
Econ 7818, Homework 3 - part 2, Professor Martins. Due date: November 30th in class. This due date also
applies to part 1 of Homework 3.

1. Show that if Yn
d→ Y then Yn = Op(1).

Answer: Without loss of generality let a > 0. Provided that a and −a are continuity points of FY ,
we can write that,P (|Yn| > a) → P (|Y | > a) as n → ∞. Hence, for every ε > 0 there exists Nε such
that,

|P (|Yn| > a)− P (|Y | > a)| < ε for all n ≥ Nε
or

P (|Y | > a)− ε < P (|Yn| > a) < P (|Y | > a) + ε.

We can choose a such that P (|Y | > a) < δ for any δ > 0. Thus, P (|Yn| > a) < δ + ε for all n ≥ Nε.

2. Let g : S ⊆ R be continuous on S, and Xt and Xs be random variables defined on (Ω,F , P ) taking
values in S. Show that: a) if Xt is independent of Xs, then g(Xt) is independent of g(Xs); b) if Xt

and Xs are identically distributed, then g(Xt) and g(Xs) are identically distributed.

Answer: Let Yt = g(Xt) and Ys = g(Xs). g continuous assures that both Yt and Ys are random
variables.

a) FYt,Ys(a, b) = P (S = {ω : Yt ≤ a and Ys ≤ b}). Let St = {Xt(ω) : Yt(ω) ≤ a}, Ss =
{Xs(ω) : Ys(ω) ≤ b}. Since, S = St ∩ Ss and by independence P (S) = P (St)P (Ss) which implies
FYt,Ys

(a, b) = FYt
(a)FYs

(b).

b) FYt
(a) = P (St) = P ({Xs(ω) : Ys(ω) ≤ a}) = FYs

(a).

3. Let {Xn} be a sequence of independent random variables that converges in probability to a limit X.
Show that X is almost surely a constant.

Answer: Recall that if X is almost surely a constant, say c, P ({ω : X(ω) 6= c}) = 0. Then, the
distribution function F associated with X is given by

F (x) =

{
0, if x < c

1, if x ≥ c
.

If X is not a constant, there exists a c and 0 < ε < 1/2 such that P (X < c) > 2ε and P (X ≤ c+ ε) <

1− 2ε or P (X > c+ ε) > 2ε. Since Xn
p→ X than Xn

d→ X. Consequently, for n sufficiently large and
c a point of continuity of F we have

F (c)− ε < Fn(c) < F (c) + ε

which implies that ε < Fn(c). Also, 1 − Fn(c + ε) > 1 − F (c + ε) − ε which implies P (Xn > c + ε) >

P (X > c + ε) − ε > ε. Since Xn
p→ X, for n sufficiently large P ({ω : |Xr − Xs| > ε}) < ε3. Since

{ω : |Xr −Xs| > ε} = {ω : Xr −Xs > ε} ∪ {ω : Xr −Xs < −ε} we note that if Xr < c and Xs > c+ ε
then Xr −Xs > ε is equivalent to Xr −Xs < −ε. Consequently,

P ({ω : |Xr −Xs| > ε}) ≤ P ({ω : Xr < c and Xs > c+ ε}).



But since Xr and Xs are independent P ({ω : Xr < c and Xs > c+ ε}) = P ({ω : Xr < c})P ({ω : Xs >
c+ ε}) > ε2. Hence,

ε3 > P ({ω : |Xr −Xs| > ε}) > ε2,

a contradiction.

4. Suppose Xn−µ
σn

d→ Z where the non-random sequence σn → 0 as n → ∞, and g is a function which is

differentiable at µ. Then, show that g(Xn)−g(µ)
g(1)(µ)σn

d→ Z.

Answer: From question 2, if Zn
d→ Z then Zn = Op(1). Let Zn = Xn−µ

σn
and write Xn = µ+ σnZn =

µ+Op(σn). By Taylor’s Theorem

1

σn
g(Xn)− g(µ) = g(1)(µ)

(Xn − µ)

σn
+ op(1).

Since Xn−µ
σn

d→ Z, we have the result.

5. Prove item 1 in Remark 7.1 on your class notes.

Answer: For ε > 0 we have that

{ω : |Xn + Yn −X − Y | > ε} ⊆ {ω : |Xn −X| > ε/2} ∪ {ω : |Yn − Y | > ε/2}

The probability of the events on the union on right-hand side go to zero as n→∞. By monotonicity
of probability measures we have the results.

For ε > 0,

P ({ω : |XnYn −XY | > ε}) = P (|(Xn −X)(Yn − Y ) + (Xn −X)Y +X(Yn − Y )| > ε)

≤ P (|(Xn −X)||(Yn − Y )| > ε/3) + P (|(Xn −X)||Y | > ε/3)

+ P (|X||(Yn − Y )| > ε/3)

Now, for any δ > 0 we have that

P (|(Xn −X)||Y | > ε/3) ≤ P
(
|(Xn −X)| > ε

3δ

)
+ P (|Y | > δ)

which tends to zero as n→∞ and δ →∞. Using the same argument for the other terms we have the
result.

6. Show that if {Xn}n∈N and X are random variables defined on the same probability space and r > s ≥ 1

and Xn
Lr−→ X, then Xn

Ls−→ X.

Answer: For arbitrary W let Z = |W |s, Y = 1 and p = r/s. Then, by Hölder’s Inequality

E|ZY | ≤ ‖Z‖p‖Y ‖p/(p−1).

Substituting Z and Y gives E(|W |s) ≤ E(|W |sp)1/p = E(|W |s r
s )s/r. Raising both sides to 1/s gives

E(|W |s)1/s ≤ E(|W |r)1/r.

Setting W = Xn −X and taking limits as n→∞ gives the result.



7. Let U and V be two points in an n-dimensional unit cube, i.e., [0, 1]n and Xn be the Euclidean distance
between these two points which are chosen independently and uniformly. Show that Xn√

n

p→ 1√
6
.

Answer: Let U ′ =
(
U1 · · · Un

)
and V ′ =

(
V1 · · · Vn

)
. Then, Xn =

(∑n
i=1(Ui − Vi)2

)1/2
and we can write

1

n
E(X2

n) =
1

n

n∑
i=1

E((Ui − Vi)2) =

∫ 1

0

∫ 1

0

(u− v)2dudv = 1/6

where the last equality follows from routine integration. Then, since E(|(U−V )2|) = E((U−V )2) <∞,
by Kolmogorov’s Law of Large Numbers

1

n
X2
n =

1

n

n∑
i=1

(Ui − Vi)2
p→ 1/6.

Since, f(x) = x1/2 is a continuous function [0,∞), by Slutsky Theorem if 1
nX

2
n

p→ 1/6 then f
(
1
nX

2
n

) p→
f(1/6). Consequently,

1√
n
Xn

p→ 1/
√

6.


