
Econ 7818, Homework 3 - part 1, Professor Martins. Due date: TBA.

1. Let {gn}n=1,2,··· be a sequence of real valued functions that converge uniformly to g on an open set S,
containing x, and g is continuous at x. Show that if {Xn}n=1,2,··· is a sequence of random variables
taking values in S such that Xn

p→ X, then

gn(Xn)
p→ g(X).

Note: Recall that a sequence of real valued functions {gn}n=1,2,··· converges uniformly to g on a set S
if, for every ε > 0 there exists Nε ∈ N (depending only on ε) such that for all n > Nε, |gn(x)−g(x)| < ε
for every x ∈ S.

Answer: Let ε, δ > 0 and define the following subsets of the sample space: Sn1 = {ω : |gn(Xn)−g(X)| <
ε}, Sn2 = {ω : |gn(Xn) − g(Xn)| < ε/2}, Sn3 = {ω : |g(Xn) − g(X)| < ε/2}, Sn4 = {ω : Xn ∈ S}. By
the triangle inequality, Sn1 ⊇ Sn2 ∩ Sn3 . By continuity of g at X and openness of S, there exists γε such
that whenever |Xn −X| < γε, |g(Xn)− g(X)| < ε/2 and Xn ∈ S. Letting, Sn5 = {ω : |Xn −X| < γε},
we see that Sn5 ⊆ Sn3 ∩ Sn4 . Since Xn

p→ X and uniform convergence of gn, there exists Nδ,ε such that
whenever n > Nδ,ε, |gn(X) − g(X)| < ε/2 for all X ∈ S and P (Sn5 ) > 1 − δ. Thus, n > Nδ,ε implies
Sn4 ⊆ Sn2 . Consequently, n > Nδ,ε implies Sn1 ⊇ Sn2 ∩Sn3 ⊇ Sn4 ∩Sn3 ⊇ Sn5 . Thus, P (Sn1 ) ≥ P (Sn5 ) > 1−δ.

2. Show that Xn
as→ X is equivalent to P

(
{ω : supj≥n |Xj −X| ≥ ε}

)
→ 0 for all ε > 0 as n→∞.

Answer: For any ε > 0 and k ∈ N let Ak(ε) = {ω : |Xk(ω) −X(ω)| > ε}. If for all n ∈ N we have
that P (∪k>nAk(ε)) > 0 then it must be that Xn

as9 X. Consequently,

Xn
as→ X ⇔ lim

n→∞
P (∪n<kAk(ε)) = 0

⇔ P

(
{ω : sup

j≥n
|Xj −X| > ε}

)
→ 0 as n→∞.

3. Prove item 1 of Remark 5.1 on your class notes.

Answer: For ε > 0 we have that

{ω : |Xn + Yn −X − Y | > ε} ⊆ {ω : |Xn −X| > ε/2} ∪ {ω : |Yn − Y | > ε/2}

The probability of the events on the union on right-hand side go to zero as n→∞. By monotonicity
of probability measures we have the results.
For ε > 0,

P ({ω : |XnYn −XY | > ε}) = P (|(Xn −X)(Yn − Y ) + (Xn −X)Y +X(Yn − Y )| > ε)

≤ P (|(Xn −X)||(Yn − Y )| > ε/3) + P (|(Xn −X)||Y | > ε/3)

+ P (|X||(Yn − Y )| > ε/3)

Now, for any δ > 0 we have that

P (|(Xn −X)||Y | > ε/3) ≤ P
(
|(Xn −X)| > ε

3δ

)
+ P (|Y | > δ)

which tends to zero as n→∞ and δ →∞. Using the same argument for the other terms we have the
result.



4. Let n ∈ N and hn > 0 such that hn → 0 as n→∞. Show that if
∑∞
n=1 P ({ω : |Xn −X| ≥ hn}) <∞

then Xn
p→ X.

Answer: From question 2,

Xn
as→ X ⇔ lim

n→∞
P (∪n<kAk(hn)) = 0.

But P (∪n<kAk(hn)) ≤
∑
k≥n P (Ak(ε)) and if

∑∞
n=1 P ({ω : |Xn − X| ≥ hn}) < ∞ then it must be

that lim
n→∞

∑
k≥n P (Ak(ε)) = 0. Since convergence almost surely implies convergence in probability, the

proof is complete.

5. Show that if Xn
p→ X and Xn

p→ Y then P ({ω : X 6= Y }) = 0.

Answer: Set the underlying probability space to be (Ω,F , P ). Note that |X−Y | = |X−Xj+Xj−Y | ≤
|Xj −X|+ |Xj − Y |. Consequently, for any n ∈ N

{ω : |X − Y | > 2/n} ⊂ {ω : |Xj −X| > 1/n} ∪ {ω : |Xj − Y | > 1/n}

Thus,
P ({ω : |X − Y | > 2/n}) ≤ P ({ω : |Xj −X| > 1/n}) + P ({ω : |Xj − Y | > 1/n})

where the probabilities on the right-hand side of the inequality go to 0 as j → ∞. That is, for all n,
{ω : |X − Y | > 2/n} is a null set. But note that

{ω : X 6= Y } ⊂ ∪n∈N{ω : |X − Y | > 2/n} = ∪n∈N{ω : |X − Y | > 2/n},

which is a null set, completing the proof.

6. Suppose {Xi}ni=1 is a sequence of independent and identically distributed random variables. The
distribution of these random variables has a density given by

f(x) =

{
1
b−a if x ∈ [a, b]

0 if x /∈ [a, b]

where a, b ∈ R with b > a. Consider the following random variables an = min
1≤i≤n

{Xi}, bn = max
1≤i≤n

{Xi}.

Can you show that an
p→ a and bn

p→ b?

Answer: P (|b̃n − b| < ε) = P (−(b̃n − b) < ε) = P (b̃n > b− ε) = 1− P (b̃n ≤ b− ε). But

P ( max
1≤i≤n

{Xi} ≤ x) = P (X1 ≤ x, . . . ,Xn ≤ x)

= P (X1 ≤ x)P (X2 ≤ x) · · ·P (Xn ≤ x), by independence
= F (x)n by the fact that the distribution is identical for all Xi

So, P (|b̃n − b| < ε) = 1− (F (b− ε))n. But since 0 < F (b− ε) < 1, as n→∞, P (|b̃n − b| < ε)→ 1.

7. Show that if {Xn}n∈N and X are random variables defined on the same probability space and r > s ≥ 1

and Xn
Lr−→ X, then Xn

Ls−→ X.
Answer: For arbitrary W let Z = |W |s, Y = 1 and p = r/s. Then, by Hölder’s Inequality

E|ZY | ≤ ‖Z‖p‖Y ‖p/(p−1).



Substituting Z and Y gives E(|W |s) ≤ E(|W |sp)1/p = E(|W |s r
s )s/r. Raising both sides to 1/s gives

E(|W |s)1/s ≤ E(|W |r)1/r.

Setting W = Xn −X and taking limits as n→∞ gives the result.

8. Let U and V be two points in an n-dimensional unit cube, i.e., [0, 1]n and Xn be the Euclidean distance
between these two points which are chosen independently and uniformly. Show that Xn√

n

p→ 1√
6
.

Answer: Let U ′ =
(
U1 · · · Un

)
and V ′ =

(
V1 · · · Vn

)
. Then, Xn =

(∑n
i=1(Ui − Vi)2

)1/2
and we can write

1

n
E(X2

n) =
1

n

n∑
i=1

E((Ui − Vi)2) =

∫ 1

0

∫ 1

0

(u− v)2dudv = 1/6

where the last equality follows from routine integration. Then, since E(|(U−V )2|) = E((U−V )2) <∞,
by Kolmogorov’s Law of Large Numbers

1

n
X2
n =

1

n

n∑
i=1

(Ui − Vi)2
p→ 1/6.

Since, f(x) = x1/2 is a continuous function [0,∞), by Slutsky Theorem if 1
nX

2
n

p→ 1/6 then f
(
1
nX

2
n

) p→
f(1/6). Consequently,

1√
n
Xn

p→ 1/
√

6.

9. Show that if a series converges absolutely, then it converges.

Answer: Let {xn}n∈N and consider the series
∑∞
n=1 xn. The series converge absolutely if

∑∞
n=1 |xn| <

∞. Now, let j < i and note that

bi − bj =

i∑
n=1

|xn| −
j∑

n=1

|xn| =
i∑

`=j+1

|x`|.

If j →∞, bi − bj → 0 since
∑∞
n=1 |xn| <∞. Now, since∣∣∣∣∣∣

i∑
`=j+1

x`

∣∣∣∣∣∣ ≤
i∑

`=j+1

|x`| → 0,

and since R is complete
∑∞
`=1 x` <∞.


