
Econ 7818 - Fall 2023, Homework 2 - part 1, Professor Martins. Due date: TBA

1. Suppose (Ω,F) and (Y,G) are measure spaces and f : Ω→ Y. Show that: a) If−1(A)(ω) = (IA ◦ f)(ω)
for all ω; b) f is measurable if, and only if, σ({f−1(A) : A ∈ G}) ⊂ F .

Answer: a) For any subset A ⊂ Y , we have f−1(A) = {ω : f(ω) ∈ A}. Then,

If−1(A)(ω) = I{ω:f(ω)∈A}(ω) = IA(f(ω)) = (IA ◦ f)(ω).

b) Since f is measurable, f−1(G) ⊂ F . By monotonicity of σ-algebras, σ(f−1(G)) = σ({f−1(A) :
A ∈ G}) ⊂ F . Now, σ(f−1(G)) = f−1(σ(G)) = f−1(G) ⊂ F . The last set containment implies
measurability.

2. Show that for any function f : X→ Y and any collection of subsets G of Y, f−1(σ(G)) = σ(f−1(G))

Answer: f−1(σ(G)) is a σ-algebra associated with X. Since G ⊂ σ(G), f−1(G) ⊂ f−1(σ(G)) and
consequently σ(f−1(G)) ⊂ f−1(σ(G)).

Now, as in Theorem 3.1, U = {U ∈ 2Y : f−1(U) ∈ σ(f−1(G))} is a σ-algebra. By definition of U

f−1(U) ⊂ σ(f−1(G)).

Also, G ⊂ U since f−1(G) ⊂ f−1(U) ⊂ σ(f−1(G)). Since U is a σ-algebra we have that σ(G) ⊂ U . So,

f−1(σ(G)) ⊂ f−1(U) ⊂ σ(f−1(C)).

The last set containment combined with the reverse obtained on the last paragraph completes the
proof.

3. Let i ∈ I where I is an arbitrary index set. Consider fi : (X,F)→ (Xi,Fi).

(a) Show that for all i, the smallest σ-algebra associated with X that makes fi measurable is given
by f−1i (Fi).

(b) Show that σ

(⋃
i∈I
f−1i (Fi)

)
is the smallest σ-algebra associated with X that makes all fi simulta-

neously measurable.

Answer: a) fi is measurable if f−1i (Fi) ⊂ F . But by monotonicity of σ(·) we have σ(f−1i (Fi)) =
f−1i (Fi) ⊂ F since f−1i (Fi) is a σ-algebra. b) f−1i (Fi) ⊂ F for all i ∈ I because fi is measur-
able. But any sub-σ-algebra of F that makes all fi measurable functions must contain all f−1i (Fi),
i.e.,

⋃
i∈I
f−1i (Fi). However, unions of σ-algebras are not necessarily σ-algebras. Hence, we consider

σ

(⋃
i∈I
f−1i (Fi)

)
, the smallest σ-algebra that makes all fi simultaneously measurable.

4. Let Fµ be as in problem 7 in Homework 1 - part 2. Show that vFµ
([a, b)) := Fµ(b) − Fµ(a) for all

a < b, a, b ∈ R has a unique extension to a measure in B and conclude that µ = vFµ
.

Answer: Recall that S = {[a, b) : a ≤ b, a, b ∈ R} is a semi-ring (if a = b, [a, a) = ∅). Given Fµ,
we define νFµ

: S → [0,∞) as νFµ
([a, b)) = Fµ(b) − Fµ(a) for all a ≤ b. Since Fµ is monotonically

increasing, Fµ(b) − Fµ(a) ≥ 0 and νFµ
([a, a) = ∅) = Fµ(a) − Fµ(a) = 0. Also, νFµ

is finitely additive
since for a < c < b, we have that [a, b) = [a, c)∪ [c, b) and νFµ([a, b)) = Fµ(b)−Fµ(a) = Fµ(c)−Fµ(a)+
Fµ(b)−Fµ(c) = νFµ([a, c)) + νFµ([c, b)). We now show that νFµ is σ-additive, i.e., for [an, bn), n ∈ N a
disjoint collection such that [a, b) = ∪

n∈N
[an, bn), we have νFµ

([a, b)) =
∑
n∈N

νFµ
([an, bn)). Fix εn, ε > 0



and note that (an − εn, bn) ⊃ [an, bn). Hence, ∪
n∈N

(an − εn, bn) ⊃ ∪
n∈N

[an, bn) = [a, b) ⊃ [a, b− ε]. Since

∪
n∈N

(an − εn, bn) is an open cover for the compact set [a, b − ε], by the Heine-Borel Theorem, there

exists N ∈ N such that

∪Nn=1 [an − εn, bn) ⊃ ∪Nn=1(an − εn, bn) ⊃ [a, b− ε] ⊃ [a, b− ε). (1)

Now, since ∪n∈N[an, bn) = [a, b) we have ∪Nn=1[an, bn) ⊂ [a, b) and

νFµ([a, b)) ≥ νFµ

(
∪Nn=1[an, bn)

)
=

N∑
n=1

νFµ ([an, bn)) by finite additivity.

Hence, we have

0 ≤ νFµ([a, b))−
N∑
n=1

νFµ ([an, bn))

= νFµ
([a, b− ε)) + νFµ

([b− ε, b))−
N∑
n=1

(
νFµ

([an − εn, bn))− νFµ
([an − εn, an))

)
= νFµ

([a, b− ε))−
N∑
n=1

νFµ
([an − εn, bn)) this term < 0 by (1)

+ νFµ([b− ε, b)) +

N∑
n=1

νFµ([an − εn, an))

≤ νFµ
([b− ε, b)) +

N∑
n=1

νFµ
([an − εn, an)) = Fµ(b)− Fµ(b− ε) +

N∑
n=1

(Fµ(an)− Fµ(an − εn)).

By left-continuity of Fµ, we can choose ε such that Fµ(b)−Fµ(b− ε) < η/2 and εn such that Fµ(an)−
Fµ(an − εn) < 2−n η/2. Hence,

0 ≤ νFµ
([a, b))−

N∑
n=1

νFµ
([an, bn)) ≤ η

2

(
1 +

N∑
n=1

2−n

)
.

Letting N →∞ we have that νFµ
([a, b)) =

∑∞
n=1 νFµ

([an, bn)).

Since νFµ
is a pre-measure on a semi-ring, by Carathéodory’s Theorem, it has a unique extension to

σ(S) = B(R). Furthermore, since for n ∈ N, [−n, n) ↑ R and νFµ
([−n, n)) = Fµ(n) − Fµ(−n) =

µ([0, n)) + µ([−n, 0))) <∞, this extension is unique.

It suffices to verify that νFµ = µ on S, since νFµ extends uniquely to B(R). In fact,

Case 1 (0 ≤ a < b): νFµ
([a, b)) = Fµ(b)−Fµ(a) = µ([0, b))−µ([0, a)) = µ([0, a))+µ([a, b))−µ([0, a)) =

µ([a, b)), since [0, b) = [0, a) ∪ [a, b).

Case 2 (a < 0 < b): νFµ
([a, b)) = Fµ(b) − Fµ(a) = µ([0, b)) + µ([a, 0)) = µ([a, b)), since [a, b) =

[a, 0) ∪ [0, b).

Case 3 (a < b ≤ 0): νFµ([a, b)) = Fµ(b) − Fµ(a) = −µ([b, 0)) + µ([a, 0)) = µ([a, b)), since [a, b) =
[a, 0)− [b, 0).

5. Consider the measurable space (R,B(R)) and the one-dimensional Lebesgue measure λ1. For any
measure m on (R,B(R)) a point x ∈ R is called an atom if m({x}) > 0. Show that every measure m
with no atoms can be written as m in Theorem 3.4 in your notes, with µ = λ1. Hint: use question 4



in this homework.

Answer: Note that Fµ from question 4 is not right-continuous. Let x ≥ 0, hn > 0 and An = [0, x+hn).
Then A1 ⊇ A2 ⊇ · · · and lim

n→∞
An = ∩∞n=1An = [0, x] = [0, x) ∪ {x}. Hence, lim

n→∞
Fµ(x + hn) =

µ([0, x]) = Fµ(x) + µ({x}). Also, if x < 0, 0 < hn < −x and An = [x + hn, 0). Then, A1 ⊂ A2 ⊂ · · ·
and lim

n→∞
An =

⋃
n∈N

An = (x, 0) = [x, 0)− {x}. Hence, lim
n→∞

Fµ(x+ hn) = −µ((x, 0)) = Fµ(x) + µ({x}).

Hence, unless µ({x}) = 0 we have lim
n→∞

Fµ(x+hn) 6= Fµ(x). In fact, for any x ∈ R, a point of continuity

of Fµ,

µ({x}) = µ

(⋂
n∈N

[
x, x+

1

n

))
= lim
n→∞

µ

([
x, x+

1

n

))
= lim
n→∞

Fµ

(
x+

1

n

)
− Fµ(x) = 0 by right continuity of Fµ.

Thus, Fµ is continuous at x if, and only if, µ({x}) = 0.

In the notation of this question, Fm is continuous if if, and only if, m({x}) = 0, that is, there are no
atoms. Now,

m([a, b)) = Fm(b)− Fm(a) = λ1([Fm(a), Fm(b)))

= λ1(Fm([a, b))), by continuity

= (λ1 ◦ Fm)([a, b)).

The last equality follows from defining the inverse map f−1 in Theorem 3.4 as the inverse function of
Fmwhen it exists, or as the generalized inverse F−m as in your notes.

6. Prove Remark 4.3 in your class notes.

Answer: Since f is simple and f ≤ f it is an admissible function in the set over which the supremum
is being taken. Hence, Iµ(f) ≤

∫
fdµ. If g is simple and g ≤ f , Iµ(g) ≤ Iµ(f) and∫
fdµ = sup{Iµ(g) : g ≤ f} ≤ Iµ(f).


