
Econ 7818, Homework 3 - part 2, Professor Martins. Due date: November 17th in class. This due date also
applies to part 1 of Homework 3.

1. Show that if Yn
d→ Y then Yn = Op(1).

Answer: Without loss of generality let a > 0. Provided that a and −a are continuity points of FY ,
we can write that,P (|Yn| > a) → P (|Y | > a) as n → ∞. Hence, for every ε > 0 there exists Nε such
that,

|P (|Yn| > a)− P (|Y | > a)| < ε for all n ≥ Nε
or

P (|Y | > a)− ε < P (|Yn| > a) < P (|Y | > a) + ε.

We can choose a such that P (|Y | > a) < δ for any δ > 0. Thus, P (|Yn| > a) < δ + ε for all n ≥ Nε.

2. Let g : S ⊆ R be continuous on S, and Xt and Xs be random variables defined on (Ω,F , P ) taking
values in S. Show that: a) if Xt is independent of Xs, then g(Xt) is independent of g(Xs); b) if Xt

and Xs are identically distributed, then g(Xt) and g(Xs) are identically distributed.

Answer: Let Yt = g(Xt) and Ys = g(Xs). g continuous assures that both Yt and Ys are random
variables.

a) FYt,Ys(a, b) = P (S = {ω : Yt ≤ a and Ys ≤ b}). Let St = {Xt(ω) : Yt(ω) ≤ a}, Ss =
{Xs(ω) : Ys(ω) ≤ b}. Since, S = St ∩ Ss and by independence P (S) = P (St)P (Ss) which implies
FYt,Ys(a, b) = FYt(a)FYs(b).

b) FYt(a) = P (St) = P ({Xs(ω) : Ys(ω) ≤ a}) = FYs(a).

3. Let {Xn} be a sequence of independent random variables that converges in probability to a limit X.
Show that X is almost surely a constant.

Answer: Recall that if X is almost surely a constant, say c, P ({ω : X(ω) 6= c}) = 0. Then, the
distribution function F associated with X is given by

F (x) =

{
0, if x < c

1, if x ≥ c
.

If X is not a constant, there exists a c and 0 < ε < 1/2 such that P (X < c) > 2ε and P (X ≤ c+ ε) <

1− 2ε or P (X > c+ ε) > 2ε. Since Xn
p→ X than Xn

d→ X. Consequently, for n sufficiently large and
c a point of continuity of F we have

F (c)− ε < Fn(c) < F (c) + ε

which implies that ε < Fn(c). Also, 1 − Fn(c + ε) > 1 − F (c + ε) − ε which implies P (Xn > c + ε) >

P (X > c + ε) − ε > ε. Since Xn
p→ X, for n sufficiently large P ({ω : |Xr − Xs| > ε}) < ε3. Since

{ω : |Xr −Xs| > ε} = {ω : Xr −Xs > ε} ∪ {ω : Xr −Xs < −ε} we note that if Xr < c and Xs > c+ ε
then Xr −Xs > ε is equivalent to Xr −Xs < −ε. Consequently,

P ({ω : |Xr −Xs| > ε}) ≤ P ({ω : Xr < c and Xs > c+ ε}).



But since Xr and Xs are independent P ({ω : Xr < c and Xs > c+ ε}) = P ({ω : Xr < c})P ({ω : Xs >
c+ ε}) > ε2. Hence,

ε3 > P ({ω : |Xr −Xs| > ε}) > ε2,

a contradiction.

4. Suppose Xn−µ
σn

d→ Z where the non-random sequence σn → 0 as n → ∞, and g is a function which is

differentiable at µ. Then, show that g(Xn)−g(µ)
g(1)(µ)σn

d→ Z.

Answer: From question 2, if Zn
d→ Z then Zn = Op(1). Let Zn = Xn−µ

σn
and write Xn = µ+ σnZn =

µ+Op(σn). By Taylor’s Theorem

1

σn
g(Xn)− g(µ) = g(1)(µ)

(Xn − µ)

σn
+ op(1).

Since Xn−µ
σn

d→ Z, we have the result.

5. Show that if {Xj}j∈N be a sequence of random variables with E(Xj) = 0 and
∑∞
j=1

1
apj
E(|Xj |p) <∞

for some p ≥ 1 and a sequence of positive constants {aj}j∈N. Then,
∞∑
j=1

P (|Xj | > aj) <∞ and
∞∑
j=1

1

aj
|E(XjI{ω:|Xj |≤aj})| <∞.

Furthermore, for any r ≥ p,
∞∑
j=1

1

arj
E(|Xj |rI{ω:|Xj |≤aj}) <∞.

Use this result to prove Theorem 6.3 in your class notes.
Answer: Note that

P ({ω : |Xj | > aj}) = 1− P ({ω : |Xj | ≤ aj}) =

∫
Ω

(
1− I{ω:|Xj |≤aj}

)
dP.

If ω ∈ {ω : |Xj | ≤ aj}, then P ({ω : |Xj | > aj}) = 0. If |Xj | > aj , then |Xj |p > apj and |Xj |p/apj > 1.
Hence,

P ({ω : |Xj | > aj}) <
∫

Ω

|Xj |p/apjdP =
1

apj
E (|Xj |p)

and
∞∑
j=1

P ({ω : |Xj | > aj}) <
∞∑
j=1

1

apj
E (|Xj |p) <∞.

Now,

1

aj
|E(XjI{ω:|Xj |≤aj})| =

1

aj
|E(Xj)− E(XjI{ω:|Xj |≤aj})|, since E(Xj) = 0.

≤ 1

aj
E
(
|Xt|(1− I{ω:|Xj |≤aj}

)
≤ 1

apj
E
(
|Xj |p(1− I{ω:|Xj |≤aj}

)
since |Xj |

p

apj
≥ |Xj |aj

if p ≥ 1.

≤ 1

apj
E (|Xj |p) .



Hence,
∞∑
j=1

1

aj
|E(XjI{ω:|Xj |≤aj})| <

∞∑
j=1

1

apj
E (|Xj |p) <∞.

Lastly, if |Xj | ≤ aj we have that 1
aj
|Xj | ≤ 1. Then, for r ≥ p ≥ 1

1

arj
|Xj |rI{ω:|Xj |≤aj} ≤

1

apj
|Xj |pI{ω:|Xj |≤aj} ≤

1

aj
|Xj |I{ω:|Xj |≤aj}

and

E

(
1

arj
|Xj |rI{ω:|Xj |≤aj}

)
≤ E

(
1

apj
|Xj |pI{ω:|Xj |≤aj}

)
.

Hence,
∞∑
j=1

E

(
1

arj
|Xj |rI{ω:|Xj |≤aj}

)
<∞.

In Theorem 6.3, the sequence of random variables {Xj}j∈N is independent and has expectation µj .
Hence, if Wj := Xj − µj , we have E(Wj) = 0. Furthermore, in Theorem 6.3 it is assumed that for
some δ > 0

∞∑
j=1

E(|Wj |1+δ)

j1+δ
<∞.

Now, note that for any n ∈ N we have
∑n
j=1

E(|Wj |1+δ)
n1+δ ≤

∑n
j=1

E(|Wj |1+δ)
j1+δ

and

lim
n→∞

n∑
j=1

E(|Wj |1+δ)

n1+δ
≤ lim
n→∞

n∑
j=1

E(|Wj |1+δ)

j1+δ
<∞.

Now, in the first part of this answer, take aj = n for all j and for any r > 1 + δ. Then, we have

∞∑
j=1

P (|Wj | > n) <∞ and
∞∑
j=1

1

nr
E(|Wj |rI{ω:|Wj |≤n}) <∞.

Hence, taking r = 2 the conditions on Theorem 6.2 are met and we have

1

n

n∑
j=1

Wj −
1

n

n∑
i=1

E
(
WjI{ω:|Wj |≤n}

)
=

1

n

n∑
j=1

(Xj − µj)−
1

n

n∑
i=1

E
(
WjI{ω:|Wj |≤n}

)
= op(1).

But since E(Wj) = 0, we have E
(
WjI{ω:|Wj |≤n}

)
→ 0 as n→∞. Thus, 1

n

∑n
j=1(Xj − µj) = op(1).


