Econ 7818 - Fall 2023, Homework 2 - part 1, Professor Martins. Due date: TBA

1. Suppose (Ω, \mathcal{F}) and $(\mathbb{Y}, \mathcal{G})$ are measure spaces and $f: \Omega \rightarrow \mathbb{Y}$. Show that: a) $I_{f^{-1}(A)}(\omega)=\left(I_{A} \circ f\right)(\omega)$ for all ω; b) f is measurable if, and only if, $\sigma\left(\left\{f^{-1}(A): A \in \mathcal{G}\right\}\right) \subset \mathcal{F}$.

Answer: a) For any subset $A \subset Y$, we have $f^{-1}(A)=\{\omega: f(\omega) \in A\}$. Then,

$$
I_{f^{-1}(A)}(\omega)=I_{\{\omega: f(\omega) \in A\}}(\omega)=I_{A}(f(\omega))=\left(I_{A} \circ f\right)(\omega)
$$

b) Since f is measurable, $f^{-1}(\mathcal{G}) \subset \mathcal{F}$. By monotonicity of σ-algebras, $\sigma\left(f^{-1}(\mathcal{G})\right)=\sigma\left(\left\{f^{-1}(A)\right.\right.$: $A \in \mathcal{G}\}) \subset \mathcal{F}$. Now, $\sigma\left(f^{-1}(\mathcal{G})\right)=f^{-1}(\sigma(\mathcal{G}))=f^{-1}(\mathcal{G}) \subset \mathcal{F}$. The last set containment implies measurability.
2. Show that for any function $f: \mathbb{X} \rightarrow \mathbb{Y}$ and any collection of subsets \mathcal{G} of $\mathbb{Y}, f^{-1}(\sigma(\mathcal{G}))=\sigma\left(f^{-1}(\mathcal{G})\right)$

Answer: $f^{-1}(\sigma(\mathcal{G}))$ is a σ-algebra associated with \mathbb{X}. Since $\mathcal{G} \subset \sigma(\mathcal{G}), f^{-1}(\mathcal{G}) \subset f^{-1}(\sigma(\mathcal{G}))$ and consequently $\sigma\left(f^{-1}(\mathcal{G})\right) \subset f^{-1}(\sigma(\mathcal{G}))$.
Now, as in Theorem 3.1, $\mathcal{U}=\left\{U \in 2^{\mathbb{Y}}: f^{-1}(U) \in \sigma\left(f^{-1}(\mathcal{G})\right)\right\}$ is a σ-algebra. By definition of \mathcal{U}

$$
f^{-1}(\mathcal{U}) \subset \sigma\left(f^{-1}(\mathcal{G})\right)
$$

Also, $\mathcal{G} \subset \mathcal{U}$ since $f^{-1}(\mathcal{G}) \subset f^{-1}(\mathcal{U}) \subset \sigma\left(f^{-1}(\mathcal{G})\right)$. Since \mathcal{U} is a σ-algebra we have that $\sigma(\mathcal{G}) \subset \mathcal{U}$. So,

$$
f^{-1}(\sigma(\mathcal{G})) \subset f^{-1}(\mathcal{U}) \subset \sigma\left(f^{-1}(\mathcal{C})\right)
$$

The last set containment combined with the reverse obtained on the last paragraph completes the proof.
3. Let $i \in I$ where I is an arbitrary index set. Consider $f_{i}:(\mathbb{X}, \mathcal{F}) \rightarrow\left(\mathbb{X}_{i}, \mathcal{F}_{i}\right)$.
(a) Show that for all i, the smallest σ-algebra associated with \mathbb{X} that makes f_{i} measurable is given by $f_{i}^{-1}\left(\mathcal{F}_{i}\right)$.
(b) Show that $\sigma\left(\bigcup_{i \in I} f_{i}^{-1}\left(\mathcal{F}_{i}\right)\right)$ is the smallest σ-algebra associated with \mathbb{X} that makes all f_{i} simultaneously measurable.

Answer: a) f_{i} is measurable if $f_{i}^{-1}\left(\mathcal{F}_{i}\right) \subset \mathcal{F}$. But by monotonicity of $\sigma(\cdot)$ we have $\sigma\left(f_{i}^{-1}\left(\mathcal{F}_{i}\right)\right)=$ $f_{i}^{-1}\left(\mathcal{F}_{i}\right) \subset \mathcal{F}$ since $f_{i}^{-1}\left(\mathcal{F}_{i}\right)$ is a σ-algebra. b) $f_{i}^{-1}\left(\mathcal{F}_{i}\right) \subset \mathcal{F}$ for all $i \in I$ because f_{i} is measurable. But any sub- σ-algebra of \mathcal{F} that makes all f_{i} measurable functions must contain all $f_{i}^{-1}\left(\mathcal{F}_{i}\right)$, i.e., $\bigcup_{i \in I} f_{i}^{-1}\left(\mathcal{F}_{i}\right)$. However, unions of σ-algebras are not necessarily σ-algebras. Hence, we consider $\sigma\left(\bigcup_{i \in I} f_{i}^{-1}\left(\mathcal{F}_{i}\right)\right)$, the smallest σ-algebra that makes all f_{i} simultaneously measurable.
4. Let F_{μ} be as in problem 7 in Homework 1 - part 2. Show that $v_{F_{\mu}}([a, b)):=F_{\mu}(b)-F_{\mu}(a)$ for all $a<b, a, b \in \mathbb{R}$ has a unique extension to a measure in \mathcal{B} and conclude that $\mu=v_{F_{\mu}}$.
Answer: Recall that $\mathcal{S}=\{[a, b): a \leq b, a, b \in \mathbb{R}\}$ is a semi-ring (if $a=b,[a, a)=\emptyset$). Given F_{μ}, we define $\nu_{F_{\mu}}: \mathcal{S} \rightarrow[0, \infty)$ as $\nu_{F_{\mu}}([a, b))=F_{\mu}(b)-F_{\mu}(a)$ for all $a \leq b$. Since F_{μ} is monotonically increasing, $F_{\mu}(b)-F_{\mu}(a) \geq 0$ and $\nu_{F_{\mu}}([a, a)=\emptyset)=F_{\mu}(a)-F_{\mu}(a)=0$. Also, $\nu_{F_{\mu}}$ is finitely additive since for $a<c<b$, we have that $[a, b)=[a, c) \cup[c, b)$ and $\nu_{F_{\mu}}([a, b))=F_{\mu}(b)-F_{\mu}(a)=F_{\mu}(c)-F_{\mu}(a)+$ $F_{\mu}(b)-F_{\mu}(c)=\nu_{F_{\mu}}([a, c))+\nu_{F_{\mu}}([c, b))$. We now show that $\nu_{F_{\mu}}$ is σ-additive, i.e., for $\left[a_{n}, b_{n}\right), n \in \mathbb{N}$ a disjoint collection such that $[a, b)=\underset{n \in \mathbb{N}}{\cup}\left[a_{n}, b_{n}\right)$, we have $\nu_{F_{\mu}}([a, b))=\sum_{n \in \mathbb{N}} \nu_{F_{\mu}}\left(\left[a_{n}, b_{n}\right)\right)$. Fix $\epsilon_{n}, \epsilon>0$
and note that $\left(a_{n}-\epsilon_{n}, b_{n}\right) \supset\left[a_{n}, b_{n}\right)$. Hence, $\underset{n \in \mathbb{N}}{\cup}\left(a_{n}-\epsilon_{n}, b_{n}\right) \supset \underset{n \in \mathbb{N}}{\cup}\left[a_{n}, b_{n}\right)=[a, b) \supset[a, b-\epsilon]$. Since $\bigcup_{n \in \mathbb{N}}\left(a_{n}-\epsilon_{n}, b_{n}\right)$ is an open cover for the compact set $[a, b-\epsilon]$, by the Heine-Borel Theorem, there exists $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\cup_{n=1}^{N}\left[a_{n}-\epsilon_{n}, b_{n}\right) \supset \cup_{n=1}^{N}\left(a_{n}-\epsilon_{n}, b_{n}\right) \supset[a, b-\epsilon] \supset[a, b-\epsilon) . \tag{1}
\end{equation*}
$$

Now, since $\cup_{n \in \mathbb{N}}\left[a_{n}, b_{n}\right)=[a, b)$ we have $\cup_{n=1}^{N}\left[a_{n}, b_{n}\right) \subset[a, b)$ and

$$
\nu_{F_{\mu}}([a, b)) \geq \nu_{F_{\mu}}\left(\cup_{n=1}^{N}\left[a_{n}, b_{n}\right)\right)=\sum_{n=1}^{N} \nu_{F_{\mu}}\left(\left[a_{n}, b_{n}\right)\right) \text { by finite additivity. }
$$

Hence, we have

$$
\begin{aligned}
0 & \leq \nu_{F_{\mu}}([a, b))-\sum_{n=1}^{N} \nu_{F_{\mu}}\left(\left[a_{n}, b_{n}\right)\right) \\
& =\nu_{F_{\mu}}([a, b-\epsilon))+\nu_{F_{\mu}}([b-\epsilon, b))-\sum_{n=1}^{N}\left(\nu_{F_{\mu}}\left(\left[a_{n}-\epsilon_{n}, b_{n}\right)\right)-\nu_{F_{\mu}}\left(\left[a_{n}-\epsilon_{n}, a_{n}\right)\right)\right) \\
& =\nu_{F_{\mu}}([a, b-\epsilon))-\sum_{n=1}^{N} \nu_{F_{\mu}}\left(\left[a_{n}-\epsilon_{n}, b_{n}\right)\right) \text { this term }<0 \text { by 11 } \\
& +\nu_{F_{\mu}}([b-\epsilon, b))+\sum_{n=1}^{N} \nu_{F_{\mu}}\left(\left[a_{n}-\epsilon_{n}, a_{n}\right)\right) \\
& \leq \nu_{F_{\mu}}([b-\epsilon, b))+\sum_{n=1}^{N} \nu_{F_{\mu}}\left(\left[a_{n}-\epsilon_{n}, a_{n}\right)\right)=F_{\mu}(b)-F_{\mu}(b-\epsilon)+\sum_{n=1}^{N}\left(F_{\mu}\left(a_{n}\right)-F_{\mu}\left(a_{n}-\epsilon_{n}\right)\right)
\end{aligned}
$$

By left-continuity of F_{μ}, we can choose ϵ such that $F_{\mu}(b)-F_{\mu}(b-\epsilon)<\eta / 2$ and ϵ_{n} such that $F_{\mu}\left(a_{n}\right)-$ $F_{\mu}\left(a_{n}-\epsilon_{n}\right)<2^{-n} \eta / 2$. Hence,

$$
0 \leq \nu_{F_{\mu}}([a, b))-\sum_{n=1}^{N} \nu_{F_{\mu}}\left(\left[a_{n}, b_{n}\right)\right) \leq \frac{\eta}{2}\left(1+\sum_{n=1}^{N} 2^{-n}\right)
$$

Letting $N \rightarrow \infty$ we have that $\nu_{F_{\mu}}([a, b))=\sum_{n=1}^{\infty} \nu_{F_{\mu}}\left(\left[a_{n}, b_{n}\right)\right)$.
Since $\nu_{F_{\mu}}$ is a pre-measure on a semi-ring, by Carathéodory's Theorem, it has a unique extension to $\sigma(\mathcal{S})=\mathcal{B}(\mathbb{R})$. Furthermore, since for $n \in \mathbb{N},[-n, n) \uparrow \mathbb{R}$ and $\nu_{F_{\mu}}([-n, n))=F_{\mu}(n)-F_{\mu}(-n)=$ $\mu([0, n))+\mu([-n, 0)))<\infty$, this extension is unique.
It suffices to verify that $\nu_{F_{\mu}}=\mu$ on \mathcal{S}, since $\nu_{F_{\mu}}$ extends uniquely to $\mathcal{B}(\mathbb{R})$. In fact,
Case $1(0 \leq a<b): \nu_{F_{\mu}}([a, b))=F_{\mu}(b)-F_{\mu}(a)=\mu([0, b))-\mu([0, a))=\mu([0, a))+\mu([a, b))-\mu([0, a))=$ $\mu([a, b))$, since $[0, b)=[0, a) \cup[a, b)$.
Case $2(a<0<b): \nu_{F_{\mu}}([a, b))=F_{\mu}(b)-F_{\mu}(a)=\mu([0, b))+\mu([a, 0))=\mu([a, b))$, since $[a, b)=$ $[a, 0) \cup[0, b)$.
Case $3(a<b \leq 0): \nu_{F_{\mu}}([a, b))=F_{\mu}(b)-F_{\mu}(a)=-\mu([b, 0))+\mu([a, 0))=\mu([a, b))$, since $[a, b)=$ $[a, 0)-[b, 0)$.
5. Consider the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and the one-dimensional Lebesgue measure λ^{1}. For any measure m on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ a point $x \in \mathbb{R}$ is called an atom if $m(\{x\})>0$. Show that every measure m with no atoms can be written as m in Theorem 3.4 in your notes, with $\mu=\lambda^{1}$. Hint: use question 4
in this homework.

Answer: Note that F_{μ} from question 4 is not right-continuous. Let $x \geq 0, h_{n}>0$ and $A_{n}=\left[0, x+h_{n}\right)$. Then $A_{1} \supseteq A_{2} \supseteq \cdots$ and $\lim _{n \rightarrow \infty} A_{n}=\cap_{n=1}^{\infty} A_{n}=[0, x]=[0, x) \cup\{x\}$. Hence, $\lim _{n \rightarrow \infty} F_{\mu}\left(x+h_{n}\right)=$ $\mu([0, x])=F_{\mu}(x)+\mu(\{x\})$. Also, if $x<0,0<h_{n}<-x$ and $A_{n}=\left[x+h_{n}, 0\right)$. Then, $A_{1} \subset A_{2} \subset \cdots$ and $\lim _{n \rightarrow \infty} A_{n}=\bigcup_{n \in \mathbb{N}} A_{n}=(x, 0)=[x, 0)-\{x\}$. Hence, $\lim _{n \rightarrow \infty} F_{\mu}\left(x+h_{n}\right)=-\mu((x, 0))=F_{\mu}(x)+\mu(\{x\})$. Hence, unless $\mu(\{x\})=0$ we have $\lim _{n \rightarrow \infty} F_{\mu}\left(x+h_{n}\right) \neq F_{\mu}(x)$. In fact, for any $x \in \mathbb{R}$, a point of continuity of F_{μ},

$$
\begin{aligned}
\mu(\{x\}) & =\mu\left(\bigcap_{n \in \mathbb{N}}\left[x, x+\frac{1}{n}\right)\right)=\lim _{n \rightarrow \infty} \mu\left(\left[x, x+\frac{1}{n}\right)\right) \\
& =\lim _{n \rightarrow \infty} F_{\mu}\left(x+\frac{1}{n}\right)-F_{\mu}(x)=0 \text { by right continuity of } F_{\mu}
\end{aligned}
$$

Thus, F_{μ} is continuous at x if, and only if, $\mu(\{x\})=0$.
In the notation of this question, F_{m} is continuous if if, and only if, $m(\{x\})=0$, that is, there are no atoms. Now,

$$
\begin{aligned}
m([a, b)) & =F_{m}(b)-F_{m}(a)=\lambda^{1}\left(\left[F_{m}(a), F_{m}(b)\right)\right) \\
& =\lambda^{1}\left(F_{m}([a, b))\right), \text { by continuity } \\
& =\left(\lambda^{1} \circ F_{m}\right)([a, b))
\end{aligned}
$$

The last equality follows from defining the inverse map f^{-1} in Theorem 3.4 as the inverse function of F_{m} when it exists, or as the generalized inverse F_{m}^{-}as in your notes.
6. Prove Remark 4.3 in your class notes.

Answer: Since f is simple and $f \leq f$ it is an admissible function in the set over which the supremum is being taken. Hence, $I_{\mu}(f) \leq \int f d \mu$. If g is simple and $g \leq f, I_{\mu}(g) \leq I_{\mu}(f)$ and

$$
\int f d \mu=\sup \left\{I_{\mu}(g): g \leq f\right\} \leq I_{\mu}(f)
$$

