Econ 7818 - Fall 2023, Homework 2 - part 1, Professor Martins. Due date: TBA

1. Suppose (2, F) and (Y, G) are measure spaces and f : @ — Y. Show that: a) Iy-1(4y(w) = (Jao f)(w)
for all w; b) f is measurable if, and only if, o({f~1(A) : A € G}) C F.

Answer: a) For any subset A C Y, we have f~}(A4) = {w: f(w) € A}. Then,
Ty—1(4) (W) = Lwipwyeay(w) = La(f(w)) = (1a o f)(w).

b) Since f is measurable, f~1(G) C F. By monotonicity of o-algebras, o(f~1(G)) = o({f1(A) :
A€ G}) c F. Now, o(f~5G)) = f1(c(G)) = f~1(G) C F. The last set containment implies
measurability.

2. Show that for any function f : X — Y and any collection of subsets G of Y, f~1(c(G)) = o(f~1(G))

Answer: f~1(0(G)) is a o-algebra associated with X. Since G C o(G), f~1(G) C f~1(c(G)) and
consequently o(f~1(G)) C f~1(a(G)).
Now, as in Theorem 3.1, U = {U € 2¥ : f~Y(U) € o(f~1(G))} is a o-algebra. By definition of U

) ca(f7HG)).
Also, G C U since f~1(G) C f~1(U) C o(f~1(G)). Since U is a o-algebra we have that o(G) C U. So,
FHo(@) C fHU) Ca(F7HC)).

The last set containment combined with the reverse obtained on the last paragraph completes the
proof.

3. Let i € I where I is an arbitrary index set. Consider f; : (X, F) — (X;, F).

(a) Show that for all 4, the smallest o-algebra associated with X that makes f; measurable is given
by f i_l(]: i)-

(b) Show that o (U fil(]:i)) is the smallest o-algebra associated with X that makes all f; simulta-
iel
neously measurable.
Answer: a) f; is measurable if f; *(F;) C F. But by monotonicity of o(-) we have o(f; '(Fi)) =
f7N(F) € F since f;'(F;) is a o-algebra. b) f;'(Fi) C F for all i € I because f; is measur-
able. But any sub-o-algebra of F that makes all f; measurable functions must contain all ffl(}'i),
ie, U f[l(]:i). However, unions of o-algebras are not necessarily o-algebras. Hence, we consider
il

o (U fi_l(]-'i)>, the smallest o-algebra that makes all f; simultaneously measurable.
i€l

4. Let F), be as in problem 7 in Homework 1 - part 2. Show that vg,([a,b)) := F,(b) — Fj,(a) for all
a < b, a,b € R has a unique extension to a measure in B and conclude that y = vp,.
Answer: Recall that § = {[a,b) : a < b, a,b € R} is a semi-ring (if @ = b, [a,a) = 0). Given F),,
we define v, : & — [0,00) as vp,([a,b)) = F,,(b) — Fj(a) for all @ < b. Since F}, is monotonically
increasing, F},(b) — F(a) > 0 and vr, ([a,a) = 0) = Fj.(a) — F.(a) = 0. Also, vg, is finitely additive
since for a < ¢ < b, we have that [a,b) = [a,c)U[c,b) and v, ([a,b)) = F,(b) — F.(a) = Fu(c) — Fu(a) +
F,(b) — Fyu(c) = vp,([a,c)) +vE,([c,b)). We now show that vp, is o-additive, i.e., for [a,,b,), n € N a
disjoint collection such that [a,b) = LGJ]N[an,bn), we have vr, ([a,0)) = > vr, ([an,bn)). Fix €y, € >0

n nelN



and note that (a, — €, bn) D [an,by). Hence, U (a, —€,,bn) D U [an,by) = [a,b) D [a,b—¢€|. Since
neN nelN

U]N(an — €n,by) is an open cover for the compact set [a,b — €], by the Heine-Borel Theorem, there
ne

exists N € IN such that

UM [an — €n,bn) D UN_ (an — €n,D,) D [a,b— €] D [a,b—e). (1)

n=1

Now, since Upen[an, bn) = [a,b) we have UY_, [an, b,) C [a,b) and

N
vp, ([a,b) > vp, (Un_i[an,bn)) = Z vr, ([an,by)) by finite additivity.
n=1

Hence, we have

N

0 <wp,([a,0) = > vr, ([an,bn))

n=1

=vp,([a,b =€) +vp, ([b—¢€0D)) — Z (vE, ([an — €n,by)) — v, ([an — €n,an)))

=vp,([a,b—¢)) — vE, ([an — €n,by)) this term < 0 by

] =

n=1

T e, ([b—60)+ > vr,(lan —€n,an))

] =

3
Il
_

< I/F“([b — €, b)) +

] =

N
VF,J,([an — €nyQp)) = Fu(b) - Fu(b —€) + Z(F#(an) - F;L(an —€n)).

3
Il

By left-continuity of F),, we can choose € such that F),(b) — F,,(b—€) < /2 and ¢, such that F),(a,) —
F,(an —€,) < 27" n/2. Hence,

N N
n —n
0 < v, ([a,0)) — ;m ([an,bn)) < 5 (1 +n§2 ) .
Letting N — oo we have that vp, ([a,0)) = >>° vg, ([an,bn))-

Since vp, is a pre-measure on a semi-ring, by Carathéodory’s Theorem, it has a unique extension to
o(S) = B(R). Furthermore, since for n € IN, [-n,n) * R and vg,([-n,n)) = Fu(n) — Fu(—n) =
p([0,n)) 4+ p([—n,0))) < oo, this extension is unique.

It suffices to verify that vr, = p on S, since vg, extends uniquely to B(R). In fact,

Case 1 (0 < a <b): vg,([a,b)) = Fu(b) — Fyu(a) = p([0,b)) — ([0, @)) = ([0, a)) + u([a, b)) — ([0, a)) =
p([a,)), since [0,5) = [0,a) U [a, b).

Case 2 (a < 0 < b): vp,([a,b) = Fu(b) — Fu(a) = p([0,0)) + u([a,0)) = u([a,b)), since [a,b) =
[a,0) U0,b).

Case 3 (a < b < 0): vp,([a,b) = Fu(b) — Fu(a) = —p([b,0)) + p([a,0)) = p([a,b)), since [a,b) =
[a,0) — [b,0).

. Consider the measurable space (R,B(R)) and the one-dimensional Lebesgue measure A\!. For any
measure m on (R, B(R)) a point € R is called an atom if m({z}) > 0. Show that every measure m
with no atoms can be written as m in Theorem 3.4 in your notes, with = A!. Hint: use question 4



in this homework.

Answer: Note that F}, from question 4 is not right-continuous. Let = > 0, h,, > 0 and A,, = [0, z+hy,).
Then Ay D Ay D -+ and lim A4, = N32, A, = [0,z] = [0,2) U {z}. Hence, lim F,(z + h,) =
n—oo

n—0o0

([0, z]) = F,(z) + u({z}). Also, if 2 < 0,0 < h, < —z and A,, = [z + hy,0). Then, A; C Ay C ---

and lim A, = U A, = (2,0) = [z,0) — {z}. Hence, ILm F.(x+hyp) =—p((z,0) = Fu(z) + p({z}).
Hence, unless u({z}) = 0 we have li_>m Fu(z+hy,) # F,(z). In fact, for any = € R, a point of continuity

of Fy,,
(1) )

1
lim F), (az + ) — F,,(xz) = 0 by right continuity of F,.
n

n—o0

p({z})

Thus, F), is continuous at « if, and only if, p({z}) = 0.

In the notation of this question, F), is continuous if if, and only if, m({z}) = 0, that is, there are no
atoms. Now,

m([a,b)) = Fin(b) = Fn(a) = A ([Fin(a), Fin (b))
= A(F,.([a,)))), by continuity
= (Mo F)([a,b)).

The last equality follows from defining the inverse map f~! in Theorem 3.4 as the inverse function of
F,,when it exists, or as the generalized inverse F,, as in your notes.

. Prove Remark 4.3 in your class notes.

Answer: Since f is simple and f < f it is an admissible function in the set over which the supremum
is being taken. Hence, I,,(f) < [ fdu. If g is simple and g < f, I,(g) < I,(f) and

/ fdp = sup{I,(g) : g < f} < L(f).



