Econ 7818, Homework 3 - part 1, Professor Martins. Due date: TBA.

1. Prove Theorem 5.13 in your notes.

Answer: (4 points) Suppose h is a simple function with $h(x)=\sum_{j=1}^{m} y_{j} I_{A_{j}}$ where $A_{j}=\{x \in \mathbb{R}$: $\left.h(x)=y_{j}\right\}$. Then, since X has a density f_{X}

$$
\int_{\mathbb{R}} h d P_{X}=\sum_{j=1}^{m} y_{j} P_{X}\left(A_{j}\right)=\sum_{j=1}^{m} y_{j} \int_{A_{j}} f_{X}(x) d \lambda(x)=\int_{\mathbb{R}} \sum_{j=1}^{m} y_{j} I_{A_{j}} f_{X}(x) d \lambda(x)=\int_{\mathbb{R}} h(x) f_{X}(x) d \lambda(x)
$$

If h is a non-negative, by Theorem 3.3 in your notes there exists a sequence of non-negative simple functions $h_{n} \rightarrow h$ as $n \rightarrow \infty$ and $h_{n} \circ X \rightarrow h \circ X$. By Lebesgue's Monotone Convergence Theorem

$$
\begin{aligned}
\int_{\mathbb{R}} \lim _{n \rightarrow \infty} h_{n} d P_{X} & =\lim _{n \rightarrow \infty} \int_{\mathbb{R}} h_{n} d P_{X}=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} h_{n}(x) f_{X}(x) d \lambda(x)=\int_{\mathbb{R}} \lim _{n \rightarrow \infty} h_{n}(x) f_{X}(x) d \lambda(x) \\
& =\int_{\mathbb{R}} h(x) f_{X}(x) d \lambda(x)
\end{aligned}
$$

If h is an integrable function, write $h=h^{+}-h^{-}$and repeat the previous case (h non-negative) for h^{+} and h^{-}.
2. Let f be a density for the random variable X and $a>0$. Show that

$$
\frac{1}{a} P(f(X)<a) \leq C
$$

for some constant $C>0$.
Answer: Let $A_{a}=\{x: f(x)<a\}$ and $A=\{x:|x| \leq B\}$. Now, $A_{a}=\left(A_{a} \cap A\right) \cup\left(A_{a} \cap A^{c}\right)$ and

$$
P\left(A_{a}\right)=P\left(A_{a} \cap A\right)+P\left(A_{a} \cap A^{c}\right) \leq P\left(A_{a} \cap A\right)+P\left(A^{c}\right)
$$

Now, $P\left(A_{a} \cap A\right)=\int_{A_{a} \cap A} f(x) d x$ since f is a density. But over $A_{a} \cap A, f(x)<a$, so

$$
P\left(A_{a} \cap A\right) \leq a \int_{A_{a} \cap A} d \lambda \leq a \int_{A} d x=a \int_{[-B, B]} d \lambda=a 2 B
$$

So,

$$
P\left(A_{a}\right) \leq a 2 B+P\left(A^{c}\right)
$$

Now, for any $\epsilon>0, P\left(A^{c}\right)=\int_{|x|>B} f(x) d \lambda<\epsilon$ for B sufficiently large, since $\int f(x) d \lambda=1$. Then,

$$
P\left(A_{a}\right) \leq a 2 B+\epsilon
$$

which implies $\frac{1}{a} P\left(A_{a}\right) \leq 2 B:=C$.
3. Give expressions for the distribution functions of $X^{+}(\omega)=\max \{X(\omega), 0\}, X^{-}(\omega)=-\min \{X(\omega), 0\}$ and $|X|$ in terms of the the distribution F of X.

Answer: (3 points)

$$
F_{X^{+}}(x)=P(\max \{X(\omega), 0\} \leq x)= \begin{cases}0 & \text { if } x<0 \\ F(x), & \text { if } x \geq 0\end{cases}
$$

$$
\begin{gathered}
\left.F_{X^{-}}(x)=P(-\min \{X(\omega), 0\}, 0\} \leq x\right)= \begin{cases}0 & \text { if } x<0, \\
1-\lim _{y \uparrow-x} F(y), & \text { if } x \geq 0 .\end{cases} \\
F_{|X|}(x)=P(|X| \leq x)= \begin{cases}0 & \text { if } x<0, \\
F(x)-\lim _{y \uparrow-x} F(y), & \text { if } x \geq 0 .\end{cases}
\end{gathered}
$$

4. Show that the distribution F_{X} associated with the random variable X is continuous at x if, and only if, $P(X=x)=0$.

Answer: (2 points) By the continuity of probability measures

$$
P(\{\omega: X(\omega)=x\})=\lim _{y \uparrow x} P(\{\omega: y<X(\omega) \leq x\})=F(x)-\lim _{y \uparrow x} F(y)=F(x)-F(x-) .
$$

But $F(x)-F(x-)>0$ if, and only if, F has a jump discontinuity at x.
5. Adapt the proof of Lebesgue's Dominated Convergence Theorem in your notes to show that any sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ of measurable functions such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ and $\left|f_{n}\right| \leq g$ for some g with g^{p} nonnegative and integrable satisfies

$$
\lim _{n \rightarrow \infty} \int\left|f_{n}-f\right|^{p} d \mu=0
$$

Answer: First, note that $\left|f_{n}-f\right|^{p} \leq\left(\left|f_{n}\right|+|f|\right)^{p}$. Since $\left|f_{n}-f\right| \rightarrow 0$ we have that $\left|f_{n}\right| \rightarrow|f|$. Consequently, for all $\epsilon>0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that for $n \geq N_{\epsilon}$ we have

$$
\left|f_{n}\right|-\epsilon \leq|f| \leq\left|f_{n}\right|+\epsilon \leq g+\epsilon
$$

since $\left|f_{n}\right|<g$. Consequently, $|f| \leq g,|f|^{p} \leq g^{p}$ and $\left|f_{n}-f\right|^{p} \leq 2^{p} g^{p}$ where g^{p} is nonnegative and integrable. Now, letting $\phi_{n}=\left|f_{n}-f\right|^{p}$ we have that $\lim _{n \rightarrow \infty} \phi_{n}=0$ and by Lebesgue's dominated convergence theorem in the class notes

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{X}} \phi_{n} d \mu=\int_{\mathbb{X}} \lim _{n \rightarrow \infty} \phi_{n} d \mu=0 .
$$

6. Let $\left\{g_{n}\right\}_{n=1,2, \ldots}$. be a sequence of real valued functions that converge uniformly to g on an open set S, containing x, and g is continuous at x. Show that if $\left\{X_{n}\right\}_{n=1,2, \ldots}$ is a sequence of random variables taking values in S such that $X_{n} \xrightarrow{p} X$, then

$$
g_{n}\left(X_{n}\right) \xrightarrow{p} g(X) .
$$

Note: Recall that a sequence of real valued functions $\left\{g_{n}\right\}_{n=1,2, \ldots}$ converges uniformly to g on a set S if, for every $\epsilon>0$ there exists $N_{\epsilon} \in \mathbb{N}$ (depending only on ϵ) such that for all $n>N_{\epsilon},\left|g_{n}(x)-g(x)\right|<\epsilon$ for every $x \in S$.

Answer: Let $\epsilon, \delta>0$ and define the following subsets of the sample space: $S_{1}^{n}=\left\{\omega:\left|g_{n}\left(X_{n}\right)-g(X)\right|<\right.$ $\epsilon\}, S_{2}^{n}=\left\{\omega:\left|g_{n}\left(X_{n}\right)-g\left(X_{n}\right)\right|<\epsilon / 2\right\}, S_{3}^{n}=\left\{\omega:\left|g\left(X_{n}\right)-g(X)\right|<\epsilon / 2\right\}, S_{4}^{n}=\left\{\omega: X_{n} \in S\right\}$. By the triangle inequality, $S_{1}^{n} \supseteq S_{2}^{n} \cap S_{3}^{n}$. By continuity of g at X and openness of S, there exists γ_{ϵ} such that whenever $\left|X_{n}-X\right|<\gamma_{\epsilon},\left|g\left(X_{n}\right)-g(X)\right|<\epsilon / 2$ and $X_{n} \in S$. Letting, $S_{5}^{n}=\left\{\omega:\left|X_{n}-X\right|<\gamma_{\epsilon}\right\}$, we see that $S_{5}^{n} \subseteq S_{3}^{n} \cap S_{4}^{n}$. Since $X_{n} \xrightarrow{p} X$ and uniform convergence of g_{n}, there exists $N_{\delta, \epsilon}$ such that whenever $n>N_{\delta, \epsilon},\left|g_{n}(X)-g(X)\right|<\epsilon / 2$ for all $X \in S$ and $P\left(S_{5}^{n}\right)>1-\delta$. Thus, $n>N_{\delta, \epsilon}$ implies $S_{4}^{n} \subseteq S_{2}^{n}$. Consequently, $n>N_{\delta, \epsilon}$ implies $S_{1}^{n} \supseteq S_{2}^{n} \cap S_{3}^{n} \supseteq S_{4}^{n} \cap S_{3}^{n} \supseteq S_{5}^{n}$. Thus, $P\left(S_{1}^{n}\right) \geq P\left(S_{5}^{n}\right)>1-\delta$.
7. Show that $X_{n} \xrightarrow{a s} X$ is equivalent to $P\left(\left\{\omega: \sup _{j \geq n}\left|X_{j}-X\right| \geq \epsilon\right\}\right) \rightarrow 0$ for all $\epsilon>0$ as $n \rightarrow \infty$.

Answer: For any $\epsilon>0$ and $k \in \mathbb{N}$ let $A_{k}(\epsilon)=\left\{\omega:\left|X_{k}(\omega)-X(\omega)\right|>\epsilon\right\}$. If for all $n \in \mathbb{N}$ we have that $P\left(\cup_{k>n} A_{k}(\epsilon)\right)>0$ then it must be that $X_{n} \xrightarrow{a s} X$. Consequently,

$$
\begin{aligned}
X_{n} \xrightarrow{a s} X & \Leftrightarrow \lim _{n \rightarrow \infty} P\left(\cup_{n<k} A_{k}(\epsilon)\right)=0 \\
& \Leftrightarrow P\left(\left\{\omega: \sup _{j \geq n}\left|X_{j}-X\right|>\epsilon\right\}\right) \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

8. Let $n \in \mathbb{N}$ and $h_{n}>0$ such that $h_{n} \rightarrow 0$ as $n \rightarrow \infty$. Show that if $\sum_{n=1}^{\infty} P\left(\left\{\omega:\left|X_{n}-X\right| \geq h_{n}\right\}\right)<\infty$ then $X_{n} \xrightarrow{p} X$.

Answer: From question 7,

$$
X_{n} \xrightarrow{a s} X \Leftrightarrow \lim _{n \rightarrow \infty} P\left(\cup_{n<k} A_{k}\left(h_{n}\right)\right)=0
$$

But $P\left(\cup_{n<k} A_{k}\left(h_{n}\right)\right) \leq \sum_{k \geq n} P\left(A_{k}(\epsilon)\right)$ and if $\sum_{n=1}^{\infty} P\left(\left\{\omega:\left|X_{n}-X\right| \geq h_{n}\right\}\right)<\infty$ then it must be that $\lim _{n \rightarrow \infty} \sum_{k \geq n} P\left(A_{k}(\epsilon)\right)=\overline{0}$. Since convergence almost surely implies convergence in probability, the proof is complete.
9. Show that if $X_{n} \xrightarrow{p} X$ and $X_{n} \xrightarrow{p} Y$ then $P(\{\omega: X \neq Y\})=0$.

Answer: Set the underlying probability space to be (Ω, \mathcal{F}, P). Note that $|X-Y|=\left|X-X_{j}+X_{j}-Y\right| \leq$ $\left|X_{j}-X\right|+\left|X_{j}-Y\right|$. Consequently, for any $n \in \mathbb{N}$

$$
\{\omega:|X-Y|>2 / n\} \subset\left\{\omega:\left|X_{j}-X\right|>1 / n\right\} \cup\left\{\omega:\left|X_{j}-Y\right|>1 / n\right\}
$$

Thus,

$$
P(\{\omega:|X-Y|>2 / n\}) \leq P\left(\left\{\omega:\left|X_{j}-X\right|>1 / n\right\}\right)+P\left(\left\{\omega:\left|X_{j}-Y\right|>1 / n\right\}\right)
$$

where the probabilities on the right-hand side of the inequality go to 0 as $j \rightarrow \infty$. That is, for all n, $\{\omega:|X-Y|>2 / n\}$ is a null set. But note that

$$
\{\omega: X \neq Y\} \subset \cup_{n \in \mathbb{N}}\{\omega:|X-Y|>2 / n\}=\cup_{n \in \mathbb{N}}\{\omega:|X-Y|>2 / n\}
$$

which is a null set, completing the proof.

