Econ 7818, Homework 3 - part 2, Professor Martins. Due date: November 30th in class. This due date also applies to part 1 of Homework 3.

1. Show that if $Y_{n} \xrightarrow{d} Y$ then $Y_{n}=O_{p}(1)$.

Answer: Without loss of generality let $a>0$. Provided that a and $-a$ are continuity points of F_{Y}, we can write that, $P\left(\left|Y_{n}\right|>a\right) \rightarrow P(|Y|>a)$ as $n \rightarrow \infty$. Hence, for every $\epsilon>0$ there exists N_{ϵ} such that,

$$
\left|P\left(\left|Y_{n}\right|>a\right)-P(|Y|>a)\right|<\epsilon \text { for all } n \geq N_{\epsilon}
$$

or

$$
P(|Y|>a)-\epsilon<P\left(\left|Y_{n}\right|>a\right)<P(|Y|>a)+\epsilon
$$

We can choose a such that $P(|Y|>a)<\delta$ for any $\delta>0$. Thus, $P\left(\left|Y_{n}\right|>a\right)<\delta+\epsilon$ for all $n \geq N_{\epsilon}$.
2. Let $g: S \subseteq \mathbb{R}$ be continuous on S, and X_{t} and X_{s} be random variables defined on (Ω, \mathcal{F}, P) taking values in S. Show that: a) if X_{t} is independent of X_{s}, then $g\left(X_{t}\right)$ is independent of $g\left(X_{s}\right)$; b) if X_{t} and X_{s} are identically distributed, then $g\left(X_{t}\right)$ and $g\left(X_{s}\right)$ are identically distributed.

Answer: Let $Y_{t}=g\left(X_{t}\right)$ and $Y_{s}=g\left(X_{s}\right) . g$ continuous assures that both Y_{t} and Y_{s} are random variables.
a) $F_{Y_{t}, Y_{s}}(a, b)=P\left(S=\left\{\omega: Y_{t} \leq a\right.\right.$ and $\left.\left.Y_{s} \leq b\right\}\right)$. Let $S_{t}=\left\{X_{t}(\omega): Y_{t}(\omega) \leq a\right\}, S_{s}=$ $\left\{X_{s}(\omega): Y_{s}(\omega) \leq b\right\}$. Since, $S=S_{t} \cap S_{s}$ and by independence $P(S)=P\left(S_{t}\right) P\left(S_{s}\right)$ which implies $F_{Y_{t}, Y_{s}}(a, b)=F_{Y_{t}}(a) F_{Y_{s}}(b)$.
b) $F_{Y_{t}}(a)=P\left(S_{t}\right)=P\left(\left\{X_{s}(\omega): Y_{s}(\omega) \leq a\right\}\right)=F_{Y_{s}}(a)$.
3. Let $\left\{X_{n}\right\}$ be a sequence of independent random variables that converges in probability to a limit X. Show that X is almost surely a constant.

Answer: Recall that if X is almost surely a constant, say $c, P(\{\omega: X(\omega) \neq c\})=0$. Then, the distribution function F associated with X is given by

$$
F(x)=\left\{\begin{array}{l}
0, \text { if } x<c \\
1, \text { if } x \geq c
\end{array} .\right.
$$

If X is not a constant, there exists a c and $0<\epsilon<1 / 2$ such that $P(X<c)>2 \epsilon$ and $P(X \leq c+\epsilon)<$ $1-2 \epsilon$ or $P(X>c+\epsilon)>2 \epsilon$. Since $X_{n} \xrightarrow{p} X$ than $X_{n} \xrightarrow{d} X$. Consequently, for n sufficiently large and c a point of continuity of F we have

$$
F(c)-\epsilon<F_{n}(c)<F(c)+\epsilon
$$

which implies that $\epsilon<F_{n}(c)$. Also, $1-F_{n}(c+\epsilon)>1-F(c+\epsilon)-\epsilon$ which implies $P\left(X_{n}>c+\epsilon\right)>$ $P(X>c+\epsilon)-\epsilon>\epsilon$. Since $X_{n} \xrightarrow{p} X$, for n sufficiently large $P\left(\left\{\omega:\left|X_{r}-X_{s}\right|>\epsilon\right\}\right)<\epsilon^{3}$. Since $\left\{\omega:\left|X_{r}-X_{s}\right|>\epsilon\right\}=\left\{\omega: X_{r}-X_{s}>\epsilon\right\} \cup\left\{\omega: X_{r}-X_{s}<-\epsilon\right\}$ we note that if $X_{r}<c$ and $X_{s}>c+\epsilon$ then $X_{r}-X_{s}>\epsilon$ is equivalent to $X_{r}-X_{s}<-\epsilon$. Consequently,

$$
P\left(\left\{\omega:\left|X_{r}-X_{s}\right|>\epsilon\right\}\right) \leq P\left(\left\{\omega: X_{r}<c \text { and } X_{s}>c+\epsilon\right\}\right)
$$

But since X_{r} and X_{s} are independent $P\left(\left\{\omega: X_{r}<c\right.\right.$ and $\left.\left.X_{s}>c+\epsilon\right\}\right)=P\left(\left\{\omega: X_{r}<c\right\}\right) P\left(\left\{\omega: X_{s}>\right.\right.$ $c+\epsilon\})>\epsilon^{2}$. Hence,

$$
\epsilon^{3}>P\left(\left\{\omega:\left|X_{r}-X_{s}\right|>\epsilon\right\}\right)>\epsilon^{2}
$$

a contradiction.
4. Suppose $\frac{X_{n}-\mu}{\sigma_{n}} \xrightarrow{d} Z$ where the non-random sequence $\sigma_{n} \rightarrow 0$ as $n \rightarrow \infty$, and g is a function which is differentiable at μ. Then, show that $\frac{g\left(X_{n}\right)-g(\mu)}{g^{(1)}(\mu) \sigma_{n}} \xrightarrow{d} Z$.

Answer: From question 2 , if $Z_{n} \xrightarrow{d} Z$ then $Z_{n}=O_{p}(1)$. Let $Z_{n}=\frac{X_{n}-\mu}{\sigma_{n}}$ and write $X_{n}=\mu+\sigma_{n} Z_{n}=$ $\mu+O_{p}\left(\sigma_{n}\right)$. By Taylor's Theorem

$$
\frac{1}{\sigma_{n}} g\left(X_{n}\right)-g(\mu)=g^{(1)}(\mu) \frac{\left(X_{n}-\mu\right)}{\sigma_{n}}+o_{p}(1)
$$

Since $\frac{X_{n}-\mu}{\sigma_{n}} \xrightarrow{d} Z$, we have the result.
5. Prove item 1 in Remark 7.1 on your class notes.

Answer: For $\epsilon>0$ we have that

$$
\left\{\omega:\left|X_{n}+Y_{n}-X-Y\right|>\epsilon\right\} \subseteq\left\{\omega:\left|X_{n}-X\right|>\epsilon / 2\right\} \cup\left\{\omega:\left|Y_{n}-Y\right|>\epsilon / 2\right\}
$$

The probability of the events on the union on right-hand side go to zero as $n \rightarrow \infty$. By monotonicity of probability measures we have the results.
For $\epsilon>0$,

$$
\begin{aligned}
P\left(\left\{\omega:\left|X_{n} Y_{n}-X Y\right|>\epsilon\right\}\right) & =P\left(\left|\left(X_{n}-X\right)\left(Y_{n}-Y\right)+\left(X_{n}-X\right) Y+X\left(Y_{n}-Y\right)\right|>\epsilon\right) \\
& \leq P\left(\left|\left(X_{n}-X\right)\right|\left|\left(Y_{n}-Y\right)\right|>\epsilon / 3\right)+P\left(\left|\left(X_{n}-X\right)\right||Y|>\epsilon / 3\right) \\
& +P\left(|X|\left|\left(Y_{n}-Y\right)\right|>\epsilon / 3\right)
\end{aligned}
$$

Now, for any $\delta>0$ we have that

$$
P\left(\left|\left(X_{n}-X\right)\right||Y|>\epsilon / 3\right) \leq P\left(\left|\left(X_{n}-X\right)\right|>\frac{\epsilon}{3 \delta}\right)+P(|Y|>\delta)
$$

which tends to zero as $n \rightarrow \infty$ and $\delta \rightarrow \infty$. Using the same argument for the other terms we have the result.
6. Show that if $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ and X are random variables defined on the same probability space and $r>s \geq 1$ and $X_{n} \xrightarrow{\mathcal{L}_{r}} X$, then $X_{n} \xrightarrow{\mathcal{L}_{s}} X$.
Answer: For arbitrary W let $Z=|W|^{s}, Y=1$ and $p=r / s$. Then, by Hölder's Inequality

$$
E|Z Y| \leq\|Z\|_{p}\|Y\|_{p /(p-1)}
$$

Substituting Z and Y gives $E\left(|W|^{s}\right) \leq E\left(|W|^{s p}\right)^{1 / p}=E\left(|W|^{s \frac{r}{s}}\right)^{s / r}$. Raising both sides to $1 / s$ gives

$$
E\left(|W|^{s}\right)^{1 / s} \leq E\left(|W|^{r}\right)^{1 / r}
$$

Setting $W=X_{n}-X$ and taking limits as $n \rightarrow \infty$ gives the result.
7. Let U and V be two points in an n-dimensional unit cube, i.e., $[0,1]^{n}$ and X_{n} be the Euclidean distance between these two points which are chosen independently and uniformly. Show that $\frac{X_{n}}{\sqrt{n}} \xrightarrow{p} \frac{1}{\sqrt{6}}$.

Answer: Let $U^{\prime}=\left(\begin{array}{lll}U_{1} & \cdots & U_{n}\end{array}\right)$ and $V^{\prime}=\left(\begin{array}{lll}V_{1} & \cdots & V_{n}\end{array}\right)$. Then, $X_{n}=\left(\sum_{i=1}^{n}\left(U_{i}-V_{i}\right)^{2}\right)^{1 / 2}$ and we can write

$$
\frac{1}{n} E\left(X_{n}^{2}\right)=\frac{1}{n} \sum_{i=1}^{n} E\left(\left(U_{i}-V_{i}\right)^{2}\right)=\int_{0}^{1} \int_{0}^{1}(u-v)^{2} d u d v=1 / 6
$$

where the last equality follows from routine integration. Then, since $E\left(\left|(U-V)^{2}\right|\right)=E\left((U-V)^{2}\right)<\infty$, by Kolmogorov's Law of Large Numbers

$$
\frac{1}{n} X_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(U_{i}-V_{i}\right)^{2} \xrightarrow{p} 1 / 6
$$

Since, $f(x)=x^{1 / 2}$ is a continuous function $[0, \infty)$, by Slutsky Theorem if $\frac{1}{n} X_{n}^{2} \xrightarrow{p} 1 / 6$ then $f\left(\frac{1}{n} X_{n}^{2}\right) \xrightarrow{p}$ $f(1 / 6)$. Consequently,

$$
\frac{1}{\sqrt{n}} X_{n} \xrightarrow{p} 1 / \sqrt{6} .
$$

