
Econ 7818, Homework 2, part 2, Professor Martins.
Due date: Parts 1 and 2 of Homework 2 are due October 17 by 5:30 PM in my mailbox.

1. Prove Theorem 4.2 in your notes.

Answer: Let f =
∑I
i=0 yiIAi

and g =
∑J
j=0 zjIBj

be standard representations of f and g. Then,

f ± g =

I∑
i=0

J∑
j=0

(yi ± zj)IAi∩Bj

and

fg =

I∑
i=0

J∑
j=0

(yizj)IAi∩Bj ,

with (Ai ∩ Bj) ∩ (Ai′ ∩ Bj′) = ∅ whenever (i, j) 6= (i′, j′). After relabeling and merging the double
sums into single sums we have the result.

The case for cf is obvious.

f simple implies f+ and f− are simple by definition, and since |f | = f+ + f−, |f | is simple.

2. Prove Theorem 4.9 in your notes.

Answer: Since f = f+−f− and f+ and f− are nonnegative, use Theorems 4.6 and 4.8 in your notes.

3. Use Markov’s inequality in your notes to prove the following for a > 0 and g : (0,∞)→ (0,∞) that is
increasing:

P (|X(ω)| ≥ a) ≤ 1

g(a)

∫
g(|X|)dP

Answer: Since g is increasing, {ω : |X(ω)| ≥ a} = {ω : g(|X(ω)|) ≥ g(a)}. Hence, since g is positive

g(a)I{ω:|X(ω)|≥a} = g(a)I{ω:g(|X(ω)|)≥g(a)} ≤ g(|X(ω)|).

Integrating both sides we have g(a)P ({ω : |X(ω)| ≥ a}) ≤
∫
g(|X(ω)|)dP . This completes the proof

as g(a) > 0.

4. Let X be a random variable defined in the probability space (Ω,F , P ) with E(X2) < ∞. Consider a
function f : R → R. What restrictions are needed on f to guarantee that f(X) is a random variable
with E(f(X)2) <∞?

Answer: Recall that if X : (Ω,F , P )→ (R,BR), we say that X is a random variable (measurable real
valued function) if, and only if, for all B ∈ BR we have X−1(B) ∈ F . Hence, if h(ω) := f(X(ω)) =
(f ◦X)(ω) : (Ω,F , P ) → (R,BR) we require that for all B ∈ BR we have h−1(B) = (f ◦X)−1(B) =
X−1(f−1(B)) ∈ F . That is, f−1(B) ∈ BR.

Since X is a random variable (measurable) and given that f−1(B) ∈ BR for all B ∈ BR, f(X) is
a random variable (measurable). Since the f2 is a continuous function of f , f2 is also a random
variable (measurable). Hence, we can consider the integrability (or not) of f(X)2, i.e., whether or not
E(f(X)2) < ∞. We give two general restrictions on f that give E(f(X)2) < ∞. First, suppose that
supω∈Ω |h(ω)| = supω∈Ω |(f ◦X)(ω)| < C. Then,∣∣∣∣∫ f2dP

∣∣∣∣ ≤ ∫ h2dP ≤ C2

∫
dP = C2.



Second, suppose that h2 ≤ X2 for all ω ∈ Ω. Then,
∫
h2dP ≤

∫
X2dP <∞.

Note that, in general, it is not true that E(f(X)2) < ∞ even if E(X2) < ∞. For example, suppose
that X ∼ U [0, 1]. Then, E(X2) = 1/3. Now, let Y := f(X) = tan

(
π(X − 1

2

)
) and we can easily

obtain that the probability density of Y is

fY (y) =

∣∣∣∣ ddy f−1(y)

∣∣∣∣ =

∣∣∣∣ ddy
(

1

2
+

1

π
arctan(y)

)∣∣∣∣ =
1

π

1

1 + y2
, y ∈ R.

But this is the Cauchy density and
∫
y2fY (y)dy does not exist.

5. Let X : (Ω,F , P ) → (R,B) be a random variable. Show that if V (X) := E ((X − E(X)))
2

= 0 then
X is a constant with probability 1.

Answer: (2 points) From your notes, if
∫

Ω
X2dP = 0 then X2 = 0 almost everywhere. If N is a null

set
∫

Ω
X2dP =

∫
N
X2dP +

∫
Nc X

2dP =
∫
N
X2dP +

∫
Nc 0dP = 0. Thus, P (X2 = x) = 0 for x 6= 0

and P (X2 = 0) = 1. But this is equivalent to P (X = 0) = 1. Hence, V (X) = E ((X − E(X)))
2

= 0
implies P (X − E(X) = 0) = P (X = E(X)) = 1.

6. Adapt the proof of Lebesgue’s Dominated Convergence Theorem in your notes to show that any
sequence {fn}n∈N of measurable functions such that limn→∞ fn(x) = f(x) and |fn| ≤ g for some g
with gp nonnegative and integrable satisfies

lim
n→∞

∫
|fn − f |pdµ = 0.

Answer: First, note that |fn − f |p ≤ (|fn| + |f |)p. Since |fn − f | → 0 we have that |fn| → |f |.
Consequently, for all ε > 0 there exists Nε ∈ N such that for n ≥ Nε we have

|fn| − ε ≤ |f | ≤ |fn|+ ε ≤ g + ε

since |fn| < g. Consequently, |f | ≤ g, |f |p ≤ gp and |fn − f |p ≤ 2pgp where gp is nonnegative and
integrable. Now, letting φn = |fn − f |p we have that lim

n→∞
φn = 0 and by Lebesgue’s dominated

convergence theorem in the class notes

lim
n→∞

∫
X

φndµ =

∫
X

lim
n→∞

φndµ = 0.

7. Let λ be the one-dimensional Lebesgue measure for the Borel sets of R. Show that for every integrable
function f , the function

g(x) =

∫
(0,x)

f(t)dλ, for x > 0

is continuous.

Answer: Consider a sequence {yn}n∈N with 0 < x < yn such that lim
n→∞

yn = x. Then,

g(yn)− g(x) =

∫
(0,yn)

fdλ−
∫

(0,x)

fdλ =

∫
(0,∞)

I(0,yn)fdλ−
∫

(0,∞)

I(0,x)fdλ

=

∫
(0,∞)

(I(0,yn) − I(0,x))fdλ =

∫
(0,∞)

I(x,yn)fdλ

|g(yn)− g(x)| ≤
∫

(0,∞)

I[x,yn)|f |dλ.



Now, I[x,yn)|f | ≤ |f | and
∫

(0,∞)
|f |dλ < ∞ since f is integrable. Also, lim

n→∞
I[x,yn)f = 0 almost

everywhere (ae). Thus, by dominated convergence in the class notes

lim
n→∞

|g(yn)− g(x)| ≤ lim
n→∞

∫
(0,∞)

I(x,yn)|f |dλ

=

∫
(0,∞)

lim
n→∞

I(x,yn)|f |dλ = 0.

By repeating the argument for yn ↑ x we obtain continuity of g at x.

8. Show that if X is a random variable with E(|X|p) <∞ then |X| is almost everywhere real valued.

Answer: Let N = {ω : |X(ω)| = ∞} = {ω : |X(ω)|p = ∞}. Then N = ∩n∈N{ω : |X(ω)|p ≥ n}.
Then,

P (N) = P (∩n∈N{ω : |X(ω)|p ≥ n})
= lim
n→∞

P ({ω : |X(ω)|p ≥ n}) by continuity of probability measures

≤ lim
n→∞

1

k

∫
Ω

|X|pdP by Markov’s Inequality

= 0 since
∫

Ω
|X|pdP is finite.

9. Suppose X : (Ω,F , P ) → (R,B) is a random variable with E(|X|) < ∞. Let N ∈ F be such that
P (N) = 0 and define

Y (ω) =

{
X(ω) if ω /∈ N
c if ω ∈ N ,

where c ∈ R. Is Y integrable? Is E(X) = E(Y )?

Answer: Yes, for both questions. We can change an integrable random variables at any set of measure
zero without changing the integral.

10. Prove Theorem 5.13 in your notes.


