Econ 7818, Homework 1 - part 2, Professor Martins. Due date 9/22/2023. Your answers should be in my mailbox by 5:00 PM.

1. Let $\{E_j\}_{j \in J}$ be a collection of pairwise disjoint events. Show that if $P(E_j) > 0$ for each $j \in J$, then J is countable.

Answer: (3 points) Let $C_n = \{E_j : P(E_j) > \frac{1}{n} \text{ and } j \in J\}$. By assumption the elements of C_n are disjoint events and

$$P\left(\cup_{j_m} E_{j_m}\right) = \sum_{m=1}^{\infty} P(E_{j_m}) = \infty,$$

where the last equality follows from the fact that $P(E_{j_m}) > 0$. So, it must be that C_n has finitely many elements. Also, $\{E_j\}_{j \in J} = \bigcup_{n=1}^{\infty} C_n$, which is countable since it is a countable union of finite sets.

2. Consider the extended real line, i.e., $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty\} \cup \{\infty\}$. Let $\overline{\mathcal{B}} := \mathcal{B}(\overline{\mathbb{R}})$ be defined as the collection of sets \overline{B} such that $\overline{B} = B \cup S$ where $B \in \mathcal{B}(\mathbb{R})$ and $S \in \{\emptyset, \{-\infty\}, \{\infty\}, \{-\infty, \infty\}\}$. Show that $\overline{\mathcal{B}}$ is a σ -algebra and that it is generated by a collection of sets of the form $[a, \infty]$ where $a \in \mathbb{R}$.

Answer: (2 points to show \mathcal{B} is a σ -algebra and 2 points for the rest) Let's first show that \mathcal{B} is a σ -algebra. Since $\overline{B} = B \cup S$ with $B \in \mathcal{B}(\mathbb{R})$, we can choose $B = \mathbb{R}$ and use $S = \{-\infty, \infty\}$ to conclude that $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\} \in \overline{\mathcal{B}}$. Next, note that if $\overline{B} = B \cup S$ we have that $\overline{B}^c = B^c \cap S^c$. But the complement of a set S is an element of $\{\overline{\mathbb{R}}, \mathbb{R} \cup \{\infty\}, \mathbb{R} \cup \{-\infty\}, \mathbb{R}\}$. Hence, either 1) $\overline{B}^c = B^c \cap \overline{\mathbb{R}} = B^c \cup \emptyset \in \overline{\mathcal{B}}$ or, 2) $\overline{B}^c = B^c \cap (\mathbb{R} \cup \{\infty\}) = (B^c \cap \mathbb{R}) \cup \{\infty\}$ where $B^c \cap \mathbb{R} \in \mathcal{B}$ and consequently $\overline{B}^c \in \overline{\mathcal{B}}$ or, 3) $\overline{B}^c = B^c \cap (\mathbb{R} \cup \{-\infty\}) = (B^c \cap \mathbb{R}) \cup \{-\infty\}$ where $B^c \cap \mathbb{R} \in \mathcal{B}$ and consequently $\overline{B}^c \in \overline{\mathcal{B}}$ or, 4) $\overline{B}^c = B^c \cap \mathbb{R} \in \overline{\mathcal{B}}$.

Lastly, letting $A_i = B_i \cup S$ for $B_i \in \mathcal{B}$ we have that $\bigcup_{i \in \mathbb{N}} A_i = \bigcup_{i \in \mathbb{N}} (B_i \cup S) = (\bigcup_{i \in \mathbb{N}} B_i) \cup S$. Since $\bigcup_{i \in \mathbb{N}} B_i \in \mathcal{B}$ we have that $\bigcup_{i \in \mathbb{N}} A_i \in \overline{\mathcal{B}}$.

If $\overline{\mathcal{B}}$ is a σ -algebra and $\mathcal{C} = \{[a, \infty] : a \in \mathbb{R}\},$ we need to show that $\sigma(\mathcal{C}) = \overline{\mathcal{B}}.$

First, note that $[a, \infty] = [a, \infty) \cup \{\infty\}$ and we know that $[a, \infty) \in \mathcal{B}$. Thus, $[a, \infty] \in \overline{\mathcal{B}}$ for all $a \in \mathbb{R}$. Then, $\sigma(\mathcal{C}) \subseteq \overline{\mathcal{B}}$.

Second, observe that for $-\infty < a \leq b < \infty$ we have $[a, b) = [a, \infty] - [b, \infty] = [a, \infty] \cap [b, \infty]^c \in \sigma(\mathcal{C})$ since $\sigma(\mathcal{C})$ contains $[a, \infty]$ and $[b, \infty]^c$ by virtue of being a σ -algebra. Hence,

$$\mathcal{B} \subseteq \sigma(\mathcal{C}) \subseteq \bar{\mathcal{B}}.$$

Now,

$$\{\infty\} = \cap_{i \in \mathbb{N}}[i,\infty], \ \{-\infty\} = \cap_{i \in \mathbb{N}}[-\infty,-i) = \cap_{i \in \mathbb{N}}[-i,\infty]^c$$

which allows us to conclude that $\{\infty\}, \{-\infty\} \in \sigma(\mathcal{C})$. Hence, if $B \in \mathcal{B}$ all sets of the form

$$B, B \cup \{\infty\}, B \cup \{-\infty\}, B \cup \{\infty\} \cup \{-\infty\}$$

are in $\sigma(\mathcal{C})$. Hence, $\overline{\mathcal{B}} \subseteq \sigma(\mathcal{C})$. Combining this set. containment with $\sigma(\mathcal{C}) \subseteq \overline{\mathcal{B}}$ gives the result.

3. If E_1, E_2, \dots, E_n are independent events, show that the probability that none of them occur is less than or equal to $\exp\left(-\sum_{i=1}^n P(E_i)\right)$.

Answer: (3 points). Let $f(x) = \exp(-x)$ and note that for $\lambda \in (0, 1)$, by Taylor's Theorem

$$\exp(-x) = f(x) = f(0) + f^{(1)}(0)x + \frac{1}{2}f^{(2)}(\lambda x)x^2 = 1 - x + \frac{1}{2}\exp(-\lambda x)x^2$$

Consequently, $1 - x \leq \exp(-x)$. Now, we are interested in the event $E = \left(\bigcup_{i=1}^{n} E_i\right)^c = \bigcap_{i=1}^{n} E_i^c$. But since the E_1, E_2, \cdots, E_n are independent, so is the collection $E_1^c, E_2^c, \cdots, E_n^c$. Hence, $P(E) = \prod_{i=1}^{n} P(E_i^c) = \prod_{i=1}^{n} (1 - P(E_i)) \leq \prod_{i=1}^{n} \exp(-P(E_i)) = \exp(-\sum_{i=1}^{n} P(E_i))$.

4. Let $\{A_n\}_{n\in\mathbb{N}}$ and $\{B_n\}_{n\in\mathbb{N}}$ be events (measurable sets) in a probability space with measure P with $\lim A_n = A$, $\lim B_n = B$, $P(B_n), P(B) > 0$ for all n. Show that $P(A_n|B) \to P(A|B), P(A|B_n) \to P(A|B), P(A|B_n) \to P(A|B)$ as $n \to \infty$.

Answer: (3 points) Since $P(\cdot|B)$ is a probability measure (proved in the class notes), we have by continuity of probability measures that $P(A_n|B) \to P(A|B)$ if $\lim B_n = B$.

Now, since $\lim B_n = B$ we have that $A \cap B_n \to A \cap B$. To see this, note that if $A \cap B_n := C_n$ then $D_j = \bigcup_{n=j}^{\infty} C_n = A \cap (\bigcup_{n=1}^{\infty} B_n)$. Then, $\limsup C_n = \bigcap_{j=1}^{\infty} D_j = \bigcap_{j=1}^{\infty} (A \cap \bigcup_{n=1}^{\infty} B_n) = A \cap B$. Defining lim inf for C_n we can in similar fashion that $\liminf C_n = A \cap B$. Hence, by continuity of probability measures $P(A \cap B_n) \to P(A \cap B)$ and $P(B_n) \to P(B)$. Consequently,

$$P(A|B_n) = \frac{P(A \cap B_n)}{P(B_n)} \to \frac{P(A \cap B)}{P(B)} = P(A|B).$$

Lastly, since $A_n \cap B_n \to A \cup B$, using the same arguments

$$P(A_n|B_n) = \frac{P(A_n \cap B_n)}{P(B_n)} \to \frac{P(A \cap B)}{P(B)} = P(A|B).$$

5. Let (Ω, \mathcal{F}, P) be a probability space and E_n for $n = 1, 2, \cdots$ be sets in \mathcal{F} . Show that if $\sum_{n=1}^{\infty} P(E_n) < \infty$ then $P\left(\limsup_{n \to \infty} E_n\right) = 0.$

Answer: (2 points)

$$P\left(\limsup_{n \to \infty} E_n\right) = P\left(\lim_{n \to \infty} \bigcup_{j \ge n} E_j\right)$$

=
$$\lim_{n \to \infty} P\left(\bigcup_{j \ge n} E_j\right) \text{ by continuity}$$

$$\leq \limsup_{n \to \infty} \sum_{j=n}^{\infty} P(E_j) \text{ by subadditivity and definition of limsup.}$$

Since $\sum_{n=1}^{\infty} P(E_n) < \infty$ it must be that $\sum_{j=n}^{\infty} P(E_j) \to 0$ as $n \to 0$. Consequently, $P\left(\limsup_{n \to \infty} E_n\right) = 0$.

6. Let $(\mathbb{X}, \overline{\mathcal{F}}, \overline{\mu})$ be the measure space defined in Theorem 1.15 of your notes and $\mathcal{C} = \{G \in \mathbb{X} : \exists A, B \in \mathcal{F} \ni A \subset G \subset B \text{ and } \mu(B - A) = 0\}$. Show that $\overline{\mathcal{F}} = \mathcal{C}$.

Answer: (3 points) $G \in \overline{\mathcal{F}} \implies G = A \cup M$ where $A \in \mathcal{F}$ and $M \in \mathcal{S}$. $M \in \mathcal{S} \implies \exists N \in \mathcal{N}_{\mu} \ni M \subset N$. Then,

$$A \subset G = A \cup M \subset A \cup N := B \in \mathcal{F}.$$

Now, $\mu(B-A) = \mu(B \cup A^c) = \mu((A \cup N) - A) \le \mu(N) = 0$. Thus, $G \in \mathcal{C}$.

 $G \in \mathcal{C} \implies \exists A, B \in \mathcal{F} \ni A \subset G \subset B \text{ and } \mu(B-A) = 0.$ Since $A \subset G \subset B$ we have that $G - A \subset B - A$, and since B - A is a μ -null set $G - A \in \mathcal{S}$. Now, $G = A \cup (G - A)$, and since $A \in \mathcal{F}$, $G \in \overline{\mathcal{F}}$.

7. Let μ be a measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $\mu([-n, n)) < \infty$ for all $n \in \mathbb{N}$. Define,

$$F_{\mu}(x) := \begin{cases} \mu([0,x)) & \text{if } x > 0, \\ 0 & \text{if } x = 0, \\ -\mu([x,0)) & \text{if } x < 0. \end{cases}$$

Show that $F_{\mu} : \mathbb{R} \to \mathbb{R}$ is monotonically increasing and left continuous.

Answer: (4 points) Given that $\mu([-n, n)) < \infty$, F_{μ} takes values in \mathbb{R} . First, we show that all x < x', $F_{\mu}(x) \leq F_{\mu}(x')$. There are three cases to be considered

- (a) $(0 \le x < x')$: if 0 < x < x', $F_{\mu}(x') F_{\mu}(x) = \mu([0, x')) \mu([0, x))$. Since $[0, x'] = [0, x] \cup [x, x']$, σ -additivity of μ gives $\mu([0, x')) = \mu([0, x)) + \mu([x, x'))$ or $\mu([x, x')) = \mu([0, x')) - \mu([0, x)) = F_{\mu}(x') - F_{\mu}(x) \ge 0$. If x = 0, $F_{\mu}(x') - F_{\mu}(0) = \mu([0, x']) \ge 0$.
- (b) $(x < 0 \le x')$: If x' > 0, $F_{\mu}(x') F_{\mu}(x) = \mu([0, x')) + \mu([x, 0)) \ge 0$. If x' = 0, $F_{\mu}(0) F_{\mu}(x) = \mu([x, 0)) \ge 0$.
- (c) (x < x' < 0): $F_{\mu}(x') F_{\mu}(x) = -\mu([x', 0)) + \mu([x, 0))$. Since $[x, 0) = [x, x') \cup [x', 0)$, σ -additivity of μ gives $\mu([x, 0)) = \mu([x, x')) + \mu([x', 0))$ or $\mu([x, 0)) \mu([x', 0)) = F_{\mu}(x') F_{\mu}(x) = \mu([x, x')) \ge 0$.

Second, we must show that $\lim_{n\to\infty} F_{\mu}(x-h_n) = F_{\mu}(x)$ for all $x \in \mathbb{R}$. Let $n \in \mathbb{N}$, $h_1 \ge h_2 \ge h_3 \ge \cdots$ with $h_n \downarrow 0$ as $n \to \infty$, and $h_1 > 0$. There are three cases to consider.

(a) (x > 0): Choose $h_1 \in (0, x)$ and define $A_n = [0, x - h_n)$. Then, $A_1 \subset A_2 \subset \cdots$ and $\lim_{n \to \infty} A_n = \bigcup_{n \in \mathbb{N}} A_n = [0, x)$. By continuity of measure from below,

$$\lim_{n \to \infty} F_{\mu}(x - h_n) = \lim_{n \to \infty} \mu([0, x - h_n)) = \mu([0, x)) = F_{\mu}(x).$$

(b) (x = 0): Define $A_n = [-h_n, 0)$. Then, $A_1 \supset A_2 \supset \cdots$ and $\lim_{n \to \infty} A_n = \bigcap_{n \in \mathbb{N}} A_n = \emptyset$. By continuity of measures from above, and given that $\mu([-h_1, 0)) < \infty$,

$$\lim_{n \to \infty} F_{\mu}(-h_n) = \lim_{n \to \infty} \mu([-h_n, 0)) = \mu(\emptyset) = 0 = F_{\mu}(0).$$

(c) (x < 0): Define $A_n = [x - h_n, 0)$. Then, $A_1 \supset A_2 \supset \cdots$ and $\lim_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n = [x, 0)$. By continuity of measures from above and given that $\mu([x - h_1, 0)) < \infty$,

$$\lim_{n \to \infty} F_{\mu}(x - h_n) = \lim_{n \to \infty} -\mu([x - h_n, 0)) = -\mu([x, 0)) = F_{\mu}(x)$$