Econ 7818, Homework 1-part 1, Professor Martins. Due date will be announced later, during class.

1. Let \mathbb{X} be an arbitrary set and consider the collection of all subsets of \mathbb{X} that are countable or have countable complements. Show that this collection is a σ-algebra. Use this fact to obtain the σ-algebra generated by $\mathcal{C}=\{\{x\}: x \in \mathbb{R}\}$.

Answer: (4 points) Let $\mathcal{F}=\left\{A \subseteq \mathbb{X}: \# A \leq \# \mathbb{N}\right.$ or $\left.\# A^{c} \leq \# \mathbb{N}\right\}$, where $\#$ indicates cardinality. First, note that $\mathbb{X} \in \mathcal{F}$ since $\mathbb{X}^{c}=\emptyset$, which is countable. Second, if $A \in \mathcal{F}$ then either $A=\left(A^{c}\right)^{c}$ or A^{c} are countable. That is, $A^{c} \in \mathcal{F}$. Third, if $A_{n} \in \mathcal{F}$ for $n \in \mathbb{N}$ we have two possible cases - A_{n} are all countable, or at least one of these sets is uncountable, say $A_{n_{0}}$. For the first case, $\underset{n \in \mathbb{N}}{\cup} A_{n}$ is the countable union of countable sets, hence it is countable and consequently in \mathcal{F}. For the second case, since $A_{n_{0}}$ is uncountable and in \mathcal{F}, it must be that $A_{n_{0}}^{c}$ is countable. Also,

$$
\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)^{c}=\bigcap_{n \in \mathbb{N}} A_{n}^{c} \subset A_{n_{0}}^{c}
$$

Since subsets of countable sets are countable, $\left(\cup_{n \in \mathbb{N}} A_{n}\right)^{c}$ is countable, and consequently $\underset{n \in \mathbb{N}}{\cup} A_{n} \in \mathcal{F}$. Now, let \mathcal{F} be the σ-algebra defined above. Since $\mathcal{C} \subseteq \mathcal{F}, \sigma(\mathcal{C}) \subseteq \mathcal{F}$. Also, if $A \in \mathcal{F}$ either A or A^{c} is countable. Without loss of generality, suppose A is countable. Then, $A=\bigcup_{x \in C}\{x\}$ where C is a countable collection of real numbers. Hence, $A \in \sigma(\mathcal{C})$. Hence, $\mathcal{F} \subseteq \sigma(\mathcal{C})$. Combining the two set containments we have $\sigma(\mathcal{C})=\mathcal{F}$.
2. Denote by $B(x, r)$ an open ball in \mathbb{R}^{n} centered at x and with radius r. Show that the Borel sets are generated by the collection $B=\left\{B_{r}(x): x \in \mathbb{R}^{n}, r>0\right\}$.

Answer: (3 points) Let $B^{\prime}=\left\{B_{r}(x): x \in \mathbb{Q}^{n}, r \in \mathbb{Q}^{+}\right\}$. Then, $B^{\prime} \subset B \subset \mathcal{O}_{\mathbb{R}^{n}}$ and $\sigma\left(B^{\prime}\right) \subset \sigma(B) \subset$ $\sigma\left(\mathcal{O}_{\mathbb{R}^{n}}\right)$.
Now, let $S=\bigcup_{B \in B^{\prime}, B \subset O} B$. By construction $x \in S \Longrightarrow x \in O$. Now, suppose $x \in O$. Then, since O is open, there exists $B(x, \epsilon)$ such that $B(x, \epsilon) \subset O$ where ϵ is a rational number. Since \mathbb{Q}^{n} is a dense subset of \mathbb{R}^{n}, we can find $q \in \mathbb{Q}^{n}$ such that $\|x-q\| \leq \epsilon / 2$. Consequently,

$$
B(q, \epsilon / 2) \subset B(x, \epsilon) \subset O
$$

Hence, $O \subset S$. Thus, every open O can be written as $O=\underset{B \in B^{\prime}, B \subset O}{\bigcup} B$. Since B^{\prime} is a collection of balls with rational radius and rational centers, B^{\prime} is countable. Thus,

$$
\mathcal{O}_{\mathbb{R}^{n}} \subset \sigma\left(B^{\prime}\right) \Longrightarrow \sigma\left(\mathcal{O}_{\mathbb{R}^{n}}\right) \subset \sigma\left(B^{\prime}\right)
$$

Combining this set containment with $\sigma\left(B^{\prime}\right) \subset \sigma(B) \subset \sigma\left(\mathcal{O}_{\mathbb{R}^{n}}\right)$ completes the proof.
3. Let (Ω, \mathcal{F}) be a measurable space. Show that: a) if μ_{1} and μ_{2} are measures on (Ω, \mathcal{F}), then $\mu_{c}(F):=$ $c_{1} \mu_{1}(F)+c_{2} \mu_{2}(F)$ for $F \in \mathcal{F}$ and all $c_{1}, c_{2} \geq 0$ is a measure; b) if $\left\{\mu_{i}\right\}_{i \in \mathbb{N}}$ are measures on (Ω, \mathcal{F}) and $\left\{\alpha_{i}\right\}_{i \in \mathbb{N}}$ is a sequence of positive numbers, then $\mu_{\infty}(F)=\sum_{i \in \mathbb{N}} \alpha_{i} \mu_{i}(F)$ for $F \in \mathcal{F}$ is a measure.

Answer: a) (2 points) First, note that $\mu_{c}: \mathcal{F} \rightarrow[0, \infty]$ since $c_{1}, c_{2}, \mu_{1}(F), \mu_{2}(F) \geq 0$ for all $F \in \mathcal{F}$. Second, $\mu_{c}(\emptyset)=c_{1} \mu_{1}(\emptyset)+c_{2} \mu_{2}(\emptyset)=0$ since μ_{1} and μ_{2} are measures. Third, if $\left\{F_{i}\right\}_{i \in \mathbb{N}} \in \mathcal{F}$ is a
pairwise disjoint collection of sets,

$$
\begin{aligned}
\mu_{c}\left(\cup_{i \in \mathbb{N}} F_{i}\right) & =c_{1} \mu_{1}\left(\cup_{i \in \mathbb{N}} F_{i}\right)+c_{2} \mu_{2}\left(\cup_{i \in \mathbb{N}} F_{i}\right) \\
& =c_{1} \sum_{i \in \mathbb{N}} \mu_{1}\left(F_{i}\right)+c_{2} \sum_{i \in \mathbb{N}} \mu_{2}\left(F_{i}\right), \text { since } \mu_{1} \text { and } \mu_{2} \text { are measures } \\
& =\sum_{i \in \mathbb{N}}\left(c_{1} \mu_{1}\left(F_{i}\right)+c_{2} \mu_{2}\left(F_{i}\right)\right)=\sum_{i \in \mathbb{N}} \mu_{c}\left(F_{i}\right)
\end{aligned}
$$

b) (3 points) The verification that $\mu_{\infty}: \mathcal{F} \rightarrow[0, \infty]$ and $\mu_{\infty}(\emptyset)=0$ follows the same arguments as in item a) when examining μ_{c}. For σ-additivity, note that if $\left\{F_{j}\right\}_{j \in \mathbb{N}} \in \mathcal{F}$ is a pairwise disjoint collection of sets,

$$
\mu_{\infty}\left(\cup_{j \in \mathbb{N}} F_{j}\right)=\sum_{i=1}^{\infty} \alpha_{i} \mu_{i}\left(\cup_{j \in \mathbb{N}} F_{j}\right)=\sum_{i=1}^{\infty} \alpha_{i} \sum_{j=1}^{\infty} \mu_{i}\left(F_{j}\right)=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \alpha_{i} \mu_{i}\left(F_{j}\right)
$$

If we are able to interchange the sums in the last term, then we can write

$$
\mu_{\infty}\left(\cup_{j \in \mathbb{N}} F_{j}\right)=\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \alpha_{i} \mu_{i}\left(F_{j}\right)=\sum_{j=1}^{\infty} \mu_{\infty}\left(F_{j}\right),
$$

completing the proof. Now, note that

$$
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \alpha_{i} \mu_{i}\left(F_{j}\right)=\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \mu_{i}\left(F_{j}\right)=\sup _{n \in \mathbb{N}} \sup _{m \in \mathbb{N}} \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \mu_{i}\left(F_{j}\right)=\sup _{n \in \mathbb{N}} \sup _{m \in \mathbb{N}} S_{n m}
$$

since the partial sums are increasing. Now, if $S_{n m} \in \mathbb{R}$, then

$$
\sup _{n \in \mathbb{N}} \sup _{m \in \mathbb{N}} S_{n m}=\sup _{m \in \mathbb{N}} \sup _{n \in \mathbb{N}} S_{n m}
$$

Hence, to finish the proof, we require $\mu_{i}\left(F_{j}\right)<\infty$.
4. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $\mathcal{G} \subset \mathcal{F}$ be a σ-algebra. In this case, we call \mathcal{G} a sub- σ-algebra of \mathcal{F}. Let $\nu:=\left.\mu\right|_{\mathcal{G}}$ be the restriction of μ to \mathcal{G}. That is, $\nu(G)=\mu(G)$ for all $G \in \mathcal{G}$. Is ν a measure? If μ is finite, is ν finite? If μ is a probability, is ν a probability?

Answer: (2 points) Since $\emptyset \in \mathcal{G} \subset \mathcal{F}, \nu(\emptyset)=\mu(\emptyset)=0$. If $\left\{A_{i}\right\}_{i \in \mathbb{N}} \in \mathcal{G}$ is a pairwise disjoint sequence, we have that $\left\{A_{i}\right\}_{i \in \mathbb{N}} \in \mathcal{F}$. Hence, $\nu\left(\cup_{i \in \mathbb{N}} A_{i}\right)=\mu\left(\cup_{i \in \mathbb{N}} A_{i}\right)=\sum_{i \in \mathbb{N}} \mu\left(A_{i}\right)=\sum_{i \in \mathbb{N}} \nu\left(A_{i}\right)$. Now, μ finite means that $\mu(\Omega)<\infty$. Since $\Omega \in \mathcal{G}, \nu(\Omega)=\mu(\Omega)<\infty$. The same holds for $\mu(\Omega)=1$.
5. Show that a measure space $(\Omega, \mathcal{F}, \mu)$ is σ-finite if, and only if, there exists $\left\{F_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{F}$ such that $\cup_{n \in \mathbb{N}} F_{n}=\Omega$ and $\mu\left(F_{n}\right)<\infty$ for all n.

Answer: (2 points) (\Rightarrow) By definition, $(\Omega, \mathcal{F}, \mu)$ is σ-finite if there exists and increasing sequence $A_{1} \subset A_{2} \subset A_{3} \cdots$ such that $\cup_{n \in \mathbb{N}} A_{n}=\Omega$ with $\mu\left(A_{n}\right)<\infty$ for all n. Hence, it suffices to let $F_{n}=A_{n}$. (\Leftarrow) Let $A_{n}=\cup_{j=1}^{n} F_{j}$. Then, $A_{1} \subset A_{2} \subset \cdots$ and $\cup_{n \in \mathbb{N}} A_{n}=\cup_{j \in \mathbb{N}} F_{j}=\Omega$. Also, $\mu\left(A_{n}\right)=$ $\mu\left(\cup_{j=1}^{n} F_{j}\right) \leq \sum_{j=1}^{n} \mu\left(F_{j}\right)<\infty$ since the sum is finite and $\mu\left(F_{j}\right)<\infty$.

