Econ 7818 - Fall 2023, Homework 2 - part 1, Professor Martins. Due date: TBA

1. Suppose (Ω, \mathcal{F}) and $(\mathbb{Y}, \mathcal{G})$ are measure spaces and $f : \Omega \to \mathbb{Y}$. Show that: a) $I_{f^{-1}(A)}(\omega) = (I_A \circ f)(\omega)$ for all ω ; b) f is measurable if, and only if, $\sigma(\{f^{-1}(A) : A \in \mathcal{G}\}) \subset \mathcal{F}$.

Answer: a) For any subset $A \subset Y$, we have $f^{-1}(A) = \{\omega : f(\omega) \in A\}$. Then,

$$I_{f^{-1}(A)}(\omega) = I_{\{\omega: f(\omega) \in A\}}(\omega) = I_A(f(\omega)) = (I_A \circ f)(\omega).$$

b) Since f is measurable, $f^{-1}(\mathcal{G}) \subset \mathcal{F}$. By monotonicity of σ -algebras, $\sigma(f^{-1}(\mathcal{G})) = \sigma(\{f^{-1}(A) : A \in \mathcal{G}\}) \subset \mathcal{F}$. Now, $\sigma(f^{-1}(\mathcal{G})) = f^{-1}(\sigma(\mathcal{G})) = f^{-1}(\mathcal{G}) \subset \mathcal{F}$. The last set containment implies measurability.

2. Show that for any function $f : \mathbb{X} \to \mathbb{Y}$ and any collection of subsets \mathcal{G} of \mathbb{Y} , $f^{-1}(\sigma(\mathcal{G})) = \sigma(f^{-1}(\mathcal{G}))$ **Answer**: $f^{-1}(\sigma(\mathcal{G}))$ is a σ -algebra associated with \mathbb{X} . Since $\mathcal{G} \subset \sigma(\mathcal{G})$, $f^{-1}(\mathcal{G}) \subset f^{-1}(\sigma(\mathcal{G}))$ and consequently $\sigma(f^{-1}(\mathcal{G})) \subset f^{-1}(\sigma(\mathcal{G}))$.

Now, as in Theorem 3.1, $\mathcal{U} = \{ U \in 2^{\mathbb{Y}} : f^{-1}(U) \in \sigma(f^{-1}(\mathcal{G})) \}$ is a σ -algebra. By definition of \mathcal{U}

$$f^{-1}(\mathcal{U}) \subset \sigma(f^{-1}(\mathcal{G}))$$

Also, $\mathcal{G} \subset \mathcal{U}$ since $f^{-1}(\mathcal{G}) \subset f^{-1}(\mathcal{U}) \subset \sigma(f^{-1}(\mathcal{G}))$. Since \mathcal{U} is a σ -algebra we have that $\sigma(\mathcal{G}) \subset \mathcal{U}$. So,

$$f^{-1}(\sigma(\mathcal{G})) \subset f^{-1}(\mathcal{U}) \subset \sigma(f^{-1}(\mathcal{C})).$$

The last set containment combined with the reverse obtained on the last paragraph completes the proof.

- 3. Let $i \in I$ where I is an arbitrary index set. Consider $f_i : (\mathbb{X}, \mathcal{F}) \to (\mathbb{X}_i, \mathcal{F}_i)$.
 - (a) Show that for all *i*, the smallest σ -algebra associated with X that makes f_i measurable is given by $f_i^{-1}(\mathcal{F}_i)$.
 - (b) Show that $\sigma\left(\bigcup_{i\in I} f_i^{-1}(\mathcal{F}_i)\right)$ is the smallest σ -algebra associated with X that makes all f_i simultaneously measurable.

Answer: a) f_i is measurable if $f_i^{-1}(\mathcal{F}_i) \subset \mathcal{F}$. But by monotonicity of $\sigma(\cdot)$ we have $\sigma(f_i^{-1}(\mathcal{F}_i)) = f_i^{-1}(\mathcal{F}_i) \subset \mathcal{F}$ since $f_i^{-1}(\mathcal{F}_i)$ is a σ -algebra. b) $f_i^{-1}(\mathcal{F}_i) \subset \mathcal{F}$ for all $i \in I$ because f_i is measurable. But any sub- σ -algebra of \mathcal{F} that makes all f_i measurable functions must contain all $f_i^{-1}(\mathcal{F}_i)$, i.e., $\bigcup_{i \in I} f_i^{-1}(\mathcal{F}_i)$. However, unions of σ -algebras are not necessarily σ -algebras. Hence, we consider $\sigma\left(\bigcup_{i \in I} f_i^{-1}(\mathcal{F}_i)\right)$, the smallest σ -algebra that makes all f_i simultaneously measurable.

4. Let F_{μ} be as in problem 7 in Homework 1 - part 2. Show that $v_{F_{\mu}}([a, b)) := F_{\mu}(b) - F_{\mu}(a)$ for all $a < b, a, b \in \mathbb{R}$ has a unique extension to a measure in \mathcal{B} and conclude that $\mu = v_{F_{\mu}}$.

Answer: Recall that $S = \{[a, b) : a \leq b, a, b \in \mathbb{R}\}$ is a semi-ring (if $a = b, [a, a) = \emptyset$). Given F_{μ} , we define $\nu_{F_{\mu}} : S \to [0, \infty)$ as $\nu_{F_{\mu}}([a, b)) = F_{\mu}(b) - F_{\mu}(a)$ for all $a \leq b$. Since F_{μ} is monotonically increasing, $F_{\mu}(b) - F_{\mu}(a) \geq 0$ and $\nu_{F_{\mu}}([a, a) = \emptyset) = F_{\mu}(a) - F_{\mu}(a) = 0$. Also, $\nu_{F_{\mu}}$ is finitely additive since for a < c < b, we have that $[a, b) = [a, c) \cup [c, b)$ and $\nu_{F_{\mu}}([a, b)) = F_{\mu}(b) - F_{\mu}(a) = F_{\mu}(c) - F_{\mu}(a) + F_{\mu}(b) - F_{\mu}(c) = \nu_{F_{\mu}}([a, c)) + \nu_{F_{\mu}}([c, b))$. We now show that $\nu_{F_{\mu}}$ is σ -additive, i.e., for $[a_n, b_n), n \in \mathbb{N}$ a disjoint collection such that $[a, b) = \bigcup_{n \in \mathbb{N}} [a_n, b_n)$, we have $\nu_{F_{\mu}}([a, b)) = \sum_{n \in \mathbb{N}} \nu_{F_{\mu}}([a_n, b_n))$. Fix $\epsilon_n, \epsilon > 0$

and note that $(a_n - \epsilon_n, b_n) \supset [a_n, b_n)$. Hence, $\bigcup_{n \in \mathbb{N}} (a_n - \epsilon_n, b_n) \supset \bigcup_{n \in \mathbb{N}} [a_n, b_n) = [a, b) \supset [a, b - \epsilon]$. Since $\bigcup_{n \in \mathbb{N}} (a_n - \epsilon_n, b_n)$ is an open cover for the compact set $[a, b - \epsilon]$, by the Heine-Borel Theorem, there exists $N \in \mathbb{N}$ such that

$$\bigcup_{n=1}^{N} [a_n - \epsilon_n, b_n) \supset \bigcup_{n=1}^{N} (a_n - \epsilon_n, b_n) \supset [a, b - \epsilon] \supset [a, b - \epsilon].$$
(1)

Now, since $\cup_{n \in \mathbb{N}} [a_n, b_n) = [a, b)$ we have $\cup_{n=1}^N [a_n, b_n) \subset [a, b)$ and

$$\nu_{F_{\mu}}([a,b)) \ge \nu_{F_{\mu}}\left(\bigcup_{n=1}^{N} [a_n, b_n)\right) = \sum_{n=1}^{N} \nu_{F_{\mu}}\left([a_n, b_n)\right) \text{ by finite additivity.}$$

Hence, we have

$$0 \leq \nu_{F_{\mu}}([a,b)) - \sum_{n=1}^{N} \nu_{F_{\mu}}([a_{n},b_{n}))$$

= $\nu_{F_{\mu}}([a,b-\epsilon)) + \nu_{F_{\mu}}([b-\epsilon,b)) - \sum_{n=1}^{N} \left(\nu_{F_{\mu}}([a_{n}-\epsilon_{n},b_{n})) - \nu_{F_{\mu}}([a_{n}-\epsilon_{n},a_{n}))\right)$
= $\nu_{F_{\mu}}([a,b-\epsilon)) - \sum_{n=1}^{N} \nu_{F_{\mu}}([a_{n}-\epsilon_{n},b_{n}))$ this term < 0 by (1)
+ $\nu_{F_{\mu}}([b-\epsilon,b)) + \sum_{n=1}^{N} \nu_{F_{\mu}}([a_{n}-\epsilon_{n},a_{n}))$
 $\leq \nu_{F_{\mu}}([b-\epsilon,b)) + \sum_{n=1}^{N} \nu_{F_{\mu}}([a_{n}-\epsilon_{n},a_{n})) = F_{\mu}(b) - F_{\mu}(b-\epsilon) + \sum_{n=1}^{N} (F_{\mu}(a_{n}) - F_{\mu}(a_{n}-\epsilon_{n})).$

By left-continuity of F_{μ} , we can choose ϵ such that $F_{\mu}(b) - F_{\mu}(b-\epsilon) < \eta/2$ and ϵ_n such that $F_{\mu}(a_n) - F_{\mu}(a_n - \epsilon_n) < 2^{-n} \eta/2$. Hence,

$$0 \le \nu_{F_{\mu}}([a,b]) - \sum_{n=1}^{N} \nu_{F_{\mu}}([a_n,b_n]) \le \frac{\eta}{2} \left(1 + \sum_{n=1}^{N} 2^{-n}\right)$$

Letting $N \to \infty$ we have that $\nu_{F_{\mu}}([a, b)) = \sum_{n=1}^{\infty} \nu_{F_{\mu}}([a_n, b_n)).$

Since $\nu_{F_{\mu}}$ is a pre-measure on a semi-ring, by Carathéodory's Theorem, it has a unique extension to $\sigma(\mathcal{S}) = \mathcal{B}(\mathbb{R})$. Furthermore, since for $n \in \mathbb{N}$, $[-n,n) \uparrow \mathbb{R}$ and $\nu_{F_{\mu}}([-n,n)) = F_{\mu}(n) - F_{\mu}(-n) = \mu([0,n)) + \mu([-n,0)) < \infty$, this extension is unique.

It suffices to verify that $\nu_{F_{\mu}} = \mu$ on \mathcal{S} , since $\nu_{F_{\mu}}$ extends uniquely to $\mathcal{B}(\mathbb{R})$. In fact,

Case 1 $(0 \le a < b)$: $\nu_{F_{\mu}}([a, b)) = F_{\mu}(b) - F_{\mu}(a) = \mu([0, b)) - \mu([0, a)) = \mu([0, a)) + \mu([a, b)) - \mu([0, a)) = \mu([a, b))$, since $[0, b) = [0, a) \cup [a, b)$.

Case 2 (a < 0 < b): $\nu_{F_{\mu}}([a,b]) = F_{\mu}(b) - F_{\mu}(a) = \mu([0,b]) + \mu([a,0]) = \mu([a,b])$, since $[a,b] = [a,0] \cup [0,b]$.

Case 3
$$(a < b \le 0)$$
: $\nu_{F_{\mu}}([a,b]) = F_{\mu}(b) - F_{\mu}(a) = -\mu([b,0]) + \mu([a,0]) = \mu([a,b])$, since $[a,b] = [a,0] - [b,0]$.

5. Consider the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and the one-dimensional Lebesgue measure λ^1 . For any measure m on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ a point $x \in \mathbb{R}$ is called an atom if $m(\{x\}) > 0$. Show that every measure m with no atoms can be written as m in Theorem 3.4 in your notes, with $\mu = \lambda^1$. Hint: use question 4

in this homework.

Answer: Note that F_{μ} from question 4 is not right-continuous. Let $x \ge 0$, $h_n > 0$ and $A_n = [0, x+h_n)$. Then $A_1 \supseteq A_2 \supseteq \cdots$ and $\lim_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n = [0, x] = [0, x) \cup \{x\}$. Hence, $\lim_{n \to \infty} F_{\mu}(x+h_n) = \mu([0, x]) = F_{\mu}(x) + \mu(\{x\})$. Also, if x < 0, $0 < h_n < -x$ and $A_n = [x+h_n, 0)$. Then, $A_1 \subset A_2 \subset \cdots$ and $\lim_{n \to \infty} A_n = \bigcup_{n \in \mathbb{N}} A_n = (x, 0) = [x, 0) - \{x\}$. Hence, $\lim_{n \to \infty} F_{\mu}(x+h_n) = -\mu((x, 0)) = F_{\mu}(x) + \mu(\{x\})$. Hence, unless $\mu(\{x\}) = 0$ we have $\lim_{n \to \infty} F_{\mu}(x+h_n) \neq F_{\mu}(x)$. In fact, for any $x \in \mathbb{R}$, a point of continuity of F_{μ} ,

$$\begin{split} \mu(\{x\}) &= \mu\left(\bigcap_{n \in \mathbb{N}} \left[x, x + \frac{1}{n}\right)\right) = \lim_{n \to \infty} \mu\left(\left[x, x + \frac{1}{n}\right)\right) \\ &= \lim_{n \to \infty} F_{\mu}\left(x + \frac{1}{n}\right) - F_{\mu}(x) = 0 \text{ by right continuity of } F_{\mu} \end{split}$$

Thus, F_{μ} is continuous at x if, and only if, $\mu(\{x\}) = 0$.

In the notation of this question, F_m is continuous if if, and only if, $m(\{x\}) = 0$, that is, there are no atoms. Now,

$$m([a,b)) = F_m(b) - F_m(a) = \lambda^1([F_m(a), F_m(b)))$$

= $\lambda^1(F_m([a,b)))$, by continuity
= $(\lambda^1 \circ F_m)([a,b)).$

The last equality follows from defining the inverse map f^{-1} in Theorem 3.4 as the inverse function of F_m when it exists, or as the generalized inverse F_m^- as in your notes.

6. Prove Remark 4.3 in your class notes.

Answer: Since f is simple and $f \leq f$ it is an admissible function in the set over which the supremum is being taken. Hence, $I_{\mu}(f) \leq \int f d\mu$. If g is simple and $g \leq f$, $I_{\mu}(g) \leq I_{\mu}(f)$ and

$$\int f d\mu = \sup\{I_{\mu}(g) : g \le f\} \le I_{\mu}(f).$$