Econ 7818, Homework 3 - part 1, Professor Martins. Due date: TBA.

1. Let $\{g_n\}_{n=1,2,\dots}$ be a sequence of real valued functions that converge uniformly to g on an open set S, containing x, and g is continuous at x. Show that if $\{X_n\}_{n=1,2,\dots}$ is a sequence of random variables taking values in S such that $X_n \xrightarrow{p} X$, then

$$g_n(X_n) \xrightarrow{p} g(X).$$

Note: Recall that a sequence of real valued functions $\{g_n\}_{n=1,2,\cdots}$ converges uniformly to g on a set S if, for every $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}$ (depending only on ϵ) such that for all $n > N_{\epsilon}$, $|g_n(x) - g(x)| < \epsilon$ for every $x \in S$.

Answer: Let $\epsilon, \delta > 0$ and define the following subsets of the sample space: $S_1^n = \{\omega : |g_n(X_n) - g(X)| < \epsilon\}$, $S_2^n = \{\omega : |g_n(X_n) - g(X_n)| < \epsilon/2\}$, $S_3^n = \{\omega : |g(X_n) - g(X)| < \epsilon/2\}$, $S_4^n = \{\omega : X_n \in S\}$. By the triangle inequality, $S_1^n \supseteq S_2^n \cap S_3^n$. By continuity of g at X and openness of S, there exists γ_{ϵ} such that whenever $|X_n - X| < \gamma_{\epsilon}, |g(X_n) - g(X)| < \epsilon/2$ and $X_n \in S$. Letting, $S_5^n = \{\omega : |X_n - X| < \gamma_{\epsilon}\}$, we see that $S_5^n \subseteq S_3^n \cap S_4^n$. Since $X_n \xrightarrow{p} X$ and uniform convergence of g_n , there exists $N_{\delta,\epsilon}$ such that whenever $n > N_{\delta,\epsilon}, |g_n(X) - g(X)| < \epsilon/2$ for all $X \in S$ and $P(S_5^n) > 1 - \delta$. Thus, $n > N_{\delta,\epsilon}$ implies $S_4^n \subseteq S_2^n$. Consequently, $n > N_{\delta,\epsilon}$ implies $S_1^n \supseteq S_2^n \cap S_3^n \supseteq S_4^n \cap S_3^n \supseteq S_5^n$. Thus, $P(S_1^n) \ge P(S_5^n) > 1 - \delta$.

2. Show that $X_n \xrightarrow{as} X$ is equivalent to $P\left(\{\omega : \sup_{j \ge n} |X_j - X| \ge \epsilon\}\right) \to 0$ for all $\epsilon > 0$ as $n \to \infty$.

Answer: For any $\epsilon > 0$ and $k \in \mathbb{N}$ let $A_k(\epsilon) = \{\omega : |X_k(\omega) - X(\omega)| > \epsilon\}$. If for all $n \in \mathbb{N}$ we have that $P(\bigcup_{k>n} A_k(\epsilon)) > 0$ then it must be that $X_n \stackrel{as}{\to} X$. Consequently,

$$\begin{split} X_n & \stackrel{as}{\to} X & \Leftrightarrow \quad \lim_{n \to \infty} P\left(\cup_{n < k} A_k(\epsilon) \right) = 0 \\ & \Leftrightarrow \quad P\left(\left\{ \omega : \sup_{j \ge n} |X_j - X| > \epsilon \right\} \right) \to 0 \text{ as } n \to \infty \end{split}$$

3. Prove item 1 of Remark 5.1 on your class notes.

Answer: For $\epsilon > 0$ we have that

$$\{\omega: |X_n+Y_n-X-Y| > \epsilon\} \subseteq \{\omega: |X_n-X| > \epsilon/2\} \cup \{\omega: |Y_n-Y| > \epsilon/2\}$$

The probability of the events on the union on right-hand side go to zero as $n \to \infty$. By monotonicity of probability measures we have the results.

For $\epsilon > 0$,

$$\begin{split} P(\{\omega : |X_n Y_n - XY| > \epsilon\}) &= P\left(|(X_n - X)(Y_n - Y) + (X_n - X)Y + X(Y_n - Y)| > \epsilon\right) \\ &\leq P\left(|(X_n - X)||(Y_n - Y)| > \epsilon/3\right) + P\left(|(X_n - X)||Y| > \epsilon/3\right) \\ &+ P\left(|X||(Y_n - Y)| > \epsilon/3\right) \end{split}$$

Now, for any $\delta > 0$ we have that

$$P\left(|(X_n - X)||Y| > \epsilon/3\right) \le P\left(|(X_n - X)| > \frac{\epsilon}{3\delta}\right) + P\left(|Y| > \delta\right)$$

which tends to zero as $n \to \infty$ and $\delta \to \infty$. Using the same argument for the other terms we have the result.

4. Let $n \in \mathbb{N}$ and $h_n > 0$ such that $h_n \to 0$ as $n \to \infty$. Show that if $\sum_{n=1}^{\infty} P(\{\omega : |X_n - X| \ge h_n\}) < \infty$ then $X_n \xrightarrow{p} X$.

Answer: From question 2,

$$X_n \xrightarrow{as} X \Leftrightarrow \lim_{n \to \infty} P\left(\bigcup_{n < k} A_k(h_n)\right) = 0.$$

But $P(\bigcup_{n < k} A_k(h_n)) \leq \sum_{k \ge n} P(A_k(\epsilon))$ and if $\sum_{n=1}^{\infty} P(\{\omega : |X_n - X| \ge h_n\}) < \infty$ then it must be that $\lim_{n \to \infty} \sum_{k \ge n} P(A_k(\epsilon)) = 0$. Since convergence almost surely implies convergence in probability, the proof is complete.

5. Show that if $X_n \xrightarrow{p} X$ and $X_n \xrightarrow{p} Y$ then $P(\{\omega : X \neq Y\}) = 0$.

Answer: Set the underlying probability space to be (Ω, \mathcal{F}, P) . Note that $|X-Y| = |X-X_j+X_j-Y| \le |X_j-X| + |X_j-Y|$. Consequently, for any $n \in \mathbb{N}$

$$\{\omega: |X - Y| > 2/n\} \subset \{\omega: |X_j - X| > 1/n\} \cup \{\omega: |X_j - Y| > 1/n\}$$

Thus,

$$P(\{\omega : |X - Y| > 2/n\}) \le P(\{\omega : |X_j - X| > 1/n\}) + P(\{\omega : |X_j - Y| > 1/n\})$$

where the probabilities on the right-hand side of the inequality go to 0 as $j \to \infty$. That is, for all n, $\{\omega : |X - Y| > 2/n\}$ is a null set. But note that

$$\{\omega: X \neq Y\} \subset \cup_{n \in \mathbb{N}} \{\omega: |X - Y| > 2/n\} = \cup_{n \in \mathbb{N}} \{\omega: |X - Y| > 2/n\},$$

which is a null set, completing the proof.

6. Suppose $\{X_i\}_{i=1}^n$ is a sequence of independent and identically distributed random variables. The distribution of these random variables has a density given by

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a,b] \\ 0 & \text{if } x \notin [a,b] \end{cases}$$

where $a, b \in \mathbb{R}$ with b > a. Consider the following random variables $a_n = \min_{1 \le i \le n} \{X_i\}, \ b_n = \max_{1 \le i \le n} \{X_i\}.$ Can you show that $a_n \xrightarrow{p} a$ and $b_n \xrightarrow{p} b$?

Answer: $P(|\tilde{b}_n - b| < \epsilon) = P(-(\tilde{b}_n - b) < \epsilon) = P(\tilde{b}_n > b - \epsilon) = 1 - P(\tilde{b}_n \le b - \epsilon)$. But

$$P(\max_{1 \le i \le n} \{X_i\} \le x) = P(X_1 \le x, \dots, X_n \le x)$$

= $P(X_1 \le x)P(X_2 \le x) \cdots P(X_n \le x)$, by independence
= $F(x)^n$ by the fact that the distribution is identical for all X_i

So,
$$P(|\tilde{b}_n - b| < \epsilon) = 1 - (F(b - \epsilon))^n$$
. But since $0 < F(b - \epsilon) < 1$, as $n \to \infty$, $P(|\tilde{b}_n - b| < \epsilon) \to 1$.

7. Show that if $\{X_n\}_{n \in \mathbb{N}}$ and X are random variables defined on the same probability space and $r > s \ge 1$ and $X_n \xrightarrow{\mathcal{L}_r} X$, then $X_n \xrightarrow{\mathcal{L}_s} X$.

Answer: For arbitrary W let $Z = |W|^s$, Y = 1 and p = r/s. Then, by Hölder's Inequality

$$E|ZY| \le ||Z||_p ||Y||_{p/(p-1)}.$$

Substituting Z and Y gives $E(|W|^s) \le E(|W|^{sp})^{1/p} = E(|W|^{s\frac{r}{s}})^{s/r}$. Raising both sides to 1/s gives $E(|W|^s)^{1/s} \le E(|W|^r)^{1/r}$.

Setting $W = X_n - X$ and taking limits as $n \to \infty$ gives the result.

8. Let U and V be two points in an n-dimensional unit cube, i.e., $[0,1]^n$ and X_n be the Euclidean distance between these two points which are chosen independently and uniformly. Show that $\frac{X_n}{\sqrt{n}} \xrightarrow{p} \frac{1}{\sqrt{6}}$.

Answer: Let $U' = (U_1 \cdots U_n)$ and $V' = (V_1 \cdots V_n)$. Then, $X_n = (\sum_{i=1}^n (U_i - V_i)^2)^{1/2}$ and we can write

$$\frac{1}{n}E(X_n^2) = \frac{1}{n}\sum_{i=1}^n E((U_i - V_i)^2) = \int_0^1 \int_0^1 (u - v)^2 du dv = 1/6$$

where the last equality follows from routine integration. Then, since $E(|(U-V)^2|) = E((U-V)^2) < \infty$, by Kolmogorov's Law of Large Numbers

$$\frac{1}{n}X_n^2 = \frac{1}{n}\sum_{i=1}^n (U_i - V_i)^2 \xrightarrow{p} 1/6.$$

Since, $f(x) = x^{1/2}$ is a continuous function $[0, \infty)$, by Slutsky Theorem if $\frac{1}{n}X_n^2 \xrightarrow{p} 1/6$ then $f\left(\frac{1}{n}X_n^2\right) \xrightarrow{p} f(1/6)$. Consequently,

$$\frac{1}{\sqrt{n}}X_n \xrightarrow{p} 1/\sqrt{6}.$$

9. Show that if a series converges absolutely, then it converges.

Answer: Let $\{x_n\}_{n \in \mathbb{N}}$ and consider the series $\sum_{n=1}^{\infty} x_n$. The series converge absolutely if $\sum_{n=1}^{\infty} |x_n| < \infty$. Now, let j < i and note that

$$b_i - b_j = \sum_{n=1}^{i} |x_n| - \sum_{n=1}^{j} |x_n| = \sum_{\ell=j+1}^{i} |x_\ell|.$$

If $j \to \infty$, $b_i - b_j \to 0$ since $\sum_{n=1}^{\infty} |x_n| < \infty$. Now, since

$$\left|\sum_{\ell=j+1}^{i} x_{\ell}\right| \leq \sum_{\ell=j+1}^{i} |x_{\ell}| \to 0,$$

and since \mathbb{R} is complete $\sum_{\ell=1}^{\infty} x_{\ell} < \infty$.