Econ 7818, Homework 2, part 2, Professor Martins.
Due date: Parts 1 and 2 of Homework 2 are due October 17 by 5:30 PM in my mailbox.

1. Prove Theorem 4.2 in your notes.

Answer: Let $f=\sum_{i=0}^{I} y_{i} I_{A_{i}}$ and $g=\sum_{j=0}^{J} z_{j} I_{B_{j}}$ be standard representations of f and g. Then,

$$
f \pm g=\sum_{i=0}^{I} \sum_{j=0}^{J}\left(y_{i} \pm z_{j}\right) I_{A_{i} \cap B_{j}}
$$

and

$$
f g=\sum_{i=0}^{I} \sum_{j=0}^{J}\left(y_{i} z_{j}\right) I_{A_{i} \cap B_{j}},
$$

with $\left(A_{i} \cap B_{j}\right) \cap\left(A_{i^{\prime}} \cap B_{j^{\prime}}\right)=\emptyset$ whenever $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$. After relabeling and merging the double sums into single sums we have the result.
The case for $c f$ is obvious.
f simple implies f^{+}and f^{-}are simple by definition, and since $|f|=f^{+}+f^{-},|f|$ is simple.
2. Prove Theorem 4.9 in your notes.

Answer: Since $f=f^{+}-f^{-}$and f^{+}and f^{-}are nonnegative, use Theorems 4.6 and 4.8 in your notes.
3. Use Markov's inequality in your notes to prove the following for $a>0$ and $g:(0, \infty) \rightarrow(0, \infty)$ that is increasing:

$$
P(|X(\omega)| \geq a) \leq \frac{1}{g(a)} \int g(|X|) d P
$$

Answer: Since g is increasing, $\{\omega:|X(\omega)| \geq a\}=\{\omega: g(|X(\omega)|) \geq g(a)\}$. Hence, since g is positive

$$
g(a) I_{\{\omega:|X(\omega)| \geq a\}}=g(a) I_{\{\omega: g(|X(\omega)|) \geq g(a)\}} \leq g(|X(\omega)|)
$$

Integrating both sides we have $g(a) P(\{\omega:|X(\omega)| \geq a\}) \leq \int g(|X(\omega)|) d P$. This completes the proof as $g(a)>0$.
4. Let X be a random variable defined in the probability space (Ω, \mathcal{F}, P) with $E\left(X^{2}\right)<\infty$. Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$. What restrictions are needed on f to guarantee that $f(X)$ is a random variable with $E\left(f(X)^{2}\right)<\infty$?
Answer: Recall that if $X:(\Omega, \mathcal{F}, P) \rightarrow\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$, we say that X is a random variable (measurable real valued function) if, and only if, for all $B \in \mathcal{B}_{\mathbb{R}}$ we have $X^{-1}(B) \in \mathcal{F}$. Hence, if $h(\omega):=f(X(\omega))=$ $(f \circ X)(\omega):(\Omega, \mathcal{F}, P) \rightarrow\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$ we require that for all $B \in \mathcal{B}_{\mathbb{R}}$ we have $h^{-1}(B)=(f \circ X)^{-1}(B)=$ $X^{-1}\left(f^{-1}(B)\right) \in \mathcal{F}$. That is, $f^{-1}(B) \in \mathcal{B}_{\mathbb{R}}$.
Since X is a random variable (measurable) and given that $f^{-1}(B) \in \mathcal{B}_{\mathbb{R}}$ for all $B \in \mathcal{B}_{\mathbb{R}}, f(X)$ is a random variable (measurable). Since the f^{2} is a continuous function of f, f^{2} is also a random variable (measurable). Hence, we can consider the integrability (or not) of $f(X)^{2}$, i.e., whether or not $E\left(f(X)^{2}\right)<\infty$. We give two general restrictions on f that give $E\left(f(X)^{2}\right)<\infty$. First, suppose that $\sup _{\omega \in \Omega}|h(\omega)|=\sup _{\omega \in \Omega}|(f \circ X)(\omega)|<C$. Then,

$$
\left|\int f^{2} d P\right| \leq \int h^{2} d P \leq C^{2} \int d P=C^{2}
$$

Second, suppose that $h^{2} \leq X^{2}$ for all $\omega \in \Omega$. Then, $\int h^{2} d P \leq \int X^{2} d P<\infty$.

Note that, in general, it is not true that $E\left(f(X)^{2}\right)<\infty$ even if $E\left(X^{2}\right)<\infty$. For example, suppose that $X \sim U[0,1]$. Then, $E\left(X^{2}\right)=1 / 3$. Now, let $Y:=f(X)=\tan \left(\pi\left(X-\frac{1}{2}\right)\right)$ and we can easily obtain that the probability density of Y is

$$
f_{Y}(y)=\left|\frac{d}{d y} f^{-1}(y)\right|=\left|\frac{d}{d y}\left(\frac{1}{2}+\frac{1}{\pi} \arctan (y)\right)\right|=\frac{1}{\pi} \frac{1}{1+y^{2}}, y \in \mathbb{R} .
$$

But this is the Cauchy density and $\int y^{2} f_{Y}(y) d y$ does not exist.
5. Let $X:(\Omega, \mathcal{F}, P) \rightarrow(\mathbb{R}, \mathcal{B})$ be a random variable. Show that if $V(X):=E((X-E(X)))^{2}=0$ then X is a constant with probability 1.
Answer: (2 points) From your notes, if $\int_{\Omega} X^{2} d P=0$ then $X^{2}=0$ almost everywhere. If N is a null set $\int_{\Omega} X^{2} d P=\int_{N} X^{2} d P+\int_{N^{c}} X^{2} d P=\int_{N} X^{2} d P+\int_{N^{c}} 0 d P=0$. Thus, $P\left(X^{2}=x\right)=0$ for $x \neq 0$ and $P\left(X^{2}=0\right)=1$. But this is equivalent to $P(X=0)=1$. Hence, $V(X)=E((X-E(X)))^{2}=0$ implies $P(X-E(X)=0)=P(X=E(X))=1$.
6. Adapt the proof of Lebesgue's Dominated Convergence Theorem in your notes to show that any sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ of measurable functions such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ and $\left|f_{n}\right| \leq g$ for some g with g^{p} nonnegative and integrable satisfies

$$
\lim _{n \rightarrow \infty} \int\left|f_{n}-f\right|^{p} d \mu=0
$$

Answer: First, note that $\left|f_{n}-f\right|^{p} \leq\left(\left|f_{n}\right|+|f|\right)^{p}$. Since $\left|f_{n}-f\right| \rightarrow 0$ we have that $\left|f_{n}\right| \rightarrow|f|$. Consequently, for all $\epsilon>0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that for $n \geq N_{\epsilon}$ we have

$$
\left|f_{n}\right|-\epsilon \leq|f| \leq\left|f_{n}\right|+\epsilon \leq g+\epsilon
$$

since $\left|f_{n}\right|<g$. Consequently, $|f| \leq g,|f|^{p} \leq g^{p}$ and $\left|f_{n}-f\right|^{p} \leq 2^{p} g^{p}$ where g^{p} is nonnegative and integrable. Now, letting $\phi_{n}=\left|f_{n}-f\right|^{p}$ we have that $\lim _{n \rightarrow \infty} \phi_{n}=0$ and by Lebesgue's dominated convergence theorem in the class notes

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{X}} \phi_{n} d \mu=\int_{\mathbb{X}} \lim _{n \rightarrow \infty} \phi_{n} d \mu=0
$$

7. Let λ be the one-dimensional Lebesgue measure for the Borel sets of \mathbb{R}. Show that for every integrable function f, the function

$$
g(x)=\int_{(0, x)} f(t) d \lambda, \text { for } x>0
$$

is continuous.
Answer: Consider a sequence $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ with $0<x<y_{n}$ such that $\lim _{n \rightarrow \infty} y_{n}=x$. Then,

$$
\begin{aligned}
g\left(y_{n}\right)-g(x) & =\int_{\left(0, y_{n}\right)} f d \lambda-\int_{(0, x)} f d \lambda=\int_{(0, \infty)} I_{\left(0, y_{n}\right)} f d \lambda-\int_{(0, \infty)} I_{(0, x)} f d \lambda \\
& =\int_{(0, \infty)}\left(I_{\left(0, y_{n}\right)}-I_{(0, x)}\right) f d \lambda=\int_{(0, \infty)} I_{\left(x, y_{n}\right)} f d \lambda \\
\left|g\left(y_{n}\right)-g(x)\right| & \leq \int_{(0, \infty)} I_{\left[x, y_{n}\right)}|f| d \lambda
\end{aligned}
$$

Now, $I_{\left[x, y_{n}\right)}|f| \leq|f|$ and $\int_{(0, \infty)}|f| d \lambda<\infty$ since f is integrable. Also, $\lim _{n \rightarrow \infty} I_{\left[x, y_{n}\right)} f=0$ almost everywhere (ae). Thus, by dominated convergence in the class notes

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|g\left(y_{n}\right)-g(x)\right| & \leq \lim _{n \rightarrow \infty} \int_{(0, \infty)} I_{\left(x, y_{n}\right)}|f| d \lambda \\
& =\int_{(0, \infty)} \lim _{n \rightarrow \infty} I_{\left(x, y_{n}\right)}|f| d \lambda=0
\end{aligned}
$$

By repeating the argument for $y_{n} \uparrow x$ we obtain continuity of g at x.
8. Show that if X is a random variable with $E\left(|X|^{p}\right)<\infty$ then $|X|$ is almost everywhere real valued.

Answer: Let $N=\{\omega:|X(\omega)|=\infty\}=\left\{\omega:|X(\omega)|^{p}=\infty\right\}$. Then $N=\cap_{n \in \mathbb{N}}\left\{\omega:|X(\omega)|^{p} \geq n\right\}$. Then,

$$
\begin{aligned}
P(N) & =P\left(\cap_{n \in \mathbb{N}}\left\{\omega:|X(\omega)|^{p} \geq n\right\}\right) \\
& =\lim _{n \rightarrow \infty} P\left(\left\{\omega:|X(\omega)|^{p} \geq n\right\}\right) \text { by continuity of probability measures } \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{k} \int_{\Omega}|X|^{p} d P \text { by Markov's Inequality } \\
& =0 \text { since } \int_{\Omega}|X|^{p} d P \text { is finite. }
\end{aligned}
$$

9. Suppose $X:(\Omega, \mathcal{F}, P) \rightarrow(\mathbb{R}, \mathcal{B})$ is a random variable with $E(|X|)<\infty$. Let $N \in \mathcal{F}$ be such that $P(N)=0$ and define

$$
Y(\omega)=\left\{\begin{array}{cc}
X(\omega) & \text { if } \omega \notin N \\
c & \text { if } \omega \in N
\end{array}\right.
$$

where $c \in \mathbb{R}$. Is Y integrable? Is $E(X)=E(Y)$?
Answer: Yes, for both questions. We can change an integrable random variables at any set of measure zero without changing the integral.
10. Prove Theorem 5.13 in your notes.

