Econ 4858, Homework 1 - part 2, Professor Martins.

1. Assume X is a random variable with density function

$$
f(x)= \begin{cases}1 /(b-a), & \text { if } x \in[a, b] \tag{1}\\ 0, & \text { if } x \notin[a, b]\end{cases}
$$

with $a<b$ for $a, b \in \mathbb{R}$.
Answer: By definition $E(X)=\int_{a}^{b} \frac{x}{b-a} d x=\left.\frac{1}{b-a}\right|_{a} ^{b} \frac{x^{2}}{2}=\frac{1}{b-a}\left(\frac{b^{2}}{2}-\frac{a^{2}}{2}\right)=\frac{b+a}{2}$.
By the definition,

$$
V(X)=E\left(X^{2}\right)-(E(X))^{2}=E\left(X^{2}\right)-\left(\frac{b+a}{2}\right)^{2}
$$

But,

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{a}^{b} \frac{x^{2}}{b-a} d x=\left.\frac{1}{b-a}\right|_{a} ^{b} \frac{x^{3}}{3}=\frac{1}{b-a}\left(\frac{b^{3}}{3}-\frac{a^{3}}{3}\right) \\
& =\frac{1}{3(b-a)}\left((b-a)^{3}+3 a b(b-a)\right)=\frac{1}{3}(b-a)^{2}+a b
\end{aligned}
$$

Substituting back into the expression for variance, we have

$$
V(X)=E\left(X^{2}\right)-(E(X))^{2}=\frac{1}{3}(b-a)^{2}+a b-\left(\frac{b+a}{2}\right)^{2}=\frac{(b-a)^{2}}{12}
$$

Suppose $a=0, b=1$ and $Y=X^{2}$. Find the density of $Y=X^{2}$. In this case, obtain the 0.75 -quantile of Y.

Suppose $a=1$ and $b=5$. Obtain the the 0.1 quantile for X and $1 / X$.
Answer: $X \sim U_{[1,5]}$ which implies that $f_{X}(x)=\left\{\begin{array}{cl}1 / 4 & \text { if } x \in[1,5] \\ 0 & \text { if } x \notin[1,5]\end{array}\right.$. Then, $F_{X}(x)=\int_{1}^{x} \frac{1}{4} d y=$ $\frac{1}{4}(x-1)$. Let the 0.1 -quantile of F_{X} be denoted by $y_{0.1}$. Then, $0.1=F_{X}\left(x_{0.1}\right)=\frac{1}{4}\left(x_{0.1}-1\right)$. This implies $x_{0.1}=1.4$.
For $Y=1 / X$ we have

$$
\begin{gathered}
f_{Y}(y)=f_{X}(1 / y)\left|\frac{d(1 / y)}{d y}\right|=\frac{1}{4 y^{2}} \\
F_{Y}\left(y_{0.1}\right)=\int_{1 / 5}^{y_{0.1}} \frac{1}{4 z^{2}} d z=\left.\frac{1}{4}\right|_{1 / 5} ^{y_{0.1}}(-1 / 2)=\frac{1}{4}\left(-1 / y_{0.1}+5\right)
\end{gathered}
$$

which implies $y_{0.1}=0.217$.
2. Let A be a subset of \mathbb{R} and consider the indicator function of the set A, viz.,

$$
I_{A}(x)= \begin{cases}1, & \text { if } x \in A \tag{2}\\ 0, & \text { if } x \notin A\end{cases}
$$

Consider a finite and independent collection $\left\{X_{i}\right\}_{i=1}^{n}$ of random variables that have the same distribution, say F. Let

$$
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I_{X_{i} \leq x}
$$

Obtain $E\left(F_{n}(x)\right)$ and $V\left(F_{n}(x)\right)$ for some $x \in \mathbb{R}$.

Answer:

$$
\begin{gathered}
E\left(F_{n}(x)\right)=E\left(\frac{1}{n} \sum_{i=1}^{n} I_{X_{i} \leq x}\right)=\frac{1}{n} n E\left(I_{X_{i} \leq x}\right) \\
=1 \times P\left(X_{i} \leq x\right)+0 \times P\left(X_{i}<x\right)=F(x) . \\
V\left(F_{n}(x)\right)=V\left(\frac{1}{n} \sum_{i=1}^{n} I_{X_{i} \leq x}\right)=\frac{1}{n^{2}} n V\left(I_{X_{i} \leq x}\right) \text { since }\left\{X_{i}\right\}_{i=1}^{n} \text { is an independent collection } \\
=\frac{1}{n}\left(E\left(I_{X_{i} \leq x}^{2}\right)-F(x)^{2}\right)=\frac{1}{n}\left(E\left(I_{X_{i} \leq x}\right)-F(x)^{2}\right) \\
=\frac{1}{n}\left(F(x)-F(x)^{2}\right)=\frac{1}{n} F(x)(1-F(x)) .
\end{gathered}
$$

3. Answer problem 2 (items (a) and (b)) from chapter 3 of your textbook.

Answers: 2.
a) $r_{t}(3) \sim N(0.3,1.8)$.
b) $P\left(r_{t}(3)<2\right)=P\left(\frac{r_{t}(3)-0.3}{\sqrt{1.8}}<\frac{2-0.3}{\sqrt{1.8}}\right)=P\left(Z<\frac{1.7}{\sqrt{1.8}}\right)=0.8974$.
4. Answer problem 5 (items (a) and (b)) from chapter 3 of your textbook.

Answers: 5.
a) $X_{k}^{2}=X_{0}^{2} \exp \left(2\left(r_{1}+\cdots+r_{k}\right)\right)$ and $E\left(X_{k}^{2}\right)=X_{0}^{2} E\left(\exp \left(2 r_{1}+\cdots+2 r_{k}\right)\right)$. Let $\gamma_{k}=2 r_{k}$, since $r_{k} \sim N\left(\mu, \sigma^{2}\right)$ we have $\gamma_{k} \sim N\left(2 \mu, 4 \sigma^{2}\right)$. Hence,

$$
\begin{aligned}
E\left(X_{k}^{2}\right) & =X_{0}^{2} E\left(\exp \left(\gamma_{1}+\cdots+\gamma_{k}\right)\right)=X_{0}^{2} E\left(\exp \left(2 \mu k+2 k \sigma^{2}\right)\right) \\
V\left(X_{k}\right) & =X_{0}^{2} \exp \left(2 \mu k+2 k \sigma^{2}-X_{0}^{2} \exp \left(2 \mu k+k \sigma^{2}\right)\right. \\
& =X_{0}^{2} \exp (2 \mu k) \exp \left(k \sigma^{2}\right)\left(\exp \left(k \sigma^{2}\right)-1\right)
\end{aligned}
$$

b) $X_{1}=g\left(r_{1}\right)=X_{0} \exp \left(r_{1}\right)$ implies $\log X_{1}=\log X_{0}+r_{1}$ which gives $\log X_{1}-\log X_{0}=r_{1}$. So, $g^{-1}\left(X_{1}\right)=\log X_{1}-\log X_{0}$ and $\frac{d}{d X_{1}} g^{-1}\left(X_{1}\right)=\frac{1}{X_{1}}$, hence $f_{1}\left(X_{1}\right)=\phi\left(\log X_{1}-\log X_{0}\right) \frac{1}{X_{1}}$ where $\phi(x)$ is the density for a standard normal.
5. The MATLAB data set AAPL.mat contains six columns. The fifth column contains daily closing price of Apple stock from 01/03/2000 until 07/27/2011.
(a) Use MATLAB and these price to calculate daily log-returns on Apple stock. Produce a plot of these returns against time.
(b) Assuming these log-returns are independently drawn and identically distributed as $N\left(\mu, \sigma^{2}\right)$, estimate the parameters of this distribution by the method of moments. Produce an adjusted method of moments estimator for σ^{2} that is unbiased.
(c) Use the estimated parameters to obtain an estimate for the expected price of the stock at each time period in the sample.

