
Econ 7818, Homework 1 - part 2, Professor Martins. Due date will be announced later, during class.

1. Let {Ej}j∈J be a collection of pairwise disjoint events. Show that if P (Ej) > 0 for each j ∈ J , then J
is countable.

Answer: (3 points) Let Cn = {Ej : P (Ej) >
1
n and j ∈ J}. By assumption the elements of Cn are

disjoint events and

P (∪jmEjm) =

∞∑
m=1

P (Ejm) =∞,

where the last equality follows from the fact that P (Ejm) > 0. So, it must be that Cn has finitely
many elements. Also, {Ej}j∈J = ∪∞n=1Cn, which is countable since it is a countable union of finite
sets.

2. Consider the extended real line, i.e., R̄ := R∪{−∞}∪{∞}. Let B̄ := B(R̄) be defined as the collection
of sets B̄ such that B̄ = B ∪ S where B ∈ B(R) and S ∈ {∅, {−∞}, {∞}, {−∞,∞}}. Show that B̄ is
a σ-algebra and that it is generated by a collection of sets of the form [a,∞] where a ∈ R.

Answer: (2 points to show B̄ is a σ-algebra and 2 points for the rest) Let’s first show that B̄ is a σ-
algebra. Since B̄ = B∪S with B ∈ B(R), we can choose B = R and use S = {−∞,∞} to conclude that
R̄ = R∪{−∞,∞} ∈ B̄. Next, note that if B̄ = B∪S we have that B̄c = Bc∩Sc. But the complement
of a set S is an element of {R̄,R ∪ {∞},R ∪ {−∞},R}. Hence, either 1) B̄c = Bc ∩ R̄ = Bc ∪ ∅ ∈ B̄
or, 2) B̄c = Bc ∩ (R ∪ {∞}) = (Bc ∩ R) ∪ {∞} where Bc ∩ R ∈ B and consequently B̄c ∈ B̄ or,
3) B̄c = Bc ∩ (R ∪ {−∞}) = (Bc ∩ R) ∪ {−∞} where Bc ∩ R ∈ B and consequently B̄c ∈ B̄ or, 4)
B̄c = Bc ∩R ∈ B̄.

Lastly, letting Ai = Bi ∪ S for Bi ∈ B we have that ∪i∈NAi = ∪i∈N(Bi ∪ S) = (∪i∈NBi) ∪ S. Since
∪i∈NBi ∈ B we have that ∪i∈NAi ∈ B̄.

If B̄ is a σ-algebra and C = {[a,∞] : a ∈ R}, we need to show that σ(C) = B̄.

First, note that [a,∞] = [a,∞) ∪ {∞} and we know that [a,∞) ∈ B. Thus, [a,∞] ∈ B̄ for all a ∈ R.
Then, σ(C) ⊆ B̄.

Second, observe that for −∞ < a ≤ b < ∞ we have [a, b) = [a,∞] − [b,∞] = [a,∞] ∩ [b,∞]c ∈ σ(C)
since σ(C) contains [a,∞] and [b,∞]c by virtue of being a σ-algebra. Hence,

B ⊆ σ(C) ⊆ B̄.

Now,
{∞} = ∩i∈N[i,∞], {−∞} = ∩i∈N[−∞,−i) = ∩i∈N[−i,∞]c

which allows us to conclude that {∞}, {−∞} ∈ σ(C). Hence, if B ∈ B all sets of the form

B,B ∪ {∞}, B ∪ {−∞}, B ∪ {∞} ∪ {−∞}

are in σ(C). Hence, B̄ ⊆ σ(C). Combining this set. containment with σ(C) ⊆ B̄ gives the result.

3. Let X : (Ω,F)→ (R,B) be a random variable. Show that M = max{X, 0} and m = min{0,−X} are
random variables.

Answer: (2 points) SM
a = {ω : max{X, 0} > a}. If a < 0, SM

a = Ω and SM
a ∈ F . If a ≥ 0,

SM
a = {ω : X(ω) > a} ∈ F by measurability of X.

Sm
a = {ω : min{0,−X} > a}. If a > 0, Sm

a = ∅ and Sm
a ∈ F . If a ≤ 0, Sm

a = {ω : X(ω) < −a} ∈ F by
measurability of X.



4. Let (Ω,F , P ) be a probability space and f : Ω→ R be a function. If X : (Ω,F)→ (R,B) is a random
variable such that P ({ω : X(ω) 6= f(ω)}) = 0, then f is measurable.

Answer: (3 points) We need to show that for any B ∈ B, f−1(B) ∈ F . If C = {(−∞, a] : a ∈ R},
then σ(C) = B and it suffices to show that

f−1((−∞, a]) = {ω : f(ω) ≤ a} := Sf
a ∈ F .

Let A = {ω : X(ω) 6= f(ω)}. Since, X is a random variable

X−1((−∞, a]) = {ω : X(ω) ≤ a} := SX
a ∈ F .

Now, Sf
a = (Sf

a ∩A)∪ (Sf
a ∩Ac). Note that Sf

a ∩Ac = SX
a ∩Ac ∈ F by measurability of X and the fact

that A is measurable (and so is Ac). Also, Sf
a ∩A ⊆ A where A has measure zero. Hence, if (Ω,F , P )

is complete, such that all subsets of sets of measure zero are measurable, Sf
a ∩A ∈ F . Hence, Sf

a ∈ F .

5. Prove Theorem 1.6 in your notes with c) substituted by c’) on Remark 1.4.

Answer: (2 points) Note that if A1, A2, · · · ∈ F we have that Ac
1, A

c
2, · · · ∈ F . Furthermore, since

A1 ⊇ A2 ⊇ . . . we have that Ac
1 ⊆ Ac

2 ⊆ · · · . Since, ∩Aj = A we have that ∪Ac
j = Ac and Ac ∈ F .

Hence, letting B1 = Ac
1 and Bj = Ac

j −Ac
j−1 for j = 2, 3, . . . , the proof follows as in Theorem 1.6.

6. If E1, E2, · · · , En are independent events, show that the probability that none of them occur is less
than or equal to exp (−

∑n
i=1 P (Ei))

Answer: (3 points). Let f(x) = exp(−x) and note that for λ ∈ (0, 1), by Taylor’s Theorem

exp(−x) = f(x) = f(0) + f (1)(0)x+
1

2
f (2)(λx)x2 = 1− x+

1

2
exp(−λx)x2

Consequently, 1 − x ≤ exp(−x). Now, we are interested in the event E = (∪ni=1Ei)
c

= ∩ni=1E
c
i .

But since the E1, E2, · · · , En are independent, so is the collection Ec
1, E

c
2, · · · , Ec

n. Hence, P (E) =∏n
i=1 P (Ec

i ) =
∏n

i=1(1− P (Ei)) ≤
∏n

i=1 exp(−P (Ei)) = exp (−
∑n

i=1 P (Ei)).

7. Let {An}n∈N and {Bn}n∈N be events (measurable sets) in a probability space with measure P with
limAn = A, limBn = B, P (Bn), P (B) > 0 for all n. Show that P (An|B) → P (A|B), P (A|Bn) →
P (A|B), P (An|Bn)→ P (A|B) as n→∞.

Answer: (3 points) Since P (·|B) is a probability measure (proved in the class notes), we have by
continuity of probability measures that P (An|B)→ P (A|B) if limBn = B.

Now, since limBn = B we have that A ∩ Bn → A ∩ B. To see this, note that if A ∩ Bn := Cn then
Dj = ∪∞n=jCn = A ∩ (∪∞n=1Bn). Then, lim supCn = ∩∞j=1Dj = ∩∞j=1 (A ∩ ∪∞n=1Bn) = A ∩B. Defining
lim inf for Cn we can in similar fashion that lim inf Cn = A ∩ B. Hence, by continuity of probability
measures P (A ∩Bn)→ P (A ∩B) and P (Bn)→ P (B). Consequently,

P (A|Bn) =
P (A ∩Bn)

P (Bn)
→ P (A ∩B)

P (B)
= P (A|B).

Lastly, since An ∩Bn → A ∪B, using the same arguments

P (An|Bn) =
P (An ∩Bn)

P (Bn)
→ P (A ∩B)

P (B)
= P (A|B).

8. Let (Ω,F , P ) be a probability space and En for n = 1, 2, · · · be sets in F . Show that if
∑∞

n=1 P (En) <

∞ then P

(
limsup
n→∞

En

)
= 0.



Answer:(2 points)

P

(
limsup
n→∞

En

)
= P

(
lim
n→∞

∪j≥n Ej

)
= lim

n→∞
P (∪j≥nEj) by continuity

≤ limsup
n→∞

∞∑
j=n

P (Ej) by subadditivity and definition of limsup.

Since
∑∞

n=1 P (En) <∞ it must be that
∑∞

j=n P (Ej)→ 0 as n→ 0. Consequently, P

(
limsup
n→∞

En

)
= 0.


