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Abstract. We provide new Fourier inversion theorems, with rates, that allow the recovery of a distribu-
tion function, associated interval probabilities, and jumps from the characteristic function. The results
expand, improve, and clarify conditions imposed in our earlier work Mynbaev et al. (2022). First, we
show that higher rates of convergence can be achieved by an appropriate choice of the regularization
function, both for the recovery of interval probabilities and for jump discontinuities. Second, we propose
a new inversion theorem for the recovery of the distribution function at points of continuity. Along the
way, we clarify which of the conditions used previously are in fact necessary. The resulting theorems may
be useful for constructing nonparametric estimators in errors-in-variables models where density functions
may fail to exist.
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1 Introduction

Fourier inversion theorems play an important role in probability theory (see, e.g. [6], [9] and
[2]). They allow for the recovery of a distribution function, associated interval probabilities,
and distribution jumps from the distribution’s characteristic function (Fourier transform).
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Such recovery is useful in both theoretical and applied settings. For example, they are the
main motivation for estimators that emerge in classical error-in-variable models (see [7], [3]).

Fourier inversion theorems are normally stated as limits of certain integrals, and until
recently little was known about their rates of convergence. [1] provided the first attempt to
obtain convergence rates for distribution functions and their jumps, and [8] obtained such
rates for interval probabilities and jumps. The derivations in [8] are based on certain integral
representations that involve a regularization function. The first contribution of this paper is to
show that faster convergence rates can be obtained with a suitable choice of the regularization
function, in both recovery of interval probabilities and jumps. The second contribution is an
entirely new inversion theorem for recovering a distribution function. A byproduct of the
contributions we make in this paper is to reveal which conditions imposed in [8] are necessary
for their results.

The paper is organized as follows. Besides this introduction, section 2 provides a new
theorem for the recovery of a distribution F at a point of continuity, gives rates of convergence,
and describes a suitable selection of regularization function; section 3 studies the recovery of
interval probabilities and, section 4 studies the recovery of jumps, both under suitably chosen
regularization function. A brief conclusion section provides a summary of the results and
directions for future work, including applications for our results.

We adopt the following notation throughout the paper: F denotes a distribution func-
tion; χS is the indicator function for the set S; C(f) denotes the points of continuity of the
function f ; C denotes the space of uniformly bounded continuous functions on R with norm
∥f∥C = sup

t∈R
|f(t)|; L1(R) denotes the space of functions f on R with a finite norm

∥f∥L1 =

∫
R
|f(t)|dt;

F and F−1 denote, respectively, the Fourier and inverse Fourier transforms; for f ∈ L1(R),

(Ff) (t) =

∫
R
eistf(s)ds,(

F−1f
)
(t) =

1

2π

∫
R
e−istf(s)ds;

for a distribution function F ,

(FF ) (t) =

∫
R
eistdF (s),(

F−1F
)
(t) =

1

2π

∫
R
e−istdF (s).
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2 Recovering F (x) for x ∈ C(F )

Perhaps the first attempt to recover a distribution function F from an inversion theorem was
made by [5]. Using Lévy’s inversion theorem, [5] obtained

F (x) =
1

2
+

1

2π
lim

ε→0, λ→∞

∫ λ

ε

eitxϕ(−t)− e−itxϕ(t)

it
dt for ε, λ > 0 and x ∈ C(F ),

where ϕ := FF . As [10] pointed out, the integrand is not absolutely summable and the
integral converges in the mean value sense. Furthermore, a rate of convergence was not given.
More recently, [1] used Parseval’s relation (see [4]) to obtain

F (x) = lim
t→∞

1

c

∫
(−∞,x]

∫
R
e−iusg(u/t)ϕ(u)duds, for t > 0 and x ∈ C(F ), (1)

where g ≥ 0 is any symmetric density (about 0), ϕ := FF and c :=
∫
R ϕ(s)ds. When g is a

standard normal density, [1, Theorem 1] gives lower and upper bounds on

sup
x∈R

∣∣∣∣∣
∫
(−∞,x]

1

c

∫
R
e−iusg(u/t)ϕ(u)duds− F (x)

∣∣∣∣∣ ,
providing a rate of convergence for the recovery of F via an inversion theorem.

In Theorem 4 below we give an inversion theorem in a different format, together with a
rate of convergence. We start with a heuristic justification of our approach. Put

gλ,x(t) := χ(−1,0) (λ(−t− x)) , for λ > 0, t, x ∈ R,

and noting that gλ,x(−t) = χ(x− 1
λ
,x)(t), we write

F (x)− F (x− 1/λ) =

∫ x

x−1/λ
dF (t) =

∫
R
gλ,x(−t)dF (t).

Defining

Uλ,x(s) := (gλ,x ∗ F ) (s) =

∫
R
gλ,x(s− t)dF (t) (2)

we have F (x)− F (x− 1
λ) = Uλ,x(0), and taking limits as λ → 0 gives

F (x) = lim
λ→0

Uλ,x(0). (3)

Since gλ,x is integrable, by Theorem 3.3.2 in [6] we have

(FUλ,x)(t) = (Fgλ,x) (t)ϕ(t). (4)

Kazakh Mathematical Journal, 25:4 (2025) 6–20
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If the product on the right side of (4) is integrable, then from (3) and (4)

F (x) = lim
λ→0

(F−1FUλ,x)(0) = lim
λ→0

F−1 [(Fgλ,x)ϕ] (0).

When the right side of (4) is not integrable, it is possible to regularize the integrand by
multiplying it by H(h·) where H ∈ L1(R) and h > 0. H is chosen in such a way as to have

F (x) = lim
h,λ→0

F−1 [H(h·) (Fgλ,x)ϕ] (0).

Lemma 1. Let H ∈ L1(R), G([a, b]) = 1
2π

∫ b
a (FH)(v)dv for a < b, a, b ∈ R and define

Ax(h, λ) :=
1

2π

∫
R
e−itx e

it/λ − 1

it
H(ht)ϕ(t)dt. (5)

Then, for h, λ > 0 and x ∈ R

Ax(h, λ) =

∫
R
G

([
t− x

h
,
t− x+ 1/λ

h

])
dF (t).

Proof. Let gλ,x(t) = χ(x−1/λ,x)(−t) and note that

(Fgλ,x)(s) =

∫
R
eistgλ,x(t) dt =

∫ −x+1/λ

−x
eist dt = e−ixs e

is/λ − 1

is
.

The Fourier transform of H(h·)(Fgλ,x)ϕ is given by

F−1 [H(h·)(Fgλ,x)ϕ] (s) =
1

2π

∫
R
e−istH(ht)

(
e−ixt e

it/λ − 1

it

)
ϕ(t) dt,

and

F−1 [H(h·)(Fgλ,x)ϕ] (0) =
1

2π

∫
R
H(ht)e−ixt e

it/λ − 1

it
ϕ(t) dt = Ax(h, λ).

Since ϕ(t) =
∫
R eitu dF (u), we have

Ax(h, λ) =
1

2π

∫
R
H(ht)e−ixt e

it/λ − 1

it

(∫
R
eitu dF (u)

)
dt.

Assuming the integrability of H(h·), by Fubini’s theorem we have

Ax(h, λ) =

∫
R

(
1

2π

∫
R
H(ht)e−itx e

it/λ − 1

it
eitu dt

)
dF (u).

Kazakh Mathematical Journal, 25:4 (2025) 6–20
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To simplify the inner integral 1
2π

∫
RH(ht)eit(u−x) eit/λ−1

it dt, let v = ht and write

1

2π

∫
R
H(v)ei(v/h)(u−x) e

i(v/h)/λ − 1

i(v/h)

dv

h
=

1

2π

∫
R
H(v)eiv(u−x)/h e

iv/(hλ) − 1

iv
dv.

Since eiv/(hλ)−1
iv =

∫ 1/(hλ)
0 eivs ds, the inner integral is

1

2π

∫
R
H(v)eiv(u−x)/h

(∫ 1/(hλ)

0
eivs ds

)
dv =

1

2π

∫ 1/(hλ)

0

(∫
R
H(v)eiv((u−x)/h+s) dv

)
ds.

Since FH(v) =
∫
RH(u)eivu du, we have∫

R
H(v)eiv((u−x)/h+s) dv = (FH)

(
u− x

h
+ s

)
.

Thus, if w = u−x
h + s

1

2π

∫ 1/(hλ)

0
(FH)

(
u− x

h
+ s

)
ds =

1

2π

∫ (u−x)/h+1/(hλ)

(u−x)/h
(FH)(w) dw

= G

([
u− x

h
,
u− x+ 1/λ

h

])
.

Therefore, Ax(h, λ) =
∫
RG

([
u−x
h , u−x+1/λ

h

])
dF (u), completing the proof.

The next two lemmas show that if x, y ∈ C(F ),
∫
RG

([ t−y
h , t−x

h

])
dF (t) can approximate

F (x, y) := F (y) − F (x) given a suitable choice of G. To this end, let η be a function such
that η ≥ 0, supp η ⊂ [−1, 1], 1

2π

∫ 1
−1 η(t)dt = 1 and F−1η ∈ L1(R). Now, for δ ∈ (0, 1) and

h > 0 define p := pδ,h, H := Hδ,h and G := Gδ,h by

p(t) = η(h1−δt)h1−δ, H = F−1p, G ([a, b]) =
1

2π

∫ b

a
(FH)(t)dt =

1

2π

∫ b

a
p(t)dt. (6)

Then, H ∈ L1(R), ∥G∥C = 1 and

p ≥ 0, supp p ⊂
[
−hδ−1, hδ−1

]
,

1

2π

∫ hδ−1

−hδ−1

p(t)dt =
1

2π

∫ 1

−1
η(t)dt = 1. (7)

Lemma 2. Let δ ∈ (0, 1) and G([a, b]) be as defined in (6). Then, for any F , x, y ∈ C(F ),
x < y we have∣∣∣∣∫

R
G

([
t− y

h
,
t− x

h

])
dF (t)− F (x, y)

∣∣∣∣ ≤ 2
[
ω(x, hδ) + ω(y, hδ)

]
, h > 0,

where ω(x, h) = F (x+ h)− F (x− h) for x ∈ C(F ).
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Proof. We write∫
R
G

([
t− y

h
,
t− x

h

])
dF (t)− F (x, y) =

∫
R
GdF −

∫ y

x
dF

=

∫ x−hδ

−∞
GdF +

∫ ∞

y+hδ

GdF +

∫ y−hδ

x+hδ

(G− 1) dF +

∫ x+hδ

x−hδ

GdF

+

∫ y+hδ

y−hδ

GdF −
∫ x+hδ

x
dF −

∫ y

y−hδ

dF

The integrals on the right-side of the last equality are denoted I1, · · · , I7 in the order they are
written.

1. In I1, t ≤ x− hδ and t−x
h ≤ −hδ−1 and, so G := 0 and I1 = 0.

2. Similarly, t ≥ y + hδ and t−y
h ≥ hδ−1 in I2, so G := 0 and I2 = 0.

3. In I3 we have x+ hδ < t < y − hδ, so t−y
h < −hδ−1 < hδ−1 ≤ t−x

h . This means that, for
all t in this interval, the segment

[ t−y
h , t−x

h

]
contains

[
−hδ−1, hδ−1

]
and

G

([
t− y

h
,
t− x

h

])
=

1

2π

∫ t−x
h

t−y
h

p(s)ds =
1

2π

∫ hδ−1

−hδ−1

p(s)ds = 1,

so I3 = 0.

Thus, ∫
R
GdF − F (x, y) =

∫ x+hδ

x−hδ

GdF +

∫ y+hδ

y−hδ

GdF −
∫ x+hδ

x
dF −

∫ y

y−hδ

dF. (8)

This is bounded in absolute value by

(1 + ∥G∥C)
[
ω(x, hδ) + ω(y, hδ)

]
≤ 2

(
ω(x, hδ) + ω(g, hδ)

)
,

since ∥G∥C = 1.

Using another version of (8), the bound obtained in Lemma 2 can be improved.

Lemma 3. For any F and ε ≥ 1, G := Gε,h and x, y ∈ C(F ) such that x < y∣∣∣∣∫
R
G

([
t− y

h
,
t− x

h

])
dF (t)− F (x, y)

∣∣∣∣ ≤ ω(x, hε) + ω(y, hε) for all h ∈ (0, 1].
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Proof. We consider the first two integrals in (8), keeping the numbering of the integrals from
the proof of Lemma 2. In

2πI4 =

∫ x+hδ

x−hδ

(∫ (t−x)/h

(t−y)/h
p(s)ds

)
dF (t)

we want to change the integration order, refer to Figure 1, where

s1 =
x− hδ − y

h
, s2 =

x+ hδ − y

h
, s3 =

x− hδ − x

h
, s4 =

x+ hδ − x

h
.

Since x < y, we have 2hδ < y − x, s3 − s2 = y−x−2hδ

h > 0. Hence, for small h it is true that

Fig. 1: Integration order for I4

s1 < s2 < s3 = −hδ−1 < s4 = hδ−1. Here s3 → −∞ and s4 → ∞ as h → 0. Therefore

2πI4 =

∫ s2

s1

(∫ y+sh

x−hδ

dF (t)

)
p(s)ds+

∫ s3

s2

(∫ x+hδ

x−hδ

dF (t)

)
p(s)ds

+

∫ s4

s3

(∫ x+hδ

x+sh
dF (t)

)
p(s)ds.

Kazakh Mathematical Journal, 25:4 (2025) 6–20
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Since p is zero outside [s3, s4] we get

2πI4 =

∫ s4

s3

(∫ x+hδ

x+sh
dF (t)

)
p(s)ds =

∫ s4

s3

[F (x+ hδ)− F (x+ sh)]ds

= F (x+ hδ)− 1

2π

∫ hδ−1

−hδ−1

F (x+ sh)p(s)ds. (9)

Fig. 2: Integration order for I5

For I5, refer to Figure 2 where

v1 =
y − hδ − y

h
, v2 =

y + hδ − y

h
, v3 =

y − hδ − x

h
, v4 =

y + hδ − x

h
.

Kazakh Mathematical Journal, 25:4 (2025) 6–20
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For small h it is true that v1 = −hδ−1 < v2 = hδ−1 < v3 < v4. Therefore

2πI5 =

∫ y+hδ

y−hδ

(∫ (t−x)/h

(t−y)/h
p(s)ds

)
dF (t)

=

∫ v2

v1

(∫ y+sh

y−hδ

dF (t)

)
p(s)ds+

∫ v3

v2

(∫ y+hδ

y−hδ

dF (t)

)
p(s)ds

+

∫ v4

v3

(∫ y+hδ

x+sh
dF (t)

)
p(s)ds

=

∫ v2

v1

[F (y + sh)− F (y − hδ)]ds. (10)

Combining (8)-(10) and given (7) we have∫
R
GdF − F (x, y) = F (x+ hδ)− 1

2π

∫ hδ−1

−hδ−1

F (x+ sh)p(s)ds

+
1

2π

∫ hδ−1

−hδ−1

F (y + sh)p(s)ds

−F (y − hδ)− F (x+ hδ) + F (x)− F (y) + F (y − hδ)

=
1

2π

∫ hδ−1

−hδ−1

[F (x)− F (x+ sh)]p(s)ds

− 1

2π

∫ hδ−1

−hδ−1

[F (y)− F (y + sh)]p(s)ds. (11)

Let p in (6) be given by pε,h(t) = η(h1−εt)h1−ε for ε ≥ 1. Then supp p ⊂
[
−hε−1, hε−1

]
⊂[

−hδ−1, hδ−1
]

for h ∈ (0, 1]. Since (7) is preserved, all calculations made up to this point
remain valid. For the first integral on the right of Equation (11) we have∣∣∣∣∣ 12π

∫ hε−1

−hε−1

[F (x)− F (x+ sh)]p(s)ds

∣∣∣∣∣ ≤ ω(x, hε)
1

2π

∫ hε−1

−hε−1

p(s)ds = ω(x, hε).

This and a similar bound for the second term at the right of (11) complete the proof.

Theorem 4. a) Let G satisfy the condition

lim
a→−∞, b→∞

G([a, b]) = 1,

lim
b→−∞

G([a, b]) = 0, lim
a→∞

G([a, b]) = 0,

G is bounded in its domain

(G)

Kazakh Mathematical Journal, 25:4 (2025) 6–20
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and define

ϕG(N) = max

{
sup
b<−N

|G([a, b])|, sup
a>N

|G([a, b])|, sup
a<−N, b>N

|G([a, b])− 1|

}
.

Then, for any F , x ∈ C(F ), h ∈ (0, 1], δ ∈ (0, 1) and λ > 0 we have

|Ax(h, λ)− F (x)| ≤ ϕG(h
δ−1) + (1 + ∥G∥C)ω(x, h

δ) + (2 + ∥G∥C)F
(
x+ 1− 1

λ

)
. (12)

b) Let G([a, b]) = 1
2π

∫ b
a (FH)(v)dv with FH ≥ 0. Then,

Ax(h, λ) → F (x), as h, λ → 0, for any F, x ∈ C(F ) (13)

is equivalent to a combination of FH ∈ L1(R) and 1
2π

∫
R(FH)(u)du = 1, which, in turn, is

equivalent to (G).
c) Let ε ≥ 1. If G = Gε,h from Lemma 3 is used, then (12) can be improved as follows:

|Ax(h, λ)− F (x)| ≤ ω(x, hε) + (2 + ∥G∥C)F
(
x+ 1− 1

λ

)
, h ∈ (0, 1), λ > 0.

Proof. a) Lemma 2 in [8] states that if G satisfies (G) and δ ∈ (0, 1), then for all h > 0, F,
x, y ∈ C(F ), such that x < y, one has∣∣∣∣∫

R
G

([
t− y

h
,
t− x

h

])
dF (t)− F (x, y)

∣∣∣∣ ≤ ϕG(h
δ−1)

+ (1 + ∥G∥C)
[
ω(x, hδ) + ω(y, hδ)

]
. (14)

Replacing the pair (x, y) with the pair (x− 1/λ, x) and using Lemma 1 we get

|Ax(h, λ)− F (x− 1/λ, x)| ≤ ϕG(h
δ−1) + (1 + ∥G∥C)

[
ω(x− 1/λ, hδ) + ω(x, hδ)

]
.

Since 0 < h ≤ 1 we see that

|Ax(h, λ)− F (x)| ≤
∣∣∣∣Ax(h, λ)−

[
F (x)− F

(
x− 1

λ

)]∣∣∣∣+ F

(
x− 1

λ

)
≤ ϕG(h

δ−1) + (1 + ∥G∥C)
[
ω(x, hδ) + F

(
x− 1

λ
+ hδ

)
−F

(
x− 1

λ
− hδ

)]
+ F

(
x− 1

λ

)
≤ ϕG(h

δ−1) + (1 + ∥G∥C)ω(x, h
δ) + (2 + ∥G∥C)F

(
x− 1

λ
+ 1

)
.

Kazakh Mathematical Journal, 25:4 (2025) 6–20



16 Kairat T. Mynbaev, Carlos Martins-Filho

b) Suppose (13) is true. Then, by Lemma 1∫
R
G

([
t− x

h
,
t− x+ 1/λ

h

])
dF (t) → F (x), h, λ → 0 for any F, x ∈ C(F ).

Taking F to be the Heaviside function and x = 1, we obtain∫
R
G

([
t− 1

h
,
t− 1 + 1/λ

h

])
dF (t) = G

([
− 1

hn
,
−1 + 1/λn

hn

])
→ 1

for any sequences hn → 0, λn → 0. Here −1/hn → −∞, (−1 + 1/λn)/hn → ∞. Denoting
∆n = [−1/hn, (−1 + 1/λn)/hn], we get

1

2π

∫
R
(FH)(u)χ∆n(u)du → 1,

from the fact that G([a, b]) = 1
2π

∫ b
a (FH)(v)dv. Since the sequence (FH)χ∆n is non-decreasing,

by the Beppo Levi’s theorem this implies FH ∈ L1(R) and 1
2π

∫
R(FH)(u)du = 1, which, in

turn, implies (G). Conversely, if Equation (G) holds, then we have Equations (12) and (13).
That, as we know, leads to FH ∈ L1(R) and 1

2π

∫
R(FH)(u)du = 1.

c) Here, it suffices to use the bound from Lemma 3 instead of Equation (14).

3 Recovering F (x, y) := F (y)− F (x) for x, y ∈ C(F )

We start by defining

Bx,y(h) :=
1

2π

∫
R

e−ixt − e−iyt

it
H(ht)ϕ(t)dt, H ∈ L1(R).

Theorem 5. Suppose G([a, b]) = 1
2π

∫ b
a (FH)(v)dv. a) If G satisfies (G), then for any F ,

x, y ∈ C(F ), x < y, and δ ∈ (0, 1)

|Bx,y(h)− F (x, y)| ≤ ϕG(h
δ−1) + (1 + ∥G∥C)

[
ω(x, hδ) + ω(y, hδ)

]
for any h > 0. (15)

b) If FH ≥ 0, then the condition

Bx,y(h) → F (x, y), h → 0, for any F, x, y ∈ C(F ), x < y, (16)

is equivalent to the combination of FH ∈ L1(R) and 1
2π

∫
R(FH)(v)dv = 1, which is equivalent

to (G).
c) Let ε ≥ 1. If G is as defined in Lemma 3, for all sufficiently small h > 0

|Bx,y(h)− F (x, y)| ≤ ω(x, hε) + ω(y, hε).

Kazakh Mathematical Journal, 25:4 (2025) 6–20
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Proof. Part a) has been proved in [8, Theorem 7(i)].
b) Let FH ≥ 0 and suppose that (16) holds. Taking F to be the Heaviside function we have

Bx,y(h) =

∫
R
G

([
t− y

h
,
t− x

h

])
dF (t) = G

([
−y

h
,−x

h

])
.

Setting x = −1, y = 1 gives

1

2π

∫ 1/h

−1/h
(FH)(v)dv = G

([
−1

h
,
1

h

])
→ F (x, y) = 1, as h → 0.

By Beppo Levi’s Theorem FH ∈ L1(R) and 1
2π

∫
R(FH)(v)dv = 1. This, in turn, implies (G).

Conversely, (G) implies 1
2π

∫
R(FH)(v)dv = 1, while (16) follows from (15).

Finally, c) follows directly from Lemma 3.

4 Recovering a jump px

The distribution F has a jump px at x ∈ R if px := F (x)− lim
ε↓0

F (x− ε) > 0. In this case we

write x ∈ J(F ), the set of points where F has a jump. Let K ∈ L1(R) and
∫
RK = 1, then

W := FK will be continuous and satisfy

W (0) = 1, lim
|x|→∞

W (x) = 0. (17)

The continuity of W together with (17) implies the boundedness of W . In addition, letting

ωW (ε) := sup
|x|≤ε

|W (x)− 1| , ϕW (N) := sup
|x|≥N

|W (x)| , δF (ε) :=

∫
|t−x|<ε

dF (t)− px ≥ 0,

we have that (17) implies ωW (ε) → 0, as ε → 0, and ϕW (N) → 0, as N → ∞. Note also that
limε→0 δF (ε) = 0 by continuity of probability measures.

For h ∈ (0, 1) we define

Cx(h) :=

∫
R
e−itxϕ(t)hK(ht)dt.

Theorem 6. a) Let ε1 ∈ (0, 1), ε2 > ε1 and K ∈ L1(R). The condition
∫
RK(t)dt = 1 is

equivalent to
Cx(h) → px for any F , x ∈ J(F ) (18)

and also equivalent to

|Cx(h)− px| ≤ ωW (hε2−ε1)
[
px + δF (h

1−ε1)
]
+ (1 + ∥W∥C) δF (h

1−ε1)

+ ϕW (h−ε1) for all h > 0, F, x ∈ J(F ). (19)
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b) Let ε, h ∈ (0, 1) and choose

W (t) :=


1, |t| ≤ (1− h)h−ε;
0, |t| ≥ h−ε;
hε−1(h−ε − |t|), otherwise.

(20)

such that K := F−1W is integrable. Then, we have

δF ((1− h)h1−ε) ≤ Cx(h)− px ≤ δF (h
1−ε) for all h > 0, F, x ∈ J(F ).

Proof. a) If
∫
RK(t)dt = 1 then W = FK is continuous and satisfies (17). From [8, Equation

(A12)]

Cx(h) =

∫
R
W

(
t− x

h

)
dF (t), (21)

and by [8, Lemma 3 (i)] we obtain (19). Furthermore, (19) implies (18). Conversely, if (18) is
true, then using (21) we can prove that W (0) = 1 by choosing F to be the Heaviside function.
Thus, (17) holds and implies (19).

b) For the upper bound, we write

Cx(h)− px =

∫
R
W

(
t− x

h

)
dF (t)− px =

∫
|t−x|<h1−ε

W

(
t− x

h

)
dF (t)− px

+

∫
|t−x|≥h1−ε

W

(
t− x

h

)
dF (t).

Here, I2 :=
∫
|t−x|≥h1−ε W

(
t−x
h

)
dF (t) = 0 by (20). Since W ≤ 1 everywhere,

Cx(h)− px =

∫
|t−x|<h1−ε

W

(
t− x

h

)
dF (t)− px =

≤
∫
|t−x|<h1−ε

dF (t)− px = δF (x, h
1−ε).

For the lower bound, we continue to have I2 := 0. Reducing the domain of integration we get
by (20)

Cx(h)− px ≥
∫
|t−x|<(1−h)h1−ε

W

(
t− x

h

)
dF (t)− px = δF (x, (1− h)h1−ε).
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5 Conclusion

We provide new Fourier inversion theorems, with rates, that allow the recovery of a distri-
bution function, associated interval probabilities, and jumps from the characteristic function.
The results expand, improve and clarify conditions imposed in our earlier work [8]. The results
may prove useful in motivating deconvolution estimators for distribution functions, associated
interval probabilities and jumps in classical error-in-variable models when densities may not
exist.
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Мыңбаев Қ. Т., Мартинс-Филью К. Б. ФУРЬЕ ИНВЕРСИЯ ТЕОРЕМАЛАРЫ
АРҚЫЛЫ ТАРАЛУ ФУНКЦИЯЛАРЫ МЕН ОЛАРДЫҢ СЕКIРIСТЕРIН ЖӘНЕ
ИНТЕРВАЛДЫҚ ЫҚТИМАЛДЫҚТАРДЫ ҚАЙТА ҚҰРУ: ЖИНАҚТЫЛЫҚ ЖЫЛ-
ДАМДЫҒЫНЫҢ ЖАҢА БАҒАЛАРЫ

Бiз Фурье түрлендiруiнiң жаңа инверсия теоремаларын беремiз. Таралу функциясы
мен оның үзiлiстерi, аралық ықтималдықтар қарастырылады және конвергенция жыл-
дамдығы бағаланады. Нәтижелер бiздiң бұрынғы жұмысымызда қойылған шарттарды
кеңейтедi, жақсартады және нақтылайды. Бiрiншiден, регуляризациялаушы функцияны
дұрыс таңдау арқылы интервалдық ықтималдықтарды да, секiрiстердi де қалпына кел-
тiру кезiнде жинақталудың неғұрлым жоғары жылдамдықтарына қол жеткiзуге бола-
тынын көрсетемiз. Екiншiден, үлестiрiм функциясын үздiксiздiк нүктелерiнде қалпына
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келтiруге арналған мүлде жаңа инверсия теоремасын ұсынамыз. Сонымен қатар, бұрын
қолданылған шарттардың қайсысы шынымен қажеттi екендiгiн нақтылаймыз. Алынған
теоремалар айнымалыларда қателiктерi бар моделдерде, үлестiрiм тығыздықтары мүл-
де болмауы мүмкiн жағдайларда, параметрлiк емес бағалауларды құру үшiн пайдалы
болуы мүмкiн.

Түйiн сөздер: сипаттамалық функция, Фурье инверсия теоремасы, таралу функ-
циясы, таралу функциясының үзiлiстерi.

Мынбаев К. Т., Мартинс-Филью К. Б. ВОССТАНОВЛЕНИЕ ФУНКЦИЙ РАСПРЕ-
ДЕЛЕНИЯ И ИХ СКАЧКОВ, А ТАКЖЕ ИНТЕРВАЛЬНЫХ ВЕРОЯТНОСТЕЙ С ПО-
МОЩЬЮ ТЕОРЕМ ОБРАЩЕНИЯ ФУРЬЕ: НОВЫЕ ОЦЕНКИ СКОРОСТИ СХОДИ-
МОСТИ

Мы доказываем новые теоремы об обращении преобразования Фурье, с оценками
скорости сходимости, которые позволяют восстановить функцию распределения, соот-
ветствующие интервальные вероятности и скачки характеристической функции. Резуль-
таты расширяют и уточняют условия, полученные в нашей предыдущей работе. Во-
первых, мы показываем, что более высокие скорости сходимости могут быть достигнуты
при подходящем выборе регуляризующей функции как для восстановления интерваль-
ных вероятностей, так и для скачков. Во-вторых, мы предлагаем новую теорему обраще-
ния для восстановления функции распределения в точках непрерывности. Попутно мы
проясняем, какие из условий, использованных ранее, являются необходимыми. Получен-
ные теоремы могут быть полезны для построения непараметрических оценок в моделях
с ошибками в переменных, когда плотности распределения могут не существовать.

Ключевые слова: характеристическая функция, теорема обращения Фурье, функ-
ция распределения, скачки функции распределения.
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