
Econ 7818, Homework 3 - part 1, Professor Martins. Due date: TBA.

1. Prove Theorem 5.13 in your notes.

Answer: (4 points) Suppose h is a simple function with h(x) =
∑m
j=1 yjIAj

where Aj = {x ∈ R :
h(x) = yj}. Then, since X has a density fX∫
R

hdPX =

m∑
j=1

yjPX(Aj) =

m∑
j=1

yj

∫
Aj

fX(x)dλ(x) =

∫
R

m∑
j=1

yjIAjfX(x)dλ(x) =

∫
R

h(x)fX(x)dλ(x).

If h is a non-negative, by Theorem 3.3 in your notes there exists a sequence of non-negative simple
functions hn → h as n→∞ and hn ◦X → h ◦X. By Lebesgue’s Monotone Convergence Theorem∫

R

lim
n→∞

hndPX = lim
n→∞

∫
R

hndPX = lim
n→∞

∫
R

hn(x)fX(x)dλ(x) =

∫
R

lim
n→∞

hn(x)fX(x)dλ(x)

=

∫
R

h(x)fX(x)dλ(x)

If h is an integrable function, write h = h+ − h− and repeat the previous case (h non-negative) for h+
and h−.

2. Let f be a density for the random variable X and a > 0. Show that

1

a
P (f(X) < a) ≤ C

for some constant C > 0.

Answer: Let Aa = {x : f(x) < a} and A = {x : |x| ≤ B}. Now, Aa = (Aa ∩A) ∪ (Aa ∩Ac) and

P (Aa) = P (Aa ∩A) + P (Aa ∩Ac) ≤ P (Aa ∩A) + P (Ac).

Now, P (Aa ∩A) =
∫
Aa∩A f(x)dx since f is a density. But over Aa ∩A, f(x) < a, so

P (Aa ∩A) ≤ a
∫
Aa∩A

dλ ≤ a
∫
A

dx = a

∫
[−B,B]

dλ = a2B.

So,
P (Aa) ≤ a2B + P (Ac).

Now, for any ε > 0, P (Ac) =
∫
|x|>B f(x)dλ < ε for B sufficiently large, since

∫
f(x)dλ = 1. Then,

P (Aa) ≤ a2B + ε,

which implies 1
aP (Aa) ≤ 2B := C.

3. Give expressions for the distribution functions of X+(ω) = max{X(ω), 0}, X−(ω) = −min{X(ω), 0}
and |X| in terms of the the distribution F of X.

Answer: (3 points)

FX+(x) = P (max{X(ω), 0} ≤ x) =

{
0 if x < 0,
F (x), if x ≥ 0.



FX−(x) = P (−min{X(ω), 0}, 0} ≤ x) =

{
0 if x < 0,
1− limy↑−x F (y), if x ≥ 0.

F|X|(x) = P (|X| ≤ x) =

{
0 if x < 0,
F (x)− limy↑−x F (y), if x ≥ 0.

4. Show that the distribution FX associated with the random variable X is continuous at x if, and only
if, P (X = x) = 0.

Answer: (2 points) By the continuity of probability measures

P ({ω : X(ω) = x}) = lim
y↑x

P ({ω : y < X(ω) ≤ x}) = F (x)− lim
y↑x

F (y) = F (x)− F (x−).

But F (x)− F (x−) > 0 if, and only if, F has a jump discontinuity at x.

5. Adapt the proof of Lebesgue’s Dominated Convergence Theorem in your notes to show that any
sequence {fn}n∈N of measurable functions such that limn→∞ fn(x) = f(x) and |fn| ≤ g for some g
with gp nonnegative and integrable satisfies

lim
n→∞

∫
|fn − f |pdµ = 0.

Answer: First, note that |fn − f |p ≤ (|fn| + |f |)p. Since |fn − f | → 0 we have that |fn| → |f |.
Consequently, for all ε > 0 there exists Nε ∈ N such that for n ≥ Nε we have

|fn| − ε ≤ |f | ≤ |fn|+ ε ≤ g + ε

since |fn| < g. Consequently, |f | ≤ g, |f |p ≤ gp and |fn − f |p ≤ 2pgp where gp is nonnegative and
integrable. Now, letting φn = |fn − f |p we have that lim

n→∞
φn = 0 and by Lebesgue’s dominated

convergence theorem in the class notes

lim
n→∞

∫
X

φndµ =

∫
X

lim
n→∞

φndµ = 0.

6. Let {gn}n=1,2,··· be a sequence of real valued functions that converge uniformly to g on an open set S,
containing x, and g is continuous at x. Show that if {Xn}n=1,2,··· is a sequence of random variables
taking values in S such that Xn

p→ X, then

gn(Xn)
p→ g(X).

Note: Recall that a sequence of real valued functions {gn}n=1,2,··· converges uniformly to g on a set S
if, for every ε > 0 there exists Nε ∈ N (depending only on ε) such that for all n > Nε, |gn(x)−g(x)| < ε
for every x ∈ S.

Answer: Let ε, δ > 0 and define the following subsets of the sample space: Sn1 = {ω : |gn(Xn)−g(X)| <
ε}, Sn2 = {ω : |gn(Xn) − g(Xn)| < ε/2}, Sn3 = {ω : |g(Xn) − g(X)| < ε/2}, Sn4 = {ω : Xn ∈ S}. By
the triangle inequality, Sn1 ⊇ Sn2 ∩ Sn3 . By continuity of g at X and openness of S, there exists γε such
that whenever |Xn −X| < γε, |g(Xn)− g(X)| < ε/2 and Xn ∈ S. Letting, Sn5 = {ω : |Xn −X| < γε},
we see that Sn5 ⊆ Sn3 ∩ Sn4 . Since Xn

p→ X and uniform convergence of gn, there exists Nδ,ε such that
whenever n > Nδ,ε, |gn(X) − g(X)| < ε/2 for all X ∈ S and P (Sn5 ) > 1 − δ. Thus, n > Nδ,ε implies
Sn4 ⊆ Sn2 . Consequently, n > Nδ,ε implies Sn1 ⊇ Sn2 ∩Sn3 ⊇ Sn4 ∩Sn3 ⊇ Sn5 . Thus, P (Sn1 ) ≥ P (Sn5 ) > 1−δ.



7. Show that Xn
as→ X is equivalent to P

(
{ω : supj≥n |Xj −X| ≥ ε}

)
→ 0 for all ε > 0 as n→∞.

Answer: For any ε > 0 and k ∈ N let Ak(ε) = {ω : |Xk(ω) −X(ω)| > ε}. If for all n ∈ N we have
that P (∪k>nAk(ε)) > 0 then it must be that Xn

as9 X. Consequently,

Xn
as→ X ⇔ lim

n→∞
P (∪n<kAk(ε)) = 0

⇔ P

(
{ω : sup

j≥n
|Xj −X| > ε}

)
→ 0 as n→∞.

8. Let n ∈ N and hn > 0 such that hn → 0 as n→∞. Show that if
∑∞
n=1 P ({ω : |Xn −X| ≥ hn}) <∞

then Xn
p→ X.

Answer: From question 7,

Xn
as→ X ⇔ lim

n→∞
P (∪n<kAk(hn)) = 0.

But P (∪n<kAk(hn)) ≤
∑
k≥n P (Ak(ε)) and if

∑∞
n=1 P ({ω : |Xn − X| ≥ hn}) < ∞ then it must be

that lim
n→∞

∑
k≥n P (Ak(ε)) = 0. Since convergence almost surely implies convergence in probability, the

proof is complete.

9. Show that if Xn
p→ X and Xn

p→ Y then P ({ω : X 6= Y }) = 0.

Answer: Set the underlying probability space to be (Ω,F , P ). Note that |X−Y | = |X−Xj+Xj−Y | ≤
|Xj −X|+ |Xj − Y |. Consequently, for any n ∈ N

{ω : |X − Y | > 2/n} ⊂ {ω : |Xj −X| > 1/n} ∪ {ω : |Xj − Y | > 1/n}

Thus,
P ({ω : |X − Y | > 2/n}) ≤ P ({ω : |Xj −X| > 1/n}) + P ({ω : |Xj − Y | > 1/n})

where the probabilities on the right-hand side of the inequality go to 0 as j → ∞. That is, for all n,
{ω : |X − Y | > 2/n} is a null set. But note that

{ω : X 6= Y } ⊂ ∪n∈N{ω : |X − Y | > 2/n} = ∪n∈N{ω : |X − Y | > 2/n},

which is a null set, completing the proof.


