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Abstract. We provide new Fourier inversion theorems, with rates, that allow the recovery of a distribu-
tion function, associated interval probabilities, and jumps from the characteristic function. The results
expand, improve, and clarify conditions imposed in our earlier work Mynbaev et al. (2022). First, we
show that higher rates of convergence can be achieved by an appropriate choice of the regularization
function, both for the recovery of interval probabilities and for jump discontinuities. Second, we propose
a new inversion theorem for the recovery of the distribution function at points of continuity. Along the
way, we clarify which of the conditions used previously are in fact necessary. The resulting theorems may
be useful for constructing nonparametric estimators in errors-in-variables models where density functions

may fail to exist.

Keywords: characteristic function, Fourier inversion theorem, distribution function, jumps of a distri-
bution function.

1 Introduction

Fourier inversion theorems play an important role in probability theory (see, e.g. [6], [9] and
[2]). They allow for the recovery of a distribution function, associated interval probabilities,
and distribution jumps from the distribution’s characteristic function (Fourier transform).
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Recovering distribution functions ... 7

Such recovery is useful in both theoretical and applied settings. For example, they are the
main motivation for estimators that emerge in classical error-in-variable models (see |7], [3]).

Fourier inversion theorems are normally stated as limits of certain integrals, and until
recently little was known about their rates of convergence. [1] provided the first attempt to
obtain convergence rates for distribution functions and their jumps, and [8] obtained such
rates for interval probabilities and jumps. The derivations in [8] are based on certain integral
representations that involve a regularization function. The first contribution of this paper is to
show that faster convergence rates can be obtained with a suitable choice of the regularization
function, in both recovery of interval probabilities and jumps. The second contribution is an
entirely new inversion theorem for recovering a distribution function. A byproduct of the
contributions we make in this paper is to reveal which conditions imposed in [8] are necessary
for their results.

The paper is organized as follows. Besides this introduction, section 2 provides a new
theorem for the recovery of a distribution F' at a point of continuity, gives rates of convergence,
and describes a suitable selection of regularization function; section 3 studies the recovery of
interval probabilities and, section 4 studies the recovery of jumps, both under suitably chosen
regularization function. A brief conclusion section provides a summary of the results and
directions for future work, including applications for our results.

We adopt the following notation throughout the paper: F' denotes a distribution func-
tion; xg is the indicator function for the set S; C'(f) denotes the points of continuity of the
function f; C denotes the space of uniformly bounded continuous functions on R with norm
Il fllc =sup|f(t)|; L1(R) denotes the space of functions f on R with a finite norm

teR

1z, = /R ()t

F and F~! denote, respectively, the Fourier and inverse Fourier transforms; for f € Li(R),

FH () = /R £ f(5)ds,

FNW = — [ e p(s)as

27TR

for a distribution function F,

(FF) () = /R ¢t dF(s),

— 1 —ist
(F7'F) (1) = o J.© dF(s).
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8 Kairat T. Mynbaev, Carlos Martins-Filho

2 Recovering F(z) for x € C(F)

Perhaps the first attempt to recover a distribution function F' from an inversion theorem was
made by [5]. Using Lévy’s inversion theorem, [5] obtained

1 1 A itz ) — —itx t
Fz)=>+— lim / ) = W) by for 2, A > 0 and 3 € C(F),

2 2me—0, Aooo J, it
where ¢ := FF. As [10] pointed out, the integrand is not absolutely summable and the
integral converges in the mean value sense. Furthermore, a rate of convergence was not given.
More recently, [1] used Parseval’s relation (see [4]) to obtain

F(z) = lim !

t—o0 C

/ / e " g(u/t)p(u)duds, for t > 0 and = € C(F), (1)
(—o0,z] JR

where g > 0 is any symmetric density (about 0), ¢ := FF and ¢ := fR ¢(s)ds. When g is a
standard normal density, |1, Theorem 1| gives lower and upper bounds on

sup
zeR

| L atuiotmaus — P,

providing a rate of convergence for the recovery of F' via an inversion theorem.
In Theorem 4 below we give an inversion theorem in a different format, together with a
rate of convergence. We start with a heuristic justification of our approach. Put

g)\,cc(t) = X(~1,0) ()‘(_t - ZL‘)) , for A>0, t,z €R,
and noting that g ,(—t) = X(z—1a) (t), we write
>\7

T

Flz)— F(z—1/\) :/

z—1/A

A (0) = [ gra(-0dF ().

Defining
Unas) = (970 % F) (5) = [ rals = F (1) 2)
R
we have F(z) — F(z — }) = Uy ,(0), and taking limits as A — 0 gives
F(x) = lim Uy ,(0). (3)
A—=0
Since gy  is integrable, by Theorem 3.3.2 in [6] we have

(FUra)(t) = (Fgae) (£)0(2)- (4)
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Recovering distribution functions ... 9

If the product on the right side of (4) is integrable, then from (3) and (4)

F(@) = lm (FLFULL)(0) = lim 71 [(For0) ] (0)

When the right side of (4) is not integrable, it is possible to regularize the integrand by
multiplying it by H(h-) where H € L1(R) and h > 0. H is chosen in such a way as to have

P(a) = lm F~'[H(k) (Foas) 6] (0)

Lemma 1. Let H € L1(R), G([a,b]) = 5= ff(]—'H)(v)dv fora <b, a,b € R and define

1 eit/)\ -1

Ag(h,N) = 5 /R e*“xTH(ht)gb(t)dt. (5)

Then, for h,A >0 and v € R

Agc(h,/\):AG([t;x,t_xgl/A])dF(t).

Proof. Let g +(t) = X(2—1/1,2)(—t) and note that

' —z+1/X o ets/A
(Forg)(s) = / egy.(t)dt = / et dt = e S~ !

R —x is

The Fourier transform of H(h-)(Fgxz)¢ is given by

. Git/A _
FH () (Fordl (s) = 5= [ e H () <t1> o(t) d,

and
A1

it/
FUH(h)(Fore)d] (0) = % /IR H(ht)et &~ 1

m o(t)dt = Az (h,N).

Since ¢(t) = [ " dF(u), we have

git/A |
Ag(h,\) = % /R Hht)e ot &1 < /R et dF(u)> dt.

it

Assuming the integrability of H(h-), by Fubini’s theorem we have

eit//\ -1

Ay(h,N\) = /R (;ﬂ /R H(ht)e—mTe““ dt) dF (u).
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10 Kairat T. Mynbaev, Carlos Martins-Filho

To simplify the inner integral fR (ht)e it(u—z) e 21 Zt/A L dt, let v = ht and write

i(w/h)/A _ 1 du 1 A ev/(hA) _
H el (v/h)(u— 55)677 —_ / H w(u—z)/hc T T+ )
/ ) iRy h o fy He P

eiv/(BN) 1 r1/(h)
—Jo

)

. 1/(hA) 1/(hX) ,
S H(v)eu=)/h (/ ers ds) dv = 1/ </ H (v)e™(u=)/hts) dv) ds.
21 Jr 0 21 Jo R

Since FH(v) = [p H(u)e™" du, we have

/ H(v)ei”((“_x)/h“) dv = (FH) (u ; v + s> )
R

Since

€' ds, the inner integral is

Thus, if w = “3* + s

1 1/ "z 1 plu—a)/ht1/ (k)
— (FH) +s)ds=— FH)(w) dw
2 h (u—z)/h
B u—x u—x+1/\
- =)
Therefore, Ay(h,\) = [ G ([“—;x, ufw}jl/AD dF (u), completing the proof. O

The next two lemmas show that if x, y € C(F fR ([ 7 h ]) dF(t) can approximate
F(z,y) = F(y) — F(x) given a suitable choice of G To this end, let  be a function such
that n > 0, suppn C [—1,1], 5= _11 n(t)dt = 1 and F~'n € L1(R). Now, for § € (0,1) and
h > 0 define p := psp, H := Hs ), and G := G5, by

b b
p(#) = n(BP R, H = Flp, G ([a,b]) = % / (FH)(t)dt % / p®)dt. (6)

Then, H € L1(R), |G| =1 and

1 h5_1 1 1
>0, s —po-t h‘s—l} / Hdt = — t)dt = 1.
p =0, suppp C [ : 2o |, POdE =0 [ ) (7)

Lemma 2. Let § € (0,1) and G([a,b]) be as defined in (6). Then, for any F, x,y € C(F),
x <y we have

/RG ([t_hy t ;LxD dF(t) — F(x,y)‘ <2 [w(a:,h‘s) +w(y,h5)} , h>0,

where w(x,h) = F(x + h) — F(x — h) for x € C(F).
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Recovering distribution functions ... 11

Proof. We write

_ — Yy
/G toyt-z dF(t)—F(x,y):/GdF—/ dF
R h h R z
z—h® 00 y—ho z+hd
—/ GdF + GdF+/ (G—l)dF+/ GdF
—00 y+h? x+h? z—h?

y+h5 z+h? Yy
—I—/ GdF—/ dF—/ dF
y—ho T y—ho

The integrals on the right-side of the last equality are denoted Iy, - - - , I7 in the order they are
written.

1.InI,t<z—h®and 5% < —h%' and, so G := 0 and I = 0.
2. Similarly, ¢t > y + h® and t_Ty > h"1in I, s0 G :=0 and I, = 0.

3. In I3 we have z + h? <t <y —h9, so t_Ty < —hl<pi-l< FTI This means that, for
all ¢ in this interval, the segment [%, t_Tx] contains [—h‘;*l, h‘S*l] and

t—x 6—1
=0 h

t—y t—=x 1 1
_— = — = — = 1
¢ <[ h ' h ]) 27 ﬁ—y pls)ds 2m | _po—1 pls)ds =1,

h

so I3 = 0.

Thus,

xz+ho y+h‘s z+h Y
/GdF— F(z,y) :/ GdF+/ GdF—/ dr —/ dF. (8)
R x—hS y—ho x y—ho

This is bounded in absolute value by
(L+[1Gllo) [wle h0) +wly, 1)| <2 (w(@,h%) +w(g, %)),
since ||Gllc = 1. O

Using another version of (8), the bound obtained in Lemma 2 can be improved.

Lemma 3. For any F ande > 1, G := G, and z,y € C(F) such that x <y

/RG qt;y ! ;L””D dF(t) — F(x,y)' < w(@, h¥) + w(y, h) for all h € (0, 1].
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12 Kairat T. Mynbaev, Carlos Martins-Filho

Proof. We consider the first two integrals in (8), keeping the numbering of the integrals from

the proof of Lemma 2. In
z+ho (t—z)/h
2nly = / / p(s)ds | dF(t)
z—ho (t=y)/h

we want to change the integration order, refer to Figure 1, where

a:—h‘s—y a:—l—h‘s—y x—h —zx r+h— 2
sS1=——>, §g= — % g3 = — Gy = —
1 h s 92 L sy 93 L s 94 h
5
Since z < y, we have 2h® < y — x, 53—52:%>0. Hence, for small A it is true that
Fig. 1: Integration order for I,
AS | | -
< t—x
=pé-1 —em———— e e - - -5 = =
s, =h | ,’,Is W ,t=x+sh
| - 1
I -7 I
| - |
| el |
53:_h6_1 I J_/_: __________ :
P |
s P | .
x+h —y ! -7
S2 = A i : ___________ :.-’: s:—hy,t:y+sh
| P |
1 e 1
| e |
| -7 |
| - |
s _x_hg_y 1-- 1
1= R o] |
h 27 I
] | ~
o — h® o+ A r
| |
| |
| |
$1 < s9 < 83 = —h"1 < g4 = h®1. Here s3 — —oo and s4 — 0o as h — 0. Therefore

ol — / ( / ijhdp(t)> p(s)ds + / 3 ( / :j dF(t)) p(3)ds
4 / < /x ::6 dF(t)> p(s)ds.
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Since p is zero outside [s3, s4] we get

S4 z+ho S4
2rly = / </ ’ dF(t)> p(s)ds = / [F(z+ %) — F(z + sh)]ds

3 +sh 3

héfl
— Flz+ 1) — % /_ Pl shp(s)ds. ()

Fig. 2: Integration order for I

S -
y+h6_x ! I .7 t—x
= _——p—_——— F———— e ———— = = — —
Uy A | I 5= A ,t=x+s5sh
| - |
| - |
| - |
| PR |
y_hS_x I,,’ I
N 1
Vs = h ,'+ 1
Pra | .
Uz:ha’l 1 - L —
B ':' """""" P —,-:-' s:—y,t:y+sh
| A h
| -7 |
| -7 |
| 7 |
vl__ha_l :,” :
il T |
- 1 1
- I I 5
y — b 1y + h t
| |
| |
| |
For I, refer to Figure 2 where
; Cy—h’—y y _y+hi—y y y—-h -z . y+h -z
1= h 9 2 = h ) 3 = h I 4 = h .
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14 Kairat T. Mynbaev, Carlos Martins-Filho

For small h it is true that v; = —h%~! < vy = h*~1 < v3 < v4. Therefore

2wl = /y:ja (/((t;);hp(S)CLS) dF(t)
y— -y
_ / :JZ ( /y y::h dF(t)> p(s)ds + / :3 (
+ [ ( / :: dF(t)) pls)ds

— /” [F(y + sh) — F(y — h?)]ds. (10)

U1

y+h?
/ dF(t)) p(s)ds
y—h?

Combining (8)-(10) and given (7) we have

1 ho—1
/ GdF — F(z,y) = F(z+h) — — / F(x 4+ sh)p(s)ds
R 2 _po—1
ho—1

+ F(y + sh)p(s)ds

g _h§—1
—F(y—h°) — F(x + h°) + F(z) — F(y) + F(y — h°)
héfl
= o [ [F@) -+ shp(s)ds
T _po-1
h&*l
! (F(y) — Py + sh)]p(s)ds. (1)

_g _ho-1
Let p in (6) be given by p.5(t) = n(h!=°t)h!~¢ for € > 1. Then suppp C [—hgfl,hsfl] -

[—h‘s_l,h‘s_l} for h € (0,1]. Since (7) is preserved, all calculations made up to this point
remain valid. For the first integral on the right of Equation (11) we have

hE—l
< w(z, hs)l/ p(s)ds = w(z, hF).

hE—l
! / [F(z) — Fx + sh)]p(s)ds =

27T —he—1

This and a similar bound for the second term at the right of (11) complete the proof. O
Theorem 4. a) Let G satisfy the condition
lim G([a,b]) =1,
a——00, b—oo

bgznoo G([a,b]) =0, ali_)rrolo G([a,b]) =0, (G)

G is bounded in its domain
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Recovering distribution functions ... 15

and define

d)G(N):maX{ sup |G([a,b])], sup |G([a,b])[,  sup \G([ayb])—l\}-
b<—N a>N a<—N, b>N

Then, for any F, x € C(F), h € (0,1], 6 € (0,1) and A > 0 we have

40,0 = F@I < 666 + (14 Ge) (o) + @+ [Gle) F (241- 7). (2)

b) Let G(la,b]) = & [P(FH)(v)dv with FH > 0. Then,
Az(h,\) = F(x), as hy,A — 0, for any F, x € C(F) (13)
is equivalent to a combination of FH € L1(R) and 5= [o(FH)(u)du = 1, which, in turn, is

equivalent to (G).
c) Let e > 1. If G = G, from Lemma 3 is used, then (12) can be improved as follows:

|Az(h,A) — F(x)] < w(z,h®) + 2+ |G| o) F (ac +1-— }\) , he(0,1), A>0.

Proof. a) Lemma 2 in [8] states that if G satisfies (G) and 6 € (0,1), then for all h > 0, F,
x,y € C(F), such that x < y, one has

/RG (F;y ! ;xD dF(t) — F(a:,y)‘ < ga(h®)

+ (1L +IGle) [l B0 +wiy )] (14)

Replacing the pair (x,y) with the pair (z — 1/, z) and using Lemma 1 we get
[Aulh ) =l = 1/02)| < 06 (0 4+ (14 [Glo) [ — /A %) + oo %)
Since 0 < h <1 we see that
Au(h\) — F(z)| < ‘Ax(h, A) - [F(m) _F <x - i)] ‘ e (x - i)
< oo(h™) +(1+Glle)
—F(:L‘—i—h(sﬂ +F<l‘—/1\>

< (W) + (1 + |Gl wia, ) + 2+ |Glle) F <x 1y 1> |

A

1
w(x, h®) + F (m - = —i—h‘S)
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16 Kairat T. Mynbaev, Carlos Martins-Filho

b) Suppose (13) is true. Then, by Lemma 1

/th?’t%;lﬁbdﬂwﬁm), hA = 0 for any F, & € C(F).
R

Taking F' to be the Heaviside function and = = 1, we obtain

fo ([ =] oro=a ([, 0]

for any sequences h, — 0, A\, — 0. Here —1/h,, = —o0, (=1 4+ 1/A,)/hn — o00. Denoting
Ay = [=1/hyn, (=1 4+1/X,)/hy], we get
1

o (FH)(u)xa, (u)du — 1,
T JR

from the fact that G([a,b]) = & ff(]—“H)(v)dv. Since the sequence (FH)xa,, is non-decreasing,
by the Beppo Levi’s theorem this implies FH € L1(R) and 5~ [o(FH)(u)du = 1, which, in
turn, implies (G). Conversely, if Equation (G) holds, then we have Equations (12) and (13).
That, as we know, leads to FH € L1(R) and &= [ (FH)(u)du = 1.

c) Here, it suffices to use the bound from Lemma 3 instead of Equation (14). O

3 Recovering F(z,y) := F(y) — F(z) for x,y € C(F)

We start by defining

—ixt _ efiyt

By (h) = % /R C T H ) o(dt, H € Ly(R).

Theorem 5. Suppose G([a,b]) =
x,y € C(F), z <y, and § € (0,1)

%f;(fH)(v)dv. a) If G satisfies (G), then for any F,
Bry(h) — F(.)| < 66(h") + (L4 [Gllo) [l %) 4 o(y, )] for any h > 0. (15)
b) If FH > 0, then the condition
B, y(h) = F(z,y), h =0, for any F, z,y € C(F), = <, (16)
is equivalent to the combination of FH € L1(R) and 5= [ (FH)(v)dv = 1, which is equivalent
to (G).
c) Let e > 1. If G is as defined in Lemma 3, for all sufficiently small h > 0

| Bry(h) = F(x,y)| < w(z, h°) +w(y, 7).
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Proof. Part a) has been proved in [8, Theorem 7(i)].
b) Let FH > 0 and suppose that (16) holds. Taking F' to be the Heaviside function we have

s = [ ([5525 ) e - ()

Setting x = —1, y = 1 gives

1 [ih 11

o 71/h(]-"H)(v)dv =G <[_h’ h}) — F(xz,y) =1, as h — 0.

By Beppo Levi’s Theorem FH € L1(R) and 5 [, (FH)(v)dv = 1. This, in turn, implies (G).
Conversely, (G) implies 5= [ (FH)(v)dv = 1, while (16) follows from (15).
Finally, c) follows directly from Lemma 3. O

4 Recovering a jump p,

The distribution F has a jump p, at € R if p, := F(x) — liﬁ)l F(z —¢) > 0. In this case we
3

write # € J(F), the set of points where F' has a jump. Let K € L;(R) and [, K = 1, then

W := FK will be continuous and satisfy

W(0)=1, lim W(z)=0. (17)

|z| =00
The continuity of W together with (17) implies the boundedness of W. In addition, letting
o (2) 1= sup [W(z) 1], ow (V)= sup [W(a)], p(e)i= [ ()= po 20
|z|<e |lz|>N |t—z|<e

we have that (17) implies wyy (¢) — 0, as € = 0, and ¢ (N) — 0, as N — co. Note also that
lim._,00p(¢) = 0 by continuity of probability measures.
For h € (0,1) we define

Cy(h) :== /R e " p(t)hK (ht)dt.

Theorem 6. a) Let 1 € (0,1), e3 > 1 and K € Li(R). The condition [p K(t)dt =1 is
equivalent to

Cy(h) = py for any F, x € J(F) (18)

and also equivalent to

|Cz(h) — pal ww (A2 [py + 0p(h )] + (1 + |[W| o) dp (Rt 51)

+ ow(h™ ) forallh >0, F, x € J(F). (19)

IN

KAZAKH MATHEMATICAL JOURNAL, 25:4 (2025) 6-20



18 Kairat T. Mynbaev, Carlos Martins-Filho

b) Let e, h € (0,1) and choose
3’ < (1— R)h;
w(t) =1 o, > b (20)
he=t(h= —|t]),  otherwise.
such that K := F~'W is integrable. Then, we have
Sp((1 = R)A'8) < Cp(h) — pup < 6p(h'7°) for all h > 0, F, x € J(F).

Proof. a) If [, K(t)dt =1 then W = FK is continuous and satisfies (17). From [8, Equation

(A12)
Co(h) = /RW (7”3) dF(2), (21)

and by [8, Lemma 3 (i)] we obtain (19). Furthermore, (19) implies (18). Conversely, if (18) is
true, then using (21) we can prove that W (0) = 1 by choosing F' to be the Heaviside function.
Thus, (17) holds and implies (19).

b) For the upper bound, we write

Caty=pe= [ W (55 arw o= [ w(15F)are) -p.

+ /lHthlE W (t;x> dF(t).

Here, I := ft—x|>h1—€ W (52) dF(t) = 0 by (20). Since W < 1 everywhere,

|
Cu(h) —=ps = /|t_$|<hle W (t ;x> dF(t) — po =

/|t . dF(t) — py = 0p(z, 1 79).
—x < —€

IN

For the lower bound, we continue to have Is := 0. Reducing the domain of integration we get

by (20)

Cy(h) — py Z/ W(t_x> dF(t)—px:(SF(x,(lfh)hl_s).
|t—z|<(1—h)h1—2 h

KAZAKH MATHEMATICAL JOURNAL, 25:4 (2025) 6-20



Recovering distribution functions ... 19

5 Conclusion

We provide new Fourier inversion theorems, with rates, that allow the recovery of a distri-
bution function, associated interval probabilities, and jumps from the characteristic function.
The results expand, improve and clarify conditions imposed in our earlier work [8]. The results
may prove useful in motivating deconvolution estimators for distribution functions, associated
interval probabilities and jumps in classical error-in-variable models when densities may not
exist.
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Membaes K. T., Maprunc-®uwimmio K. B. ®YPHE MHBEPCHS TEOPEMAJIAPGHI
APKBIJIBI TAPAJIY OYVHKIIUSIJIAPHI MEH OJIAPIBIH CEKIPICTEPIH »KOHE
MHTEPBAJIIBIK BIKTUMAJIIBIKTAPIBI KATITA KYPY: YJKUHAKTBITBIK YKBLTT-
JTAMJIBITBIHBIH, JKAHA BAFAJIAPBHI

Biz @ypobe Typiaenaipyinin xxaHa nHBEpCcHUs TeopeMasiapbii bepemis. Tapasty dyHKIUICH
MEeH OHBIH Y3iicTepi, apajblK BIKTUMAJIBIKTAp KAPACThIPHLIIAILl 2KoHEe KOHBEPTEHITNS YKbLI-
HaMIbIFel Oarasianagel. HoTtmkenep 6i31iH OYPBIHFBI KYMBICHIMBI3IA KOWBLIFAH MIAPTTaAPIbI
KeHeHTesIl, JKaKcapTa bl KoHe HaKThLIANWIbI. BIpIHITIAEH, peryIapu3ainaiayIirbl (OyHKITHBI
JYPBIC TaH/Iay apKbLIbl HHTEPBAJIILIK, BIKTUMAJIBIKTAPIBL 1A, CeKIpicTep/Ii e KAJIbIHA KeJl-
Tipy Ke3iHjie *KUHAKTAJIYIbIH, HEFYPJIBIM KOFaphl YKbLIJaMIBIKTapbIHA KOJI YKeTKizyre OoJia-
TBIHBIH KepceTeMi3. EKiHmmigen, yirectipiM QyHKIUACHIH YV3IIKCI3MIK HYKTeJIepiHae KA IblHa
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KeJITipyTe apHaJFaH MYJ/IIe YKaHa WHBEPCHST TeopeMachiH yehbiHaMbI3. COHbBIMEH KaTap, OYpPbIH
KOJIJAQHBLIFaH IIapTTAP/IbIH, KAMCHICHI IILIHBIMEH KAXKeTTI €KEHIIH HAKThLIAAMBI3. AJIbIHFaH
TeopeMaJiap affHbIMAJBLIAPIa KATETIKTEPl Oap Moaengepae, YAeCTipiM ThIFBI3ABIKTAPhl MYJI-
e bosiMaybl MYMKIH XKarmaiiapia, mapaMeTpiik emec barajaysiapibl Kypy VIIH ITailaajibi
6OJIybI MYMKIiH.

Tyiiin cesnep: cunarramaabik, GyaKius, Oypbe NHBEPCHST TEOPEMACHI, TapaJy (QyHK-
[USACHI, Tapaay (DYHKIUACHIHBIH, y3iaicTepi.

Mum6aes K. T., Maprunc-®uisio K. B. BOCCTAHOBJIEHUE OYHKIINN PACIIPE-
JEJEHNA 1 X CKAYKOB, A TAKYKE UHTEPBAJIbHBEIX BEPOATHOCTEI C I10-
MOIIBIO TEOPEM OBPAIIEHNA ®YPBE: HOBBIE OIEHKN CKOPOCTHN CXOIUN-
MOCTHU

Mpbr toka3biBaeM HOBBIE TeopeMmbl 00 obparrnenun mnpeobpazopanus Pypbe, ¢ OIEHKAMEI
CKOPOCTH CXOIUMOCTH, KOTOPBIE IO3BOJISIIOT BOCCTAHOBUTL (DYHKIIMIO PACIpPEIE/IEHUSA, COOT-
BETCTBYIOIINE NHTEPBAJILHBIE BEPOSTHOCTH U CKAYKH XapaKTepucTuieckoir pyukiun. Pe3yiib-
TaThl PACIIMPAIOT W YTOYHSAIOT YCJIOBHS, IOJIyIeHHbIE B Hallleil mpeablaymieit pabore. Bo-
IIEPBBIX, MBI IIOKA3bIBAEM, UTO 00Jiee BHICOKIE CKOPOCTU CXOIUMOCTH MOT'YT OBITH JOCTUTHYTHI
IIPY TIOJIXO/ISATIEM BBIOOpE perysspusyiomieit (pyHKINT KaK /I BOCCTAHOBJIECHUSI NHTEPBAJIb-
HBIX BEPOSITHOCTEH, TaK U /)i CKAYKOB. BO-BTOPBIX, MBI IIpe/lJIaraeM HOBYIO TeopeMy obpariie-
HUSA JjIsI BOCCTAHOBJIEHUsT (DYHKIIUN PACIPEIE/IEHNA B TOUYKAX HEIPEPBIBHOCTH. [I0mMyTHO MBI
MIPOsICHSIEM, KAKUE U3 yCJAOBUH, UCIIOJIb30BAHHBIX paHee, sABIII0TCA HeobxoaumbiMu. [loryden-
HBIE TEOPEMBI MOTYT OBITH IOJIE3HBI I TOCTPOEHUsT HEeIlapaMeTPUIECKIX OIEHOK B MOJIEISTX
¢ omuOKaMy B IEPEMEHHBIX, KOIJIa IJIOTHOCTU PACIPEIeIeHIs] MOTYT He CyIIECTBOBATD.

Kuarouessbie ciioBa: xapakrepucrudeckas QyHKIms, Teopema obpamenus Pypoe, HyHK-
IS pacupele/eHns, CKAIKH (DYHKIINKN PacpeIe/IeHHA.
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