Econ 4858 - Financial Econometrics, Professor Martins
Midterm Examination 1
Date: September 28, 2023.
IMPORTANT INSTRUCTIONS: The pages of your set of answers should be numbered consecutively starting at 1. Write only on one-side of each sheet of paper. Start the answer for a new question on a new sheet of paper. Answer questions 1 or 2 , and 3 .

Question 1: Let $\left\{P_{t}\right\}_{t=0,1, \ldots}$ be a sequence of prices for a given financial asset.
a) Define gross returns, net returns and \log returns from holding the asset from period $t-1$ to period t. What are the range of values that each of these concepts of returns take?

Answer: (3 points) Gross returns are defined as $R_{t}=\frac{P_{t}}{P_{t-1}}$ and take values in $[0, \infty)$. Net returns are defined as $N_{t}=\frac{P_{t}-P_{t-1}}{P_{t-1}}$ and take values in $[-1, \infty)$. log-returns are defined as $\log R_{t}=\log P_{t}-\log P_{t-1}$ and take values in $(-\infty, \infty)$.
b) If log-returns from holding a financial asset for h periods at time t is denoted by $r_{t, h}$, show that $r_{t, h}=\sum_{j=1}^{h} r_{t-(j-1), 1}$.

Answer: (2 points) By definition of $r_{t, h}$ we have

$$
\begin{aligned}
r_{t, h} & =\log \frac{P_{t}}{P_{t-h}}=\log \left(\frac{P_{t}}{P_{t-1}} \frac{P_{t-1}}{P_{t-2}} \cdots \frac{P_{t-(h-1)}}{P_{t-h}}\right)=\log \frac{P_{t}}{P_{t-1}}+\log \frac{P_{t-1}}{P_{t-2}}+\cdots+\log \frac{P_{t-(h-1)}}{P_{t-h}} \\
& =r_{t, 1}+r_{t-1,1}+\cdots+r_{t-(h-1), 1}=\sum_{j=1}^{h} r_{t-(j-1), 1}
\end{aligned}
$$

c) In class, for a non-stochastic starting price level P_{0} and 1-period \log returns $r_{t, 1}:=r_{t}$ we have written

$$
\log P_{t}=\log P_{0}+r_{t}+r_{t-1}+\cdots+r_{1}=\log P_{0}+\sum_{i=1}^{t} r_{i}
$$

where each $r_{t} \sim N\left(\mu, \sigma^{2}\right)$ and the sequence $\left\{r_{t}\right\}$ is independent. What is the covariance between $\log P_{t}$ and $\log P_{t-1}$? Show all your work.

Hint: Recall that the covariance between any two random variables X and Y, denoted by $C(X, Y)=$ $E((X-E(X))(Y-E(Y)))$ 。

Answer: (3 points) First note that $E\left(\log P_{t}\right)=\log P_{0}+t \mu$ and $\log P_{t}-E\left(\log P_{t}\right)=\sum_{i=1}^{t} r_{i}-t \mu$. Now, by definition

$$
\begin{aligned}
\operatorname{Cov}\left(\log P_{t}, \log P_{t-1}\right) & =E\left(\sum_{i=1}^{t} r_{i}-t \mu\right)\left(\sum_{i=1}^{t-1} r_{i}-(t-1) \mu\right) \\
& =E\left(\sum_{i=1}^{t} r_{i} \sum_{i=1}^{t-1} r_{i}\right)-(t-1) t \mu^{2} \\
& =(t-1) \sigma^{2}+t(t-1) \mu^{2}-(t-1) t \mu^{2} \text { by independence of } r_{i} \text { and } E\left(r_{i}^{2}\right)=\sigma^{2}+\mu^{2} \\
& =(t-1) \sigma^{2}
\end{aligned}
$$

Question 2: Suppose $\left\{r_{t}\right\}_{t=1,2, \ldots}$ is a sequence of independent and identically distributed 1-period logreturns on a certain financial asset. Assume that $E\left(r_{t}\right)=\mu$ for all t and that $V\left(r_{t}\right)=\sigma^{2}$.
a) What is the method of moments estimator for μ ? Label this estimator μ_{M}. Is it an unbiased estimator for μ ? Prove. What does it mean for any estimator to be unbiased?
b) What is the variance of μ_{M} in item a)?
c) Is μ_{M} a consistent estimator for μ ? Explain.
d) What is the the distribution of μ_{M} if $r_{t} \sim N\left(\mu, \sigma^{2}\right)$? Provide a 0.95 confidence interval for μ. Are the lower and upper bounds in this interval known? If not, how would you estimate them?

Question 3: In class, and on your homework, we considered several cases where we had to obtain the density of the function of a random variable. Here, consider a continuous random variable X with density function f_{X} and distribution function F_{X}, and the random variable Y, which is a function of X given by $Y=g(X)=X^{2}$.
a) For $y>0$, show that $F_{Y}(y)=F_{X}(\sqrt{y})-F_{X}(-\sqrt{y})$

Answer: By definition $F_{Y}(y):=P(Y \leq y)$. Hence,

$$
F_{Y}(y):=P(Y \leq y)=P\left(X^{2} \leq y\right)=P(-\sqrt{y} \leq X \leq \sqrt{y})=F_{X}(\sqrt{y})-F_{X}(-\sqrt{y}) .
$$

b) For $y>0$, show that $f_{Y}(y)=\frac{1}{2 \sqrt{y}}\left(f_{X}(\sqrt{y})+f_{X}(-\sqrt{y})\right)$.

Answer: The density of Y, denoted by f_{Y} is given by

$$
\begin{aligned}
f_{Y}(y)=\frac{d}{d y} F_{Y}(y) & =\frac{d}{d y}\left(F_{X}(\sqrt{y})-F_{X}(-\sqrt{y})\right)=f_{X}(\sqrt{y}) \frac{d}{d y} \sqrt{y}-f_{X}(-\sqrt{y}) \frac{d}{d y}(-\sqrt{y}) \\
& =f_{X}(\sqrt{y}) \frac{1}{2 \sqrt{y}}+f_{X}(-\sqrt{y}) \frac{1}{2 \sqrt{y}}=\frac{1}{2 \sqrt{y}}\left(f_{X}(\sqrt{y})+f_{X}(-\sqrt{y})\right)
\end{aligned}
$$

c) If X has a standard normal density, i.e., $f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-0.5 x^{2}\right)$ obtain the formula for the density of Y.

Answer: Substitute $f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-0.5 x^{2}\right)$ in the formula given in b) to obtain

$$
\begin{aligned}
f_{Y}(y) & =\frac{1}{2 \sqrt{y}}\left(\frac{1}{\sqrt{2 \pi}} \exp (-0.5 y)+\frac{1}{\sqrt{2 \pi}} \exp (-0.5 y)\right) \\
& =\frac{1}{\sqrt{2 \pi y}} \exp (-0.5 y)
\end{aligned}
$$

Hint: Recall that for any random variable $X, F_{X}(x)=P(X \leq x)$. If X is continuous and has density f_{X}, then $F_{X}(x)=\int_{-\infty}^{x} f_{X}(u) d u$ and $\frac{d}{d x} F_{X}(x)=f_{X}(x)$. Also, by the Chain rule, if h and g are differentiable functions and $\frac{d}{d x} h(g(x))=\frac{d}{d g(x)} h(g(x)) \frac{d}{d x} g(x)$.

