Econ 7818, Homework 1 - part 2, Professor Martins. Due date $9 / 22 / 2023$. Your answers should be in my mailbox by 5:00 PM.

1. Let $\left\{E_{j}\right\}_{j \in J}$ be a collection of pairwise disjoint events. Show that if $P\left(E_{j}\right)>0$ for each $j \in J$, then J is countable.
Answer: (3 points) Let $C_{n}=\left\{E_{j}: P\left(E_{j}\right)>\frac{1}{n}\right.$ and $\left.j \in J\right\}$. By assumption the elements of C_{n} are disjoint events and

$$
P\left(\cup_{j_{m}} E_{j_{m}}\right)=\sum_{m=1}^{\infty} P\left(E_{j_{m}}\right)=\infty
$$

where the last equality follows from the fact that $P\left(E_{j_{m}}\right)>0$. So, it must be that C_{n} has finitely many elements. Also, $\left\{E_{j}\right\}_{j \in J}=\cup_{n=1}^{\infty} C_{n}$, which is countable since it is a countable union of finite sets.
2. Consider the extended real line, i.e., $\overline{\mathbb{R}}:=\mathbb{R} \cup\{-\infty\} \cup\{\infty\}$. Let $\overline{\mathcal{B}}:=\mathcal{B}(\overline{\mathbb{R}})$ be defined as the collection of sets \bar{B} such that $\bar{B}=B \cup S$ where $B \in \mathcal{B}(\mathbb{R})$ and $S \in\{\emptyset,\{-\infty\},\{\infty\},\{-\infty, \infty\}\}$. Show that $\overline{\mathcal{B}}$ is a σ-algebra and that it is generated by a collection of sets of the form $[a, \infty]$ where $a \in \mathbb{R}$.

Answer: (2 points to show $\overline{\mathcal{B}}$ is a σ-algebra and 2 points for the rest) Let's first show that $\overline{\mathcal{B}}$ is a σ algebra. Since $\bar{B}=B \cup S$ with $B \in \mathcal{B}(\mathbb{R})$, we can choose $B=\mathbb{R}$ and use $S=\{-\infty, \infty\}$ to conclude that $\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\} \in \overline{\mathcal{B}}$. Next, note that if $\bar{B}=B \cup S$ we have that $\bar{B}^{c}=B^{c} \cap S^{c}$. But the complement of a set S is an element of $\{\overline{\mathbb{R}}, \mathbb{R} \cup\{\infty\}, \mathbb{R} \cup\{-\infty\}, \mathbb{R}\}$. Hence, either 1) $\bar{B}^{c}=B^{c} \cap \overline{\mathbb{R}}=B^{c} \cup \emptyset \in \overline{\mathcal{B}}$ or, 2) $\bar{B}^{c}=B^{c} \cap(\mathbb{R} \cup\{\infty\})=\left(B^{c} \cap \mathbb{R}\right) \cup\{\infty\}$ where $B^{c} \cap \mathbb{R} \in \mathcal{B}$ and consequently $\bar{B}^{c} \in \overline{\mathcal{B}}$ or, 3) $\bar{B}^{c}=B^{c} \cap(\mathbb{R} \cup\{-\infty\})=\left(B^{c} \cap \mathbb{R}\right) \cup\{-\infty\}$ where $B^{c} \cap \mathbb{R} \in \mathcal{B}$ and consequently $\bar{B}^{c} \in \overline{\mathcal{B}}$ or, 4) $\bar{B}^{c}=B^{c} \cap \mathbb{R} \in \overline{\mathcal{B}}$.

Lastly, letting $A_{i}=B_{i} \cup S$ for $B_{i} \in \mathcal{B}$ we have that $\cup_{i \in \mathbb{N}} A_{i}=\cup_{i \in \mathbb{N}}\left(B_{i} \cup S\right)=\left(\cup_{i \in \mathbb{N}} B_{i}\right) \cup S$. Since $\cup_{i \in \mathbb{N}} B_{i} \in \mathcal{B}$ we have that $\cup_{i \in \mathbb{N}} A_{i} \in \overline{\mathcal{B}}$.
If $\overline{\mathcal{B}}$ is a σ-algebra and $\mathcal{C}=\{[a, \infty]: a \in \mathbb{R}\}$, we need to show that $\sigma(\mathcal{C})=\overline{\mathcal{B}}$.
First, note that $[a, \infty]=[a, \infty) \cup\{\infty\}$ and we know that $[a, \infty) \in \mathcal{B}$. Thus, $[a, \infty] \in \overline{\mathcal{B}}$ for all $a \in \mathbb{R}$. Then, $\sigma(\mathcal{C}) \subseteq \overline{\mathcal{B}}$.
Second, observe that for $-\infty<a \leq b<\infty$ we have $[a, b)=[a, \infty]-[b, \infty]=[a, \infty] \cap[b, \infty]^{c} \in \sigma(\mathcal{C})$ since $\sigma(\mathcal{C})$ contains $[a, \infty]$ and $[b, \infty]^{c}$ by virtue of being a σ-algebra. Hence,

$$
\mathcal{B} \subseteq \sigma(\mathcal{C}) \subseteq \overline{\mathcal{B}}
$$

Now,

$$
\{\infty\}=\cap_{i \in \mathbb{N}}[i, \infty], \quad\{-\infty\}=\cap_{i \in \mathbb{N}}[-\infty,-i)=\cap_{i \in \mathbb{N}}[-i, \infty]^{c}
$$

which allows us to conclude that $\{\infty\},\{-\infty\} \in \sigma(\mathcal{C})$. Hence, if $B \in \mathcal{B}$ all sets of the form

$$
B, B \cup\{\infty\}, B \cup\{-\infty\}, B \cup\{\infty\} \cup\{-\infty\}
$$

are in $\sigma(\mathcal{C})$. Hence, $\overline{\mathcal{B}} \subseteq \sigma(\mathcal{C})$. Combining this set. containment with $\sigma(\mathcal{C}) \subseteq \overline{\mathcal{B}}$ gives the result.
3. If $E_{1}, E_{2}, \cdots, E_{n}$ are independent events, show that the probability that none of them occur is less than or equal to $\exp \left(-\sum_{i=1}^{n} P\left(E_{i}\right)\right)$.

Answer: (3 points). Let $f(x)=\exp (-x)$ and note that for $\lambda \in(0,1)$, by Taylor's Theorem

$$
\exp (-x)=f(x)=f(0)+f^{(1)}(0) x+\frac{1}{2} f^{(2)}(\lambda x) x^{2}=1-x+\frac{1}{2} \exp (-\lambda x) x^{2}
$$

Consequently, $1-x \leq \exp (-x)$. Now, we are interested in the event $E=\left(\cup_{i=1}^{n} E_{i}\right)^{c}=\cap_{i=1}^{n} E_{i}^{c}$. But since the $E_{1}, E_{2}, \cdots, E_{n}$ are independent, so is the collection $E_{1}^{c}, E_{2}^{c}, \cdots, E_{n}^{c}$. Hence, $P(E)=$ $\prod_{i=1}^{n} P\left(E_{i}^{c}\right)=\prod_{i=1}^{n}\left(1-P\left(E_{i}\right)\right) \leq \prod_{i=1}^{n} \exp \left(-P\left(E_{i}\right)\right)=\exp \left(-\sum_{i=1}^{n} P\left(E_{i}\right)\right)$.
4. Let $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{B_{n}\right\}_{n \in \mathbb{N}}$ be events (measurable sets) in a probability space with measure P with $\lim A_{n}=A, \lim B_{n}=B, P\left(B_{n}\right), P(B)>0$ for all n. Show that $P\left(A_{n} \mid B\right) \rightarrow P(A \mid B), P\left(A \mid B_{n}\right) \rightarrow$ $P(A \mid B), P\left(A_{n} \mid B_{n}\right) \rightarrow P(A \mid B)$ as $n \rightarrow \infty$.

Answer: (3 points) Since $P(\cdot \mid B)$ is a probability measure (proved in the class notes), we have by continuity of probability measures that $P\left(A_{n} \mid B\right) \rightarrow P(A \mid B)$ if $\lim B_{n}=B$.
Now, since $\lim B_{n}=B$ we have that $A \cap B_{n} \rightarrow A \cap B$. To see this, note that if $A \cap B_{n}:=C_{n}$ then $D_{j}=\cup_{n=j}^{\infty} C_{n}=A \cap\left(\cup_{n=1}^{\infty} B_{n}\right)$. Then, $\limsup C_{n}=\cap_{j=1}^{\infty} D_{j}=\cap_{j=1}^{\infty}\left(A \cap \cup_{n=1}^{\infty} B_{n}\right)=A \cap B$. Defining $\lim \inf$ for C_{n} we can in similar fashion that $\lim \inf C_{n}=A \cap B$. Hence, by continuity of probability measures $P\left(A \cap B_{n}\right) \rightarrow P(A \cap B)$ and $P\left(B_{n}\right) \rightarrow P(B)$. Consequently,

$$
P\left(A \mid B_{n}\right)=\frac{P\left(A \cap B_{n}\right)}{P\left(B_{n}\right)} \rightarrow \frac{P(A \cap B)}{P(B)}=P(A \mid B) .
$$

Lastly, since $A_{n} \cap B_{n} \rightarrow A \cup B$, using the same arguments

$$
P\left(A_{n} \mid B_{n}\right)=\frac{P\left(A_{n} \cap B_{n}\right)}{P\left(B_{n}\right)} \rightarrow \frac{P(A \cap B)}{P(B)}=P(A \mid B)
$$

5. Let (Ω, \mathcal{F}, P) be a probability space and E_{n} for $n=1,2, \cdots$ be sets in \mathcal{F}. Show that if $\sum_{n=1}^{\infty} P\left(E_{n}\right)<$ ∞ then $P\left(\limsup _{n \rightarrow \infty} E_{n}\right)=0$.
Answer:(2 points)

$$
\begin{aligned}
P\left(\limsup _{n \rightarrow \infty} E_{n}\right) & =P\left(\lim _{n \rightarrow \infty} \cup_{j \geq n} E_{j}\right) \\
& =\lim _{n \rightarrow \infty} P\left(\cup_{j \geq n} E_{j}\right) \text { by continuity } \\
& \leq \limsup _{n \rightarrow \infty} \sum_{j=n}^{\infty} P\left(E_{j}\right) \text { by subadditivity and definition of limsup. }
\end{aligned}
$$

Since $\sum_{n=1}^{\infty} P\left(E_{n}\right)<\infty$ it must be that $\sum_{j=n}^{\infty} P\left(E_{j}\right) \rightarrow 0$ as $n \rightarrow 0$. Consequently, $P\left(\limsup _{n \rightarrow \infty} E_{n}\right)=0$.
6. Let $(\mathbb{X}, \overline{\mathcal{F}}, \bar{\mu})$ be the measure space defined in Theorem 1.15 of your notes and $\mathcal{C}=\{G \in \mathbb{X}: \exists A, B \in$ $\mathcal{F} \ni A \subset G \subset B$ and $\mu(B-A)=0\}$. Show that $\overline{\mathcal{F}}=\mathcal{C}$.

Answer: (3 points) $G \in \overline{\mathcal{F}} \Longrightarrow G=A \cup M$ where $A \in \mathcal{F}$ and $M \in \mathcal{S} . M \in \mathcal{S} \Longrightarrow \exists N \in \mathcal{N}_{\mu} \ni$ $M \subset N$. Then,

$$
A \subset G=A \cup M \subset A \cup N:=B \in \mathcal{F}
$$

Now, $\mu(B-A)=\mu\left(B \cup A^{c}\right)=\mu((A \cup N)-A) \leq \mu(N)=0$. Thus, $G \in \mathcal{C}$.
$G \in \mathcal{C} \Longrightarrow \exists A, B \in \mathcal{F} \ni A \subset G \subset B$ and $\mu(B-A)=0$. Since $A \subset G \subset B$ we have that $G-A \subset B-A$, and since $B-A$ is a μ-null set $G-A \in \mathcal{S}$. Now, $G=A \cup(G-A)$, and since $A \in \mathcal{F}$, $G \in \overline{\mathcal{F}}$.
7. Let μ be a measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $\mu([-n, n))<\infty$ for all $n \in \mathbb{N}$. Define,

$$
F_{\mu}(x):= \begin{cases}\mu([0, x)) & \text { if } x>0 \\ 0 & \text { if } x=0 \\ -\mu([x, 0)) & \text { if } x<0\end{cases}
$$

Show that $F_{\mu}: \mathbb{R} \rightarrow \mathbb{R}$ is monotonically increasing and left continuous.

Answer: (4 points) Given that $\mu([-n, n))<\infty, F_{\mu}$ takes values in \mathbb{R}. First, we show that all $x<x^{\prime}$, $F_{\mu}(x) \leq F_{\mu}\left(x^{\prime}\right)$. There are three cases to be considered
(a) $\left(0 \leq x<x^{\prime}\right)$: if $0<x<x^{\prime}, F_{\mu}\left(x^{\prime}\right)-F_{\mu}(x)=\mu\left(\left[0, x^{\prime}\right)\right)-\mu([0, x))$. Since $\left[0, x^{\prime}\right)=[0, x) \cup\left[x, x^{\prime}\right)$, σ-additivity of μ gives $\mu\left(\left[0, x^{\prime}\right)\right)=\mu([0, x))+\mu\left(\left[x, x^{\prime}\right)\right)$ or $\mu\left(\left[x, x^{\prime}\right)\right)=\mu\left(\left[0, x^{\prime}\right)\right)-\mu([0, x))=$ $F_{\mu}\left(x^{\prime}\right)-F_{\mu}(x) \geq 0$. If $x=0, F_{\mu}\left(x^{\prime}\right)-F_{\mu}(0)=\mu\left(\left[0, x^{\prime}\right)\right) \geq 0$.
(b) $\left(x<0 \leq x^{\prime}\right)$: If $x^{\prime}>0, F_{\mu}\left(x^{\prime}\right)-F_{\mu}(x)=\mu\left(\left[0, x^{\prime}\right)\right)+\mu([x, 0)) \geq 0$. If $x^{\prime}=0, F_{\mu}(0)-F_{\mu}(x)=$ $\mu([x, 0)) \geq 0$.
(c) $\left(x<x^{\prime}<0\right): F_{\mu}\left(x^{\prime}\right)-F_{\mu}(x)=-\mu\left(\left[x^{\prime}, 0\right)\right)+\mu([x, 0))$. Since $[x, 0)=\left[x, x^{\prime}\right) \cup\left[x^{\prime}, 0\right), \sigma$-additivity of μ gives $\mu([x, 0))=\mu\left(\left[x, x^{\prime}\right)\right)+\mu\left(\left[x^{\prime}, 0\right)\right)$ or $\mu([x, 0))-\mu\left(\left[x^{\prime}, 0\right)\right)=F_{\mu}\left(x^{\prime}\right)-F_{\mu}(x)=\mu\left(\left[x, x^{\prime}\right)\right) \geq 0$.

Second, we must show that $\lim _{n \rightarrow \infty} F_{\mu}\left(x-h_{n}\right)=F_{\mu}(x)$ for all $x \in \mathbb{R}$. Let $n \in \mathbb{N}, h_{1} \geq h_{2} \geq h_{3} \geq \cdots$ with $h_{n} \downarrow 0$ as $n \rightarrow \infty$, and $h_{1}>0$. There are three cases to consider.
(a) $(x>0)$: Choose $h_{1} \in(0, x)$ and define $A_{n}=\left[0, x-h_{n}\right)$. Then, $A_{1} \subset A_{2} \subset \cdots$ and $\lim _{n \rightarrow \infty} A_{n}=$ $\bigcup_{n \in \mathbb{N}} A_{n}=[0, x)$. By continuity of measure from below,

$$
\lim _{n \rightarrow \infty} F_{\mu}\left(x-h_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(\left[0, x-h_{n}\right)\right)=\mu([0, x))=F_{\mu}(x)
$$

(b) $(x=0)$: Define $A_{n}=\left[-h_{n}, 0\right)$. Then, $A_{1} \supset A_{2} \supset \cdots$ and $\lim _{n \rightarrow \infty} A_{n}=\bigcap_{n \in \mathbb{N}} A_{n}=\emptyset$. By continuity of measures from above, and given that $\mu\left(\left[-h_{1}, 0\right)\right)<\infty$,

$$
\lim _{n \rightarrow \infty} F_{\mu}\left(-h_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(\left[-h_{n}, 0\right)\right)=\mu(\emptyset)=0=F_{\mu}(0)
$$

(c) $(x<0)$: Define $A_{n}=\left[x-h_{n}, 0\right)$. Then, $A_{1} \supset A_{2} \supset \cdots$ and $\lim _{n \rightarrow \infty} A_{n}=\cap_{n=1}^{\infty} A_{n}=[x, 0)$. By continuity of measures from above and given that $\mu\left(\left[x-h_{1}, 0\right)\right)<\infty$,

$$
\lim _{n \rightarrow \infty} F_{\mu}\left(x-h_{n}\right)=\lim _{n \rightarrow \infty}-\mu\left(\left[x-h_{n}, 0\right)\right)=-\mu([x, 0))=F_{\mu}(x)
$$

