on the instru-
ments hold, and Campos (1986, Appendix B) also imposes assumptions on the
instruments in a dynamic simultaneous equations model.

More importantly, no additional effort is required to conclude from Theorem 1
that the error variance structure in a simultaneous equations model need not be
restricted to contemporaneous correlation in order to obtain a consistent and
asymptotically normal system estimator for B via feasible Aitken IV estimation. All
that is required is that instruments satisfying the maintained assumptions be
available; the error structure satisfy (A3) through (AS), as is the case with the
VAR(p) and heteroscedastic structures considered above; and a consistent estima-
tor for the covariance matrix parameters be available. Note, however, that there
may be additional identification considerations with such a model (see Harvey
1990, pp. 347-348). Similarly, two stage least squares modified to accommodate
autoregressive or heteroscedastic errors in the equation is a consistent and
asymptotically normal estimator for a single equation provided the maintained
assumptions hold and a consistent estimator 8" is available.

The discussion of SUR models in the previous subsections also shows that the
asymptotic distribution of the feasible Aitken IV estimator in any stochastic
regressor model can be established via Theorem 1 when errors are autoregressive
or heteroscedastic, provided instruments satisfying the maintained assumptions are
available. This proviso may be difficult to overcome, however, as discussed by
Schmidt (1976, Chapter 3). As a special case, the standard single equation
autoregressive model (Schmidt 1976, section 3.2) is included in this conclusion.

Another area of application for Theorem 1 is models that heretofore relied upon
FB3. All of these models were originally treated in a standard GLS context, so
when Theorem 1 applies we have a generalization of the original results to the IV
context. The nested-error models considered by Fuller and Battese (1973) and the
two-stage sampling model of Scott and Holt (1982) both have block diagonal
covariance matrices. Thus, as discussed in the subsection on heteroscedasticity,
Theorem 1 applies provided the blocks repeat as » — «. For Fuller and Battese,
this means that » must approach o by letting the number of ‘‘individuals’’ approach
o while the numbers of ‘‘measurements’’ and ‘‘determinations’’ are bounded. For
Scott and Holt, the number of ‘‘clusters’’ must approach « while the size of the
clusters is bounded. Neither paper mentions this type of restriction because both
rely on FB3, but the general need for a restriction of this type is not surprising in
light of the discussion by Anderson and Hsiao (1982). Fuller and Battese propose
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consistent estimators for the parameters of their covariance matrix. Swamy and
Mehta (1977) use FB3 on a covariance matrix that has n(rn+1)/2 distinct elements,
so none of the assumptions (A3) through (AS) necessarily hold. Since Raj et al.
(1980) rely on Swamy and Mehta, the asymptotic properties of the estimators
considered in both of these papers remain unknown unless a further restriction is
added. The CRS assumption added to either of these models establishes the
asymptotic properties, as discussed in the previous subsection, and both papers
provide consistent estimators for the covariance matrix parameters. Unfortunately,
Magnus (1978) has little assumed structure on the covariance matrix, so Theorem
1 does not reestablish the properties of his two-step estimator unless further
restrictions are placed on the model. The general covariance structure considered
by Magnus must be assumed to satisfy assumptions (A3) through (AS) in order for
Theorem 1 to reestablish the asymptotic properties of his estimator. In general,
Theorem 1 does not apply whenever the number of nonzero elements in the inverse
covariance matrix may not be O(n). The proof of Theorem 1 suggests that there is
little hope for establishing asymptotic equivalence when the number of nonzero
elements in the inverse covariance matrix is not O(n) unless some additional
convergence property is available to further restrict the convergence in probability
of the terms in the sums in equations (1) and (2).

5. SUMMARY

Since the small sample properties of feasible Aitken IV estimators are usually too
complicated to establish, only asymptotic properties are known for most estimators
under nonscalar identity error covariance structures. These properties are usually
established through a tedious case-by-case process of showing convergence in
probability of the feasible Aitken IV estimator to the Aitken IV estimator. This
process is further complicated by the presence of incorrect extant sufficient
conditions for convergence of the two estimators. We introduce new sufficient
conditions that greatly ease the task of demonstrating convergence in probability.
These new sufficient conditions arise from the observation that in many models
where asymptotic properties are known, the properties follow from three basic
conditions: consistency of the estimator for the parameters of the covariance
matrix, O(n) nonzero elements composed of a fixed number of distinct elements in
the inverse covariance matrix (or elements that are proportional to a polynomial in
the covariance matrix parameters), and absolutely convergent column-wise sums of
the covariance matrix. Since the new sufficient conditions are derived from existing
models, they provide a unified method for proving asymptotic equivalence of
Aitken and feasible Aitken estimators in many familiar models. Since the new
conditions apply in IV contexts rather than only standard GLS contexts, they
extend many GLS results to the IV framework. Moreover, the new conditions have
the potential to quickly demonstrate asymptotic equivalence of Aitken and feasible
Aitken estimators in linear models with heretofore unexplored error structures.

University of Missouri and University of Tennessee, U.S.A.
Oregon State University, U.S.A.
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APPENDIX

THEOREM (Fuller and Battese 1973, p. 629, Theorem 3). Assume the three
“regularity conditions:”’

(R1) For every n, the elements of Q,(0) ™! are continuously differentiable with
respect to each component of 0 in an open sphere S containing 0°. Denote
the matrix of derivatives with respect to the ith component of 0 by G,;(9) for
i=1,..,r.

(R2) lim,_,,, (1/7)X,Q,(0) "' X,, is a nonsingular matrix for every 6 € S, and the
elements of

1
lim ’—lX;,G,,i(O)X,,

n—»oo

are continuous functions of 0 fori = 1, ..., r.
(R3) For every n, Q,(8") is nonsingular, and there exists 8 > 0 such that 6" —
8° = 0,(n%.
P

Then, B, possesses the same asymptotic distribution as B

Fuller and Battese seek to prove this theorem by showing that B, — B, =
0, (n~27%). Unfortunately, this order in probability does not follow, as the
following counter-example demonstrates.

A.l. Example. Let X, be an (n X 1) vector of ones and assume for this
example that u,, is normal with

o) i 11 1
»(6) = diag [f1(0)’fz(0)’ ’f,,w)]’

where 6 is a scalar and

+(0) = 1 i (
f:(6) 4 t—gc,z("‘ ,¢T+c3)) 1 (;76(—+l —l—+i}
c 2

A graph of f,(8) is given in Figure 1. Assume 6° = 0 and let §” = (1/n) be our
estimator for 6°.
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974 DAVID M. MANDY AND CARLOS MARTINS-FILHO

f1(6) f1(8)

A

A.1.1. Remarks.

1. f;(8) is constructed from parabolas whose slopes are equal where they join.
Hence, f,(6) is continuously differentiable on R for ¢t = 1, 2, ... .

2. As t increases, the height of the ‘‘spike’’ increases at a rate of ¢ and the
spike moves left and narrows.

3. /(¢ + 1) + 4/c, < 1/(t — 1) for t > 1. Hence, the entire spike occurs
between 1/(¢ + 1) and 1/(¢ — 1), and is centered at 1/¢.

4. X,0,(0)7'X, = 2Ly f1(0).

5. X,,G,(0)X, = X/ f1(8), which exists by remark 1.

A.1.2. Verification of Regularity Conditions (R1) through (R3).

(R1) This holds for any 6° and S = R, by remark 1.
R2) f;(6) = 1 for 6 € (—x, 0] U [(3/2), =) for every ¢. Thus, for 8 in this part
of the domain
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1 12 12
lim ~ X,Q,(6) "X, = lim ~ > fi(8) = lim - > 1=1
t=1

n—o n—o =1 n—w

For 6 € (0, (3/2)), let ng = max {n : 8 < 1/(n — 1)} where 1/0 is to be regarded
as © so that ny = 1 for 6 € [1, (3/2)). Note that n, exists and is finite for every

0 € (0, (3/2)), and that f,(8) = 1 for t > ny. Thus, for 8 € (0

1 1 1
lim — X,Q,(0)7'X, = lim — >, f,(8) = lim - > fi(6) +1
t=1

n—® n—o t=1 n—ow n

ne n

» (3/2)

l n
im—= > f.(8)

—> 0 t=ng+1

1
<lim - (1+#+lim—- » 1 since

n—o Moy n—>w ¥ op=pg+1
1 + ¢ is the maximum of f,(8) on R

. no(l + no) . B — Ny
=< lim + lim =
n—x n n—o

Similarly,

0+1=1.

1 1
lim — X,Q,(0)7'X, =lim — > f,(8) since f,(6) >0 on R for every ¢.

noo N n—oo T p=py+1
. h—=hg
= lim =1.
n—o n
Thus,

1
lim ~ X,0,(0)"'X, =1 V 6€WR,

n—o

and 1 is invertible, so the first part of condition (R2) is verified. To verify the second

part, note that if § € (—, 0] U [(3/2), ») then f}(8) = 0 for
0 in this part of the domain

1 1
lim - X,G,(6)X, = lim — >, f1(8) =0.
n—o n n—oo t=1

For 6 € (0, (3/2)), note that f(8) = 0 for ¢t > ny, so
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= lim

n—o

lim

n—o

1
- X'nGn(e)Xn
n

1 n
= lim — > 1fie)

0 t=1

l n
;zft(o)

n

=< lim - 2 tc, since tc, is the maximum of |f}(6)| on R

n—w n =1

L,
= lim — (ngc,,) = 0.

n—o

Thus, lim, ., (1/n)X},,G,(0)X, = 0 for every 6 € R, which is a continuous
function of 6 on R, so the second part of condition (R2) is verified.

(R3) Clearly 6" — §° = Op(n’l), so 8 = 1. In fact, 8" is nonstochastic so that
8" — 6° = O(n~"). Moreover, Q,,((??")'1 exists for all »n since f,(6) > 0 for
every 0 € Randt =1, 2, ....

A.1.3. Demonstration that B, — B, # OP(n_l/Z'a). Rather than writing a
Taylor expansion as in Fuller and Battese, we shall examine directly the difference
Bn - 0,,2

Bn—Bn=X,0,(06Mm7'X,)"'X,Q,(6" u,
- (X'n‘Q'n (00) _IXn) _IX'nQn (00) _lun

n n
th(én)ul th(eo)ut
t=1 t=1
= - where u, is the tth element of u,

PRACK) PRACK)
=1

t=1

ft(é")ut
= 1
-~ > u, since £,(8° = £,(0) = 1 for every ¢

t=1

t=1
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1
fn(_) n—1 1 1
S /A l——’l—lu,,+2 — |
=1 _
(n_l) +fn(;) ‘(n_l) +fn(n)

since f;(1/n) = 1 for ¢ < n by remark 3,

~ (1+n) 1 ! 1 1
B (n—1)+(1+n)7)""+E ((n—1)+(1+n)';7)“’

t=1

NI-—

l n
n_z_z
Therefore,

_ A\ 1
n( n =~ n)=—'un_—' U;.
(B~ )= = 3

Now, E(1/2Vn) 31y u,) = 0 and

s pyelts Lt L1
Var( 2“')‘4 § Ew) =1 § (0% 4n § ) 2’

n (=1

where we have used the zero covariance of the u,’s and the fact that f,(0) = 1 for
every t. Thus, by Chebyschev’s Inequality (1/(2\/;)) >/ u, is bounded in
probability. But

= \/;'ﬁn - B-nl +

PR

= \nlBn — Bl + 0,(1),

so if (\/_/Z)u » is unbounded in probability then \/_(ﬂ,, B,) is also unbounded
in probablllty But P((W/Z)Iu »| < B) is the area under a N(0, 1) density between
—(2B/\/n) and (2B/V/n) for any B > 0, 50 lim, . P(Vn/2)|u,| < B) = 0 and
(Vnl2)u, » is unbounded in probability. Therefore, B, — B, is not O p(n” 12 and
is also not O, (n “12-8y = 0o, (n'm) Thus, the conclusion that B, possesses the
same asymptotlc dlstnbutlon as 8, cannot be established through reliance on Bn. —
0 = 0p(n -12- 3. Infact, in the present example \/_(0 — B) ~ N(0, 1) for every
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n while \/Z(ﬁ,, - B) ~ N(0, (n + 3)/4), which does not converge in distribution
to N(0, 1). O
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