
Econ 7818, Homework 2, part 2, Professor Martins.
Due date: Parts 1 and 2 of Homework 2 are due October 13 in class.

1. Use Markov’s inequality in your notes to prove the following for a > 0 and g : (0,∞)→ (0,∞) that is
increasing:

P (|X(ω)| ≥ a) ≤ 1

g(a)

∫
g(|X|)dP

Answer: Since g is increasing, {ω : |X(ω)| ≥ a} = {ω : g(|X(ω)|) ≥ g(a)}. Hence, since g is positive

g(a)I{ω:|X(ω)|≥a} = g(a)I{ω:g(|X(ω)|)≥g(a)} ≤ g(|X(ω)|).

Integrating both sides we have g(a)P ({ω : |X(ω)| ≥ a}) ≤
∫
g(|X(ω)|)dP . This completes the proof

as g(a) > 0.

2. Let X be a random variable defined in the probability space (Ω,F , P ) with E(X2) < ∞. Consider a
function f : R → R. What restrictions are needed on f to guarantee that f(X) is a random variable
with E(f(X)2) <∞?

Answer: (3 points) Recall that if X : (Ω,F , P ) → (R,BR), we say that X is a random variable
(measurable real valued function) if, and only if, for all B ∈ BR we have X−1(B) ∈ F . Hence,
if h(ω) := f(X(ω)) = (f ◦ X)(ω) : (Ω,F , P ) → (R,BR) we require that for all B ∈ BR we have
h−1(B) = (f ◦X)−1(B) = X−1(f−1(B)) ∈ F . That is, f−1(B) ∈ BR.

Since X is a random variable (measurable) and given that f−1(B) ∈ BR for all B ∈ BR, f(X) is
a random variable (measurable). Since the f2 is a continuous function of f , f2 is also a random
variable (measurable). Hence, we can consider the integrability (or not) of f(X)2, i.e., whether or not
E(f(X)2) < ∞. We give two general restrictions on f that give E(f(X)2) < ∞. First, suppose that
supω∈Ω |h(ω)| = supω∈Ω |(f ◦X)(ω)| < C. Then,∣∣∣∣∫ f2dP

∣∣∣∣ ≤ ∫ h2dP ≤ C2

∫
dP = C2.

Second, suppose that h2 ≤ X2 for all ω ∈ Ω. Then,
∫
h2dP ≤

∫
X2dP <∞.

Note that, in general, it is not true that E(f(X)2) < ∞ even if E(X2) < ∞. For example, suppose
that X ∼ U [0, 1]. Then, E(X2) = 1/3. Now, let Y := f(X) = tan

(
π(X − 1

2

)
) and we can easily

obtain that the probability density of Y is

fY (y) =

∣∣∣∣ ddy f−1(y)

∣∣∣∣ =

∣∣∣∣ ddy
(

1

2
+

1

π
arctan(y)

)∣∣∣∣ =
1

π

1

1 + y2
, y ∈ R.

But this is the Cauchy density and
∫
y2fY (y)dy does not exist.

3. Let X : (Ω,F , P ) → (R,B) be a random variable. Show that if V (X) := E ((X − E(X)))
2

= 0 then
X is a constant with probability 1.

Answer: (2 points) From your notes, if
∫

Ω
X2dP = 0 then X2 = 0 almost everywhere. If N is a null

set
∫

Ω
X2dP =

∫
N
X2dP +

∫
Nc X

2dP =
∫
N
X2dP +

∫
Nc 0dP = 0. Thus, P (X2 = x) = 0 for x 6= 0

and P (X2 = 0) = 1. But this is equivalent to P (X = 0) = 1. Hence, V (X) = E ((X − E(X)))
2

= 0
implies P (X − E(X) = 0) = P (X = E(X)) = 1.



4. Show that the distribution FX associated with the random variable X is continuous at x if, and only
if, P (X = x) = 0.

Answer: (2 points) By the continuity of probability measures

P ({ω : X(ω) = x}) = lim
y↑x

P ({ω : y < X(ω) ≤ x}) = F (x)− lim
y↑x

F (y) = F (x)− F (x−).

But F (x)− F (x−) > 0 if, and only if, F has a jump discontinuity at x.

5. Consider the following statement:f is continuous almost everywhere if, and only if, it is almost ev-
erywhere equal to an everywhere continuous function. Is this true or false? Explain, with precise
mathematical arguments.

Answer: (3 points) False. Consider the function IQ(x), where x ∈ R. This function is nowhere
continuous in R, but it is equal to 0 almost everywhere, an everywhere continuous function. Alterna-
tively, the function I[0,∞)(x) is continuous everywhere except at {0}, a set of measure zero. So, it is
continuous almost everywhere. However, there is no everywhere continuous function in R that is equal
I[0,∞)(x) almost everywhere.

6. Prove Theorem 3.21 in your notes.

Answer: (4 points) Suppose h is a simple function with h(x) =
∑m
j=1 yjIAj

where Aj = {x ∈ R :
h(x) = yj}. Then, since X has a density fX∫
R

hdPX =

m∑
j=1

yjPX(Aj) =

m∑
j=1

yj

∫
Aj

fX(x)dλ(x) =

∫
R

m∑
j=1

yjIAjfX(x)dλ(x) =

∫
R

h(x)fX(x)dλ(x).

If h is a non-negative, by Theorem 3.3 in your notes there exists a sequence of non-negative simple
functions hn → h as n→∞ and hn ◦X → h ◦X. By Lebesgue’s Monotone Convergence Theorem∫

R

lim
n→∞

hndPX = lim
n→∞

∫
R

hndPX = lim
n→∞

∫
R

hn(x)fX(x)dλ(x) =

∫
R

lim
n→∞

hn(x)fX(x)dλ(x)

=

∫
R

h(x)fX(x)dλ(x)

If h is an integrable function, write h = h+ − h− and repeat the previous case (h non-negative) for h+

and h−.

7. Adapt the proof of Lebesgue’s Dominated Convergence Theorem in your notes to show that any
sequence {fn}n∈N of measurable functions such that limn→∞ fn(x) = f(x) and |fn| ≤ g for some g
with gp nonnegative and integrable satisfies

lim
n→∞

∫
|fn − f |pdµ = 0.

Answer: (3 points) First, note that |fn − f |p ≤ (|fn| + |f |)p. Since |fn − f | → 0 we have that
|fn| → |f |. Consequently, for all ε > 0 there exists Nε ∈ N such that for n ≥ Nε we have

|fn| − ε ≤ |f | ≤ |fn|+ ε ≤ g + ε



since |fn| < g. Consequently, |f | ≤ g, |f |p ≤ gp and |fn − f |p ≤ 2pgp where gp is nonnegative and
integrable. Now, letting φn = |fn − f |p we have that lim

n→∞
φn = 0 and by Lebesgue’s dominated

convergence theorem in the class notes

lim
n→∞

∫
X

φndµ =

∫
X

lim
n→∞

φndµ = 0.

8. Let λ be the one-dimensional Lebesgue measure for the Borel sets of R. Show that for every integrable
function f , the function

g(x) =

∫
(0,x)

f(t)dλ, for x > 0

is continuous.

Answer: (3 points) Consider a sequence {yn}n∈N with 0 < x < yn such that lim
n→∞

yn = x. Then,

g(yn)− g(x) =

∫
(0,yn)

fdλ−
∫

(0,x)

fdλ =

∫
(0,∞)

I(0,yn)fdλ−
∫

(0,∞)

I(0,x)fdλ

=

∫
(0,∞)

(I(0,yn) − I(0,x))fdλ =

∫
(0,∞)

I(x,yn)fdλ

|g(yn)− g(x)| ≤
∫

(0,∞)

I[x,yn)|f |dλ.

Now, I[x,yn)|f | ≤ |f | and
∫

(0,∞)
|f |dλ < ∞ since f is integrable. Also, lim

n→∞
I[x,yn)f = 0 almost

everywhere (ae). Thus, by dominated convergence in the class notes

lim
n→∞

|g(yn)− g(x)| ≤ lim
n→∞

∫
(0,∞)

I(x,yn)|f |dλ

=

∫
(0,∞)

lim
n→∞

I(x,yn)|f |dλ = 0.

By repeating the argument for yn ↑ x we obtain continuity of g at x.

9. Show that if X is a random variable with E(|X|p) <∞ then |X| is almost everywhere real valued.

Answer: (4 points) Let N = {ω : |X(ω)| =∞} = {ω : |X(ω)|p =∞}. Then N = ∩n∈N{ω : |X(ω)|p ≥
n}. Then,

P (N) = P (∩n∈N{ω : |X(ω)|p ≥ n})
= lim
n→∞

P ({ω : |X(ω)|p ≥ n}) by continuity of probability measures

≤ lim
n→∞

1

k

∫
Ω

|X|pdP by Markov’s Inequality

= 0 since
∫

Ω
|X|pdP is finite.

10. Suppose X : (Ω,F , P ) → (R,B) is a random variable with E(|X|) < ∞. Let N ∈ F be such that
P (N) = 0 and define

Y (ω) =

{
X(ω) if ω /∈ N
c if ω ∈ N ,

where c ∈ R. Is Y integrable? Is E(X) = E(Y )?

Answer: (2 points) Yes, for both questions. We can change an integrable random variables at any
set of measure zero without changing the integral. This results from Theorem 3.12 in the class notes.



11. Let f be a density for the random variable X and a > 0. Show that

1

a
P (f(X) < a) ≤ C

for some constant C > 0.

Answer: Let Aa = {x : f(x) < a} and A = {x : ‖x‖ ≤ B}, where ‖x‖ =
(∑k

i=1 x
2
i

)1/2

. Now,

Aa = (Aa ∩A) ∪ (Aa ∩Ac) and

P (Aa) = P (Aa ∩A) + P (Aa ∩Ac) ≤ P (Aa ∩A) + P (Ac).

Now, P (Aa ∩A) =
∫
Aa∩A f(x)dx since f is a density. But over Aa ∩A, f(x) < a, so

P (Aa ∩A) ≤ a
∫
Aa∩A

dx ≤ b
∫
A

dx.

Now, ‖x‖ ≤ B implies |xi| ≤ B. So,
∫
A
dx ≤

∫
|x1|≤B · · ·

∫
|xk|≤B dx = (2B)k and we have P (Aa ∩A) ≤

a(2B)k. So,
P (Aa) ≤ b(2B)k + P (Ac).

Now, for any ε > 0, P (Ac) =
∫
‖x‖>B f(x)dx < ε for B sufficiently large, since

∫
f(x)dx = 1. Then,

P (Aa) ≤ a(2B)k + ε,

which implies P (Aa) ≤ a(2B)k.


