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! In this article we define a class of estimators for a nonparametric regression model with the
aim of reducing bias. The estimators in the class are obtained via a simple two-stage procedure.
In the first stage, a potentially misspecified parametric model is estimated and in the second
stage the parametric estimate is used to guide the derivation of a final semiparametric estimator.
Mathematically, the proposed estimators can be thought as the minimization of a suitably
defined Cressie–Read discrepancy that can be shown to produce conventional nonparametric
estimators, such as the local polynomial estimator, as well as existing two-stage multiplicative
estimators, such as that proposed by Glad (1998). We show that under fairly mild conditions
the estimators in the proposed class are

√
nhn asymptotically normal and explore their finite

sample (simulation) behavior.
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1. INTRODUCTION

Nonparametric regression is a useful approach to tackle potential
model misspecification. Although a vast and growing literature on the
estimation of such models exists (Fan and Yao, 2003; Pagan and Ullah,
1999), much of the past literature has been devoted to the study of
kernel based estimators. Prominent among these are Nadaraya–Watson
(NW) and local linear (LL) estimators (Fan, 1992; Stone, 1977).
Construction of these estimators depends on a bandwidth sequence hn
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such that 0 < hn → 0 as the sample size n → ∞. It is well known in
the nonparametric literature that for fixed n, bandwidth size controls
the tradeoff between pointwise bias and variance, and it is normally not
possible to reduce bias without a simultaneous increase in variance or vice
versa. Numerous attempts to bypass this tradeoff have emerged in both the
nonparametric density and regression literatures, with particular interest in
estimation procedures that preserve the magnitude of the variance while
at the same time reducing pointwise bias. These attempts have included
bias reduction via higher order kernels (Gasser et al., 1985; Müller,
1984), the specification of regression models that are a combination
of parametric and nonparametric components (Fan and Ullah, 1999)
and also “boosting” traditional nonparametric estimators (DiMarzio and
Taylor, 2004). However, one of the most promising approaches, inspired
by developments in the nonparametric density estimation literature (Hjort
and Glad, 1995; Hjort and Jones, 1996; Jones et al., 1995; Naito, 2004),
has been the parametrically guided nonparametric estimation procedure
proposed by Glad (1998). Given !(yi , xi)"i=1,2,### a sequence of independent
and identically distributed pairs, with E(yi | xi) = m(xi), Glad considers the
identity

m(xi) ≡ m(xi ; $)rm(xi , $), (1)

where rm(xi , $) = m(xi )
m(xi ;$)

, m(xi ; $) for $ ∈ % ⊂ 'p is a potentially misspecified
parametric regression model. Since E

( yi
m(xi ;$)

| xi
)

= rm(xi , $), Glad proposes
an estimator m̂G(x) = m(x ; $̂)rm(x , $̂), where rm(x , $̂) is a nonparametric
fit based on a regressand yi

m(xi ;$̂)
with regressor xi and $̂ is a first stage

parametric estimator based on the parametric model E(yi | xi) = m(xi ; $).
The intuition behind the procedure is that if the first stage parametric
model is sufficiently “close” to m(xi), the multiplicative correction factor
rm(xi , $) will be easier to estimate nonparametrically leading to an
improved m̂G(x). In fact, Glad (1998) shows that when using a local
polynomial estimator for the nonparametric fit, m̂G(x) can have a smaller
bias than traditional local polynomial estimators while maintaining the
same variance.

The intuition supporting Glad’s procedure can be used to define
alternative parametrically guided estimators. Consider for example the
identity

m(xi) ≡ m(xi ; $) + ra(xi , $), (2)

where ra(xi , $) = m(xi) − m(xi ; $). Since E(yi − m(xi ; $) | xi) = ra(xi , $), an
estimator m̂A(x) = m(x ; $̂) + ra(x , $̂) can be defined where ra(x , $̂) is a
nonparametric fit based on a regressand yi − m(xi ; $̂) with regressor xi , and
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$̂ is a first stage parametric estimator based on the possibly misspecified
parametric model E(yi | xi) = m(xi ; $). Here, rather than a multiplicative
correction factor, rm(xi , $̂), as in Glad, the potentially improved estimator
is additively corrected (Rahman and Ullah, 2002).

The main contribution of this article is to show that Glad’s
multiplicatively corrected estimator m̂G(x), the additively corrected
estimator m̂A(x), as well as the traditional NW and LL estimators
belong to a vast class of parametrically indexed estimators. We show
that all estimators in this class are asymptotically normal after proper
normalization and that their asymptotic distributions differ only by their
location. In other words, the estimators in this class have identical variance
for their asymptotic distribution and differ only through the leading term
in their bias. Regarding the previous literature, our asymptotic normality
result is also useful in that known asymptotic normality results for NW
and LL estimators appear as special cases, and asymptotic normality of
the estimators proposed by Glad (1998) and Rahman and Ullah (2002) is
obtained for the first time.1

The key insight in understanding how these estimators can be
embedded in a single class is to realize that identities (1) and (2) are
special cases of

m(xi) ≡ m(xi ; $) + ru(xi , $)m(xi ; $)&, (3)

where ru(xi , $) = m(xi )−m(xi ;$)
m(xi ;$)&

and & ∈ '. Note that (1) is obtained from (3)
by taking & = 1, and (2) is obtained by taking & = 0. Since E( yi−m(xi ;$)

m(xi ;$)&
| xi) =

ru(xi , $), an estimator m̂(x , &) = m(x ; $̂) + ru(x , $̂)m(x ; $̂)& can be defined
where ru(x , $̂) is a nonparametric fit based on a regressand yi−m(xi ;$̂)

m(xi ;$̂)&
with

regressor xi , and $̂ is a first stage parametric estimator based on the
possibly misspecified parametric model E(yi | xi) = m(xi ; $).

To gain further insight into the nature of m̂(x , &), we observe that it
can be viewed either as: (1) the minimizer of a general loss function, or
(2) the minimizer of a Cressie–Read power divergence statistic, subject to a
suitably defined local moment condition. From the first point of view, our
approach is similar to that of Naito (2004) which proposes a general loss
function that embeds a number of parametrically guided nonparametric
density estimators. To motivate this perspective, we give two examples.

Example 1. The NW estimator is defined as m̂NW (x) ≡ argminc
1
n∑n

i=1

(
(yi c)( 1

−1 )
)2Khn (xi − x), where Khn (·) = 1

hn
K (·/hn). If an initial

1Glad (1998) established the order of the bias and variance for her estimator, but no result
on its asymptotic distribution.
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parametric regression estimator m(xi ; $̂) is available, a transposed
minimization can be defined in the residual space, i.e.,

min
c

1
n

n∑

i=1

((
yi − m(xi ; $̂) c − m(x ; $̂)

) (
1

−1

) )2

Khn (xi − x)#

It is simple to show that this optimand is minimized by m̂A(x), provided
that the ra(xi , $̂) is obtained via a NW estimator. Similarly, if e ′ = (1 0) and
b ′ = (b0 b1) we have that m̂A(x) = b̂0, where

b̂ ≡ argmin
b0,b1

1
n

n∑

i=1

((
yi − m(xi ; $̂) b0 + b1(xi − x) − m(x ; $̂)

) (
1

−1

) )2

× Khn (xi − x) (4)

provided that ra(xi , $̂) is obtained via a LL estimator. In essence, the
additively corrected estimator, m̂A(x), can be viewed as the minimizer of an
L2 distance in a suitably transposed space of residuals.

Example 2. In the previous example, once the parametric model is
chosen, minimization of the optimand in the transposed residual space
occurs without accounting for the shape (variability) of m(x ; $) locally.
Hence, we consider the minimizer of

argmin
c

1
n

n∑

i=1

(
(
yi − m(xi ; $̂) c − m(x ; $̂)

)
(

m(x ;$̂)
m(xi ;$̂)

−1

))2

Khn (xi − x), (5)

where m(x ;$̂)
m(xi ;$̂)

provides a measure of the local variability of m(x ; $̂). Again, it
is simple to show that the minimizer of this optimand is m̂G(x) provided
that rm(xi , $̂) is obtained via a NW estimator. Similarly, we have that
m̂G(x) = b̂0, where

b̂ ≡ argmin
b0,b1

1
n

n∑

i=1

(
(
yi − m(xi ; $̂) b0 + b1(xi − x) − m(x ; $̂))

(
m(x ;$̂)
m(xi ;$̂)

−1

))2

× Khn (xi − x), (6)

provided that rm(xi , $̂) is obtained via a LL estimator.
We focus on a LL estimator and generalize the loss functions in

Examples 1 and 2 by considering

Ln(b0, b1; x , &, $̂) = 1
n

n∑

i=1

(
(yi − m(xi ; $̂) m(x ; $̂) − b0 − b1(xi − x))

(
r̂ &i
1

) )2

× Khn (xi − x),
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where & ∈ ' and r̂i = m(x ;$̂)
m(xi ;$̂)

. Here, r̂i captures the variability of the
parametric function in the neighborhood of x and & determines how the
variation in r̂i contributes to the location of the residuals in the transposed
space. The estimator m̂(x , &) is given by e ′b̂, where e ′ = (1 0) and
b̂ ′ = (b̂0 b̂1) satisfies

b̂ ≡ argmin
b0,b1

Ln(b0, b1; x , &, $̂), for a given choice of & and $̂# (7)

To motivate m̂(x , &) from the second point of view, we define the
Cressie–Read discrepancy between two discrete distributions with common
support p = (p1, # # # , pn) and ' = ('1, # # # , 'n) as

I((p; ') = 1
((1 + ()

n∑

i=1

pi

((
pi
'i

)(

− 1
)
,

for a given choice of (.2 Let Ri(x) = (1 xi − x), Zi(x) = (yi − m(xi ; $))r &i +
m(x ; $), where ri = m(x ;$)

m(xi ;$)
, and suppose there exists a known function )

such that locally E()(Zi(x), b0, b1) | xi) = 0 for a unique (b0, b1). Following
Imbens et al. (1998), we seek

(b̃0, b̃1, '̃) ≡ arg min
b0,b1,'

I((1/n, # # # , 1/n; ')

subject to
n∑

i=1

)(Zi(x); b0, b1)'i = 0 and
n∑

i=1

'i = 1#
(8)

We choose ( → 0 and following Lewbel (2007) define ) = ()1,)2)′ as a
vector valued function in '2 with )1 = (Zi(x)− b0 − b1(xi − x))Khn (xi − x)
and )2 = (Zi(x) − b0 − b1(xi − x))(xi − x)Khn (xi − x). Then, the solution
for the above minimization is attained by

(b̃0, b̃1, '̃) ≡ argmax
b0,b1,'

n∑

i=1

ln('i) subject to
n∑

i=1

'i = 1

n∑

i=1

'i(Zi(x) − b0 − b1(xi − x))Khn (xi − x) = 0, and (9)

n∑

i=1

'i(Zi(x) − b0 − b1(xi − x))(xi − x)Khn (xi − x) = 0#

2See Cressie and Read (1984) and Read and Cressie (1988).
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By the Kuhn–Tucker Theorem, if R ′(x)K'(x)R(x) is nonsingular, then
we have

b̃0 = e ′(R ′(x)K (x)R(x))−1R ′(x)K (x)Z (x) and '̃i = 1/n for all i ,

with R ′(x) =
(

1 1 ··· 1
(x1−x) (x2−x) ··· (xn−x)

)
, K (x) = diag!Khn (xi − x)"ni=1, K'(x) =

diag!'iKhn (xi − x)"ni=1, and Z (x) an n-dimensional vector with ith element
given by Zi(x).3 Since Zi(x) depends on the unknown $, a feasible version
of the estimator is

b̂0 = e ′(R ′(x)K (x)R(x))−1R ′(x)K (x)Ẑ (x),

where Ẑi = (yi − m(xi ; $̂))r̂ &i + m(x ; $̂). It is straightforward to verify that
b̂0 = m̂(x , &).

Regardless of how our estimator is motivated, intuitively we start
with a regressand yi and create a smoother modification of it, namely,
Ẑi . This modification itself helps in the reduction of bias because we
deal with a potentially smoother version of yi . It can be easily seen
that when m(xi ; $̂) = c then Ẑi = yi , giving us an optimand that produces
the traditional local linear estimator. When & = 1, Ẑi = m(x ; $̂) yi

m(xi ;$̂)
which gives us an optimand that produces Glad’s estimator. Also, when
& = 0, Ẑi = (yi − m(xi ; $̂)) + m(x ; $̂) giving an optimand that produces the
additively corrected estimator of Rahman and Ullah (2002).

We establish the asymptotic distribution of the proposed estimators in
a two-step procedure. First, since we are dealing with a LL type estimator
where Zi replaces yi , it is convenient to develop the asymptotic results with
a nonstochastic m(xi ; $0), where $0 is interpreted as a quasi true parameter
value. The infeasible estimator based on the quasi true value $0 is then
shown to be asymptotically normal under suitable normalization. Second,
we show the asymptotic equivalence of the infeasible estimator and its
feasible counterpart, where the quasi true parameter $0 is estimated by
pseudo maximum likelihood estimation (PMLE).

The structure of the article is as follows. This introduction is followed
by the specification of the new class of estimators in Section 2. In Section 3
we provide results on the asymptotic behavior of the estimator in the class,
and in Section 4 we provide a set of simulation results that shed light
on the finite sample behavior of the estimator. The last section is a brief
conclusion.

3If ) is such that E()(Zi(x), b0) | xi) = 0 for a unique b0, with ) = (Zi(x) − b0)Khn (xi − x), then
the maximization in (9) gives '̃i = 1/n and b̃0 = (

∑n
i=1 Khn (xi − x))−1 ∑n

i=1 Khn (xi − x)Zi(x) provided
that

∑n
i=1 Khn (xi − x)'̃i += 0.



548 C. Martins-Filho et al.

2. THE CLASS OF ESTIMATORS

We consider a sequence !(yi , xi)"ni=1 of independent two-dimensional
random vectors with a common density, where yi represents a regressand
and xi represents a regressor. We are primarily interested in the estimation
of a regression model given by

yi = m(xi) + *i , where i = 1, # # # ,n, (10)

E(*i | xi) = 0 and V (*i | xi) = +2(xi) < ∞ for all xi . The primary interest
is on the estimation of the nonparametric regression function m(·), and
to this end we propose a class of semiparametric regression estimators
based on a two step estimation procedure. First, a parametric regression
function m(xi ; $) is stipulated and estimated via a parametric procedure
that produces an estimator m(xi ; $̂). The function m(x ; $̂) is assumed to
belong to a class M of parametric functions that satisfies some smoothness
conditions specified below, but is otherwise unrestricted. In the second
step, the initial parametric estimate m(xi ; $̂) is used to define the following
optimand

Ln(b0, b1; x , &, $̂) = 1
n

n∑

i=1

(
(ei m(x ; $̂) − b0 − b1(xi − x))

(
r̂ &i
1

) )2

Khn (xi − x),

(11)

where & ∈ ', r̂i = m(x ;$̂)
m(xi ;$̂)

, ei = yi − m(xi ; $̂) and hn is a nonstochastic
bandwidth such that 0 < hn → 0 as n → ∞. The class of semiparametric
estimator we propose is given by m̂(x , &) = e ′b̂, where e ′ = (1 0) and
b̂ ′ = (b̂0 b̂1) satisfies

b̂ = argmin
b0,b1

Ln(b0, b1; x , &, $̂), for a given choice of & and $̂# (12)

We emphasize that the class of estimators F ≡ !m̂(x , &) : & ∈ ' and
m(x ; $̂) ∈ M " depends on &, the stipulated parametric function m(x ; $),
and also the estimator $̂. Some well-known non-parametric estimators
belong to the class F . For example, if & = 0 and m(x ; $̂) is a parametric
function of x belonging to some specified class M we have an additively
corrected estimator; if m(x ; $̂) = c for all x , b̂0 is the local linear estimator
of Stone (1977) and Fan (1992);4 and if & = 1 and m(x ; $̂) is a parametric
function of x belonging to some specified class M , we obtain the estimator
proposed by Glad (1998).

4Mutatis mutandis local polynomial estimators of order p ≥ 2 can also be obtained from the
optimization in (12).
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Using standard calculus and the algebra of local polynomial estimators
(Ruppert and Wand, 1994) we obtain the following simple expression for
the estimators in F

m̂(x , &) = e ′(R ′)−1R ′(x)K (x)Ẑ (x), (13)

where R ′(x) =
(

1 1 ··· 1
(x1−x) (x2−x) ··· (xn−x)

)
, K (x) = diag!Khn (xi − x)"ni=1 and

Ẑi(x) = m(x ; $̂) + (yi − m(xi ; $̂))r̂ &i is the ith element of the vector Ẑ (x).
The expression is convenient in that it has the usual structure of local
linear estimators with the exception of a modified regressand given
by Ẑ (x). Hence, arguments typically used to establish the asymptotic
properties of such estimators (Fan and Yao, 1998; Martins-Filho and
Yao, 2007) can be used in the study of the asymptotic properties of
m̂(x , &). In what follows, it will be convenient to first consider the
properties of an infeasible version of the estimators we propose, which is
constructed by using a nonrandom parametric regression function m(x ; $)
rather than m(x , $̂). We label such estimator m̃(x , &) and first obtain the
asymptotic properties of m̃(x , &). We then provide sufficient conditions
for the asymptotic equivalence of m̃(x , &) and m̂(x , &) under a suitable
normalization.

3. ASYMPTOTIC PROPERTIES

3.1. The Estimator m̃(x,!)

First, we give sufficient conditions for the
√
nhn asymptotic normality of

m̃(x , &) and second we establish that
√
nhn(m̂(x , &) − m̃(x , &)) = op(1) for

all x and &. Throughout our developments, as well as in the statement
of the regression model under consideration in (1), we have assumed
for simplicity that there is only one regressor, i.e., xi ∈ '. It should be
transparent from the proofs below, that all results follow for the case
where xi ∈ 'D , D a finite positive integer, with appropriate adjustments
on the relative speed of n and hD

n . We start by providing a list of general
assumptions and notation that will be selectively adopted in the lemma
and theorems that follow. Throughout, C will represent a nonstochastic
constant that may take different values in ', and the sequence of
bandwidths hn is such that, nh2

n → ∞ as n → ∞.

Assumption A1. 1. Let gX (x) be the common marginal density of xi
evaluated at x and assume that gX (x) < C for all x ; 2. g (d)

X (x) is the d th
order derivative of gX (x) evaluated at x and we assume that |g (1)

X (x)|<C for
all x ; 3. |gX (x) − gX (x ′)| ≤ C |x − x ′| for all x , x ′; 4. We denote the common
joint density of (xi , *i) evaluated at (x , *) by g (x , *), the density of xi
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conditional on *i evaluated at x by gxi | *i (x), and assume that gxi | *i (x) < C
for all x .

Assumption A2. 1. K (x) : '→' is a symmetric bounded function
with compact support SK such that 1.

∫
|x |K (x)dx < ∞; 2.

∫
K (x)dx = 1;

3.
∫
xK (x)dx = 0; 4.

∫
x2K (x)dx = +2

K ; 5. For all x , x ′ ∈ SK we have |K (x) −
K (x ′)|≤ C |x − x ′|; 6.

∫
K 2+$(x)dx < ∞ for some $ > 0.

Assumption A3. 1. |m(d)(x)|< C for all x and d = 1, 2, where m(d)(x) is
the d th order derivative of m(x) evaluated at x .

Assumption A4. The parametric regression function m(x ; $) belongs
to a class of parametrically indexed class M defined by the following
characteristics: 1. $ ∈ %, % a compact subset of 'q ; 2. |m(d)(x ; $)|< C for
all x , $ ∈ % and d = 1, 2, where m(d)(x ; $) is the d th order partial derivative
of m(x ; $) with respect to its first argument evaluated at $ and x ; 3. For
all x ∈ G an arbitrary compact subset of ', and $ ∈ % there exist constants
0 < CL ≤ CH < ∞ such that CL < |m(x ; $)|< CH ; 4. | dm(x ;$)

d$ |< C for all $ and
x ∈ G , G a compact subset of '.

In what follows it will be convenient to write, m̃(x , &) − m(x) = 1
nhn∑n

i=1 Wn
( xi−x

hn
, x

)
Z̃ ∗
i where Z̃ ∗

i = Z̃i(x) − m(x) − m(1)(x)(xi − x), Wn
( xi−x

hn
,

x
)

= e ′S−1
n (x)

(
1 xi−x

hn

)′K
( xi−x

hn

)
with

Sn(x) = 1
nhn

( ∑n
i=1 K

( xi−x
hn

) ∑n
i=1 K

( xi−x
hn

)( xi−x
hn

)

∑n
i=1 K

( xi−x
hn

)( xi−x
hn

) ∑n
i=1 K

( xi−x
hn

)( xi−x
hn

)2

)

≡
(
sn,0(x) sn,1(x)
sn,1(x) sn,2(x)

)

,

and Z̃i(x) = m(x ; $) + (yi − m(xi , $))r &i with ri = m(x ;$)
m(xi ,$)

is the ith component
element of the vector Z̃ (x). The following lemma is a special case
of Theorem 1 in Martins-Filho and Yao (2007) for independent and
identically distributed (IID) data. We provide a proof of Lemma 1 in the
appendix to facilitate reading and understanding of our arguments as the
proof for the non-IID case is substantially longer and more involved.

Lemma 1. Assume A1, A2, A3, and let G be a compact subset of '. If sn,j(x) =
1

nhn

∑n
i=1 K

( xi−x
hn

)( xi−x
hn

)j for j = 0, 1, 2 we have:

(a) If nh3
n → ∞, then supx∈G |sn,j(x) − E(sn,j(x))| =Op

(( ln(n)
nhn

)1/2);
(b) If nh3n

ln(n)
→ ∞, then supx∈G

1
hn

|sn,j(x) − E(sn,j(x))| = op(1);
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(c) If nh3n
ln(n)

→ ∞, then m̃(x , &) − m(x) = 1
nhngX (x)

∑n
i=1 K

( xi−x
hn

)
Z̃ ∗
i + Op

(Rn(x)), where

Rn(x) =
∣∣∣∣
1
n

n∑

i=1

K
(
xi − x
hn

)
Z̃ ∗
i

∣∣∣∣ +
∣∣∣∣
1
n

n∑

i=1

K
(
xi − x
hn

)(
xi − x
hn

)
Z̃ ∗
i

∣∣∣∣

with Z̃ ∗
i = Z̃i − m(x) − m(1)(x)(xi − x).

In the following theorem we establish the order in probability of the
difference between m̃(x , &) − m(x) and 1

nhngX (x)

∑n
i=1 K

( xi−x
hn

)
Z̃ ∗
i uniformly

in G . This result permits, under suitable normalization, the investigation
of the asymptotic properties of m̃(x , &) − m(x) by restricting attention to

1
nhngX (x)

∑n
i=1 K

( xi−x
hn

)
Z̃ ∗
i .

Theorem 1. Assume A1, A2, A3, and A4. In addition assume that nh3n
ln(n)

→ ∞,
then for all x ∈ G, G a compact subset of ' we have,

sup
x∈G

∣∣∣∣m̃(x , &) − m(x) − 1
nhngX (x)

n∑

i=1

K
(
xi − x
hn

)
Z̃ ∗
i

∣∣∣∣

= Op

((
hn ln(n)

n

)1/2)
+ Op(h3

n)#

The next theorem establishes the asymptotic normality of m̃(x , &) −
m(x) under suitable normalization.

Theorem 2. Assume A1, A2, A3, and A4. In addition assume that
E(|*i |2+,|xi) < C for some , > 0, nh3n

ln(n)
→ ∞ and h2

n ln(n) → 0, then we have
for all x ∈ G a compact subset of '

√
nhn(m̃(x , &) − m(x) − B(x ; &, $)) d→ N

(
0,

+2(x)
gX (x)

∫
K 2(-)d-

)
,

where B(x ; &, $) = 1
2h

2
n+

2
KBc(x ; &, $) + op(h2

n) and

Bc(x ; &, $) = .(2)(x) − B(2)(x) = m(2)(x) − (1 − &)m(2)(x ; $)

− &

(
2m(1)(x)m(1)(x ; $) + m(x)m(2)(x ; $)

m(x ; $)

)

+ &(& + 1)m(x)(m(1)(x ; $))2

m(x ; $)2
− &(& − 1)(m(1)(x ; $))2

m(x ; $)
#

It is easy to verify that the asymptotic bias for the local linear estimator
of Stone (1977) can be obtained directly from our Theorem 1 by setting
& = 0 and m(x ; $) = c . Furthermore, the results in Theorem 1 in Glad



552 C. Martins-Filho et al.

(1998, p. 653) can also be obtained directly from our Theorem 1 by
setting & = 1 with m(x ; $) ∈ M . Theorem 1 also reveals that the variance
of the asymptotic distribution of the estimators in the class we propose
do not depend on m(x ; $) or &. As such, their variance is equivalent to
that of a one step estimator of m(x) such as the local linear estimator of
Stone (1977) or the two step estimator of Glad (1998). Asymptotically, the
difference among the estimators in the class lies primarily on the bias term
B(x ; &, $), which clearly depends on & and m(x ; $), which ideally would
be chosen simultaneously to minimize bias. However, it is instructive to
consider their impact on bias separately.

The impact of m(x ; $) : It is convenient to write Bc(x ; &, $) as

Bc(x ; &, $) = m(2)(x) − m(2)(x ; $)(1 + &(1 − /0(x ; $)))

+ a(x ; $)(&(1 + /0(x ; $)) − &2((1 − /0(x ; $)) − 2&/1(x ; $)),

where /0(x ; $) = m(x)
m(x ;$) , /1(x ; $) = m(1)(x)

m(1)(x ;$) , and a(x ; $) = (m(1)(x ;$))2

m(x ;$) . We now
make the following observations regarding the impact of m(x ; $) choice
on the bias: (a) if the parametric guide m(x ; $) has kth order derivatives
(k = 0, 1, 2) evaluated at x that are equal to those of m(x), implying
that /0(x ; $) = /1(x ; $) = 1, then Bc(x ; &, $) = 0. In this case, m̃(x , &) has a
leading bias term that is strictly smaller in absolute value than that of the
LL (or NW) estimator for all &. Hence, in this case the choice of & has
no impact on Bc(x ; &, $); (b) if m(x ; $) and m(1)(x ; $) are “close” to m(x)
and m(1)(x), in that /0(x ; $) = 1 + 0, and /1(x ; $) = 1 + 0

2 for 0 ∈ B(0; ,)
a small neighborhood −, of zero, then Bc(x ; &, $) / m(2)(x) − m(2)(x ; $).
Given that m(2)(x ; $) += 0, sufficient conditions for bias reduction of m̃(x , &)
relative to the LL estimator are given by: (i) m(2)(x) and m(2)(x ; $) have the
same sign; (ii) |m(2)(x)|> |m(2)(x ; $)|. As in (a), Bc(x ; &, $) does not depend
on &; (c) if m(x ; $) and m(1)(x ; $) are not “close” to m(x) and m(1)(x)
in the manner described in (b), then & plays a crucial role in obtaining
bias reduction. This observation stresses the importance of considering
the broader class of estimators we propose, since bias reduction can
be attained (or improved) relative to the estimators currently available.
We illustrate this point with two simple examples.

Example 1. Suppose m(x) = 1 + x + 3x2, m(x ; $) = x$ and assume
that xi ∼ U [0#6, 1] and independent, and yi | xi = x ∼ N (m(x), 1)
for i = 1, 2, # # # ,n. We consider the estimation of m(x) guided by m(x ; $)
with & = 2 and compare it to & = 0 (additively corrected and LL
estimators), and & = 1 (Glad’s estimator).5 The gains of considering & = 2
are significant as

∫ 1
0#6(Bc (x ;1,$0))

2dx
∫ 1
0#6(Bc (x ;2,$0))

2dx
= 4#4, which measures the gains relative

5Since the parametric guide is linear, the LL and additively corrected estimators coincide.
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to the Glad estimator, and
∫ 1
0#6(Bc (x ;0,$0))

2dx
∫ 1
0#6(Bc (x ;2,$0))

2dx
= 13#2 which measures the gains

relative to the additively corrected and LL estimators.6 In this example,
Glad’s estimator has smaller bias than the LL estimator, but by considering
other estimators in our proposed class, bias can be significantly reduced.

Example 2. Suppose m(x) = (1 + x)e0#4x , m(x ; $) = x$ and assume that
xi ∼ U [0#4, 1] and independent, and yi | xi = x ∼ N (m(x), 1) for i = 1,
2, # # # ,n. We consider the estimation of m(x) guided by m(x ; $) with
& = −0#25 and compare it to & = 0 (additively corrected and LL
estimators), and & = 1 (Glad’s estimator). Here,

∫ 1
0#4(Bc (x ;0,$0))

2dx
∫ 1
0#4(Bc (x ;−0#25,$0))2dx

= 2#71,

and
∫ 1
0#4(Bc (x ;1,$0))

2dx
∫ 1
0#4(Bc (x ;−0#25,$0))2dx

= 44#4. In this example, Glad’s estimator does not
reduce bias relative to the LL or additively corrected estimators, however,
once again by considering our broader class of estimators, we are able to
reduce bias significantly relative to the LL estimator.

The impact of & : Since the bias of the estimators in the class
we consider generally depend on &, a natural question that arises is
whether or not an optimal estimator can be defined (or chosen) based
on & for given m(x ; $) and bandwidth hn . A commonly used criteria for
estimator selection is mean integrated square error (MISE), hence we
define MISE(&) = E(

∫
(m̃(x , &) − m(x , &))2dx) for a specified parametric

guide m(x ; $). Given that the asymptotic variance of m̃(x , &) is not a
function of &, minimization of MISE(&) is equivalent to minimization of

∫
B2
c (x ; &, $)dx # (14)

Ignoring the terms in Bc(x ; &, $) with order smaller than h2
n , we obtain after

some standard algebra the following equation that must be solved to obtain
the value of & that minimizes (14),

A(x ; $)&3 + B(x ; $)&2 + C(x ; $)& + D(x ; $) = 0, (15)

where

A(x ; $) = 4
∫

Q1(x ; $)2dx , B(x ; $) = 2
∫

Q1(x ; $)Q3(x ; $)dx ,

C(x ; $) =
∫
(4Q2(x ; $)Q1(x ; $) + 2Q3(x ; $)2)dx ,

D(x ; $) = 2
∫

Q2(x ; $)Q3(x ; $)dx ,

6Here $0 is calculated by minimizing the Kullback–Leibler discrepancy or maximizing the
likelihood function. For & = 1, 0 the bias term doesn’t involve $0.
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with

Q1(x ; $) =
(

m(x)
m(x ; $)2

− 1
m(x ; $)

)
(m(1)(x ; $))2,

Q2(x ; $) = m(2)(x) − m(2)(x ; $) and

Q3(x ; $) = m(2)(x ; $) − 2
m(x ; $)

m(1)(x)m(1)(x ; $) + 1
m(x ; $)

(
m(1)(x ; $)

)2

+ m(x)
m(x ; $)2

(
m(1)(x ; $)

)2 − m(x)
m(x ; $)2

m(2)(x ; $)#

First, we observe that as a polynomial of order 3 in &, Eq. (15) may
have multiple roots depending on A(x ; $), B(x ; $), C(x ; $), and D(x ; $).
Second, these terms involve integrals of functions of m(x), m(x ; $) as
well as their first and second derivatives, all of which are in practice
unknown. Hence, to render Eq. (15) operational, the unknown functions,
m(x), m(1)(x), m(2)(x), m(x ; $), m(1)(x ; $), and m(2)(x ; $) must be replaced
by suitable estimates. Given the first step parametric estimators, it is
straightforward to obtain m(x ; $̂), m(1)(x ; $̂), and m(2)(x ; $̂). The remaining
unknown functions, m(x), m(1)(x), and m(2)(x), can be estimated by a
traditional local polynomial estimator of order 3. Solving an estimated
version of Eq. (15) produces a data-driven, and consequently stochastic,
& that gives the researcher a sample driven guidance to the choice of &,
or equivalently, the preferred loss function. The difficulty here is that a
data-driven stochastic & redefines the structure of our proposed estimator
rendering potentially invalid the asymptotic results of Theorem 1.

The difficulties outlined in the previous paragraph are similar to
those faced by Naito (2004) in the context of density estimation and
are conceptually no different from those involved in the choice of hn ,
the bandwidth (Ruppert et al., 1995). In general, the expression for an
optimal bandwidth that minimize MISE depends on the unknown second
derivative of m(x) and the gX (x), which need to be estimated based on
the available data. The resulting data driven bandwidth based on such
estimates is stochastic and the derived asymptotic properties of estimators
based on such bandwidths are not generally available.

3.2. The Estimator m̂(x,!)

We now consider the case where the parametric guide results from a
first stage estimation procedure, i.e., we have m(x ; $̂). Theorem 2 shows
that under fairly mild conditions there is no impact on the asymptotic
distribution obtained in Theorem 1 when we consider a stochastic
parametric guide m(x ; $̂). Clearly, the parametric guide used in the first
step of the estimation is almost surely an incorrect specification for the
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regression model. Hence, we assume that the first stage estimator is a
pseudo maximum likelihood estimator and that $0 is the pseudoparameter
value that minimizes the Kullback–Liebler distance between the assumed
parametric joint density of (yi , xi) and its true joint density. Hence, if
h(y, x ; $) = gX (x)h$(y | x) is the assumed parametric joint density of (yi , xi)
and h(y, x) = gX (x)h(y | x) is the true joint density,

$0 ≡ argmin
$∈%

E
(
ln

(
h(y | x)
h$(y | x)

))
≡ argmin

$∈%

∫ ∫
ln

(
h(y | x)
h$(y | x)

)
h(y, x)dy dx #

We now make the following additional assumption that assures that
the pseudomaximum likelihood estimator $̂ satisfies

√
n($̂ − $0) = Op(1)

(White, 1982).

Assumption A5 . 1. E(ln(h(y, x))) exists and |ln(h(y, x ; $))| ≤ 1(y, x)
for all $ ∈ %, where E(1(y, x)) exists and E

(
ln

( h(y | x)
h$(y | x)

))
has a unique

minimum at $0; 2.
2ln(h(y,x ;$))

2$i
for i = 1, # # # , q are continuously differentiable

functions of $; 3.
∣∣ 22ln(h(y,x ;$))

2$i2$j

∣∣ ≤m1(y, x) and
∣∣ 2ln(h(y,x ;$))

2$i

2ln(h(y,x ;$))
2$j

∣∣ ≤m2(y, x)
for all $ ∈ %, i , j = 1, # # # , q where E(m1(y, x)),E(m2(y, x)) exist; 4. $0 is
in the interior of %, n−1 ∑n

t=1
2ln(h(yt ,xt ;$0))

2$i

2ln(h(yt ,xt ;$0))
2$j

is nonsingular and

n−1 ∑n
t=1

22ln(h(yt ,xt ;$0))
2$i2$j

has constant rank in a neighborhood of $0.

Theorem 2 below is the main result of the article. It establishes that
under A5 there is no asymptotic loss in estimating $0. As such, under
suitable normalization, the infeasible and the feasible versions of the
estimators in the class we propose are asymptotically equivalent.

Theorem 3. Assume A1, A2, A3, A4, and A5. In addition assume that
E(|*i |2+,|xi) < C for some , > 0, nh3n

ln(n) → ∞ and h2
n ln(n) → 0, then for all

x ∈ G a compact subset of ', we have

√
nhn(m̂(x , &) − m(x) − B(x ; &, $0))

d→ N
(
0,

+2(x)
gX (x)

∫
K 2(-)d-

)
,

where B(x ; &, $0) = 1
2h

2
n+

2
KBc(x ; &, $0) + op(h2

n).

It is worth mentioning that relative to traditional nonparametric
regression estimators, such as NW and LL estimators, m̂(x , &) is more
expensive from a computational perspective, given the need to obtain a
first stage parametric guide m(x ; $̂). When the parametric guide is linear
in $, the additional computational cost is negligible, but the cost can
increase rapidly for nonlinear parametric guides.
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Given the asymptotic equivalence of m̃(x , &) and m̂(x , &), all comments
made following Theorem 1 regarding the impact of m(x ; $) and & on the
magnitude of the bias term apply to m̂(x , &). In particular, since in practice
it is not possible to evaluate the distance between m(x ; $) and m(x),
bias reduction could be attained by exploring different estimators in our
proposed class through a suitable choice of &. As illustrated in Examples 1
and 2 following Theorem 1, linear parametric guides in combination
with a suitable choice of & can be effective in producing significant bias
reduction. It is important to recognize that this improvement is only
possible by considering a class of estimators indexed by &, and may not
result if attention is limited to Glad’s estimator or the additively corrected
estimator of Rahman and Ullah (2002) (see Examples 1 and 2). Hence, as
a practical guide for implementation of m̂(x , &), we suggest that a linear
parametric guide be chosen followed by the algorithm we propose on
p. 552 to select &.

4. SIMULATION

In this section we provide some experimental evidence on the
finite sample behavior of our proposed estimator. We also compare its
performance to that of the estimator proposed by Glad (1998), and
the local linear estimator of Stone (1977) and Fan (1992). We consider
the same two DGPs studied by Glad. The DGPs and parametric guides
considered are given in Table 1.

!xi , *i" are identically and independently distributed with xi drawn
from a uniform distribution and *i drawn from a normal distribution
with 0 mean and standard deviation given in Table 1. The sample size
considered are n = !50, 100, 200, 400" and the number of replications
M = 500. We consider 51 values of the parameter & varying from −5 to 5
with steps of size 0#1.7 An optimal bandwidth that minimizes the mean
integrated square error (MISE) is used in the simulation. Given the local

TABLE 1 DGPs and guides

m(x) DGP1 = 2 + sin 2'x DGP2 = 2 + x − 2x2 + 3x5

TrueDGP + 0.50 0.70
Parametric guides m(x ; $̂) P 1

1 = $̂0 + $̂1 sin 2'x P 2
1 = $̂0 + $̂1x + $̂2x2 + $̂3x5

P 1
2 = $̂0 + $̂1x P 2

2 = $̂0 + $̂1x
P 1
3 = $̂0 + $̂1x + $̂2x2 + $̂3x3 P 2

3 = $̂0 + $̂1x + $̂2e x

7The choice of & is guided by the intention of including both positive and negative values
of &, as well as taking into account the special cases where & = 0 and & = 1 that correspond to the
additively corrected estimator and that of Glad (1998).
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linear structure of our estimator it is straightforward to obtain the
optimal bandwidth that minimizes the asymptotic approximation for mean
integrated squared error (Ruppert et al., 1995). It is given by

ĥn = argmin
hn

1
4
+2
K h

4
n

∫
Bc(x ; &, $)2dx + 1

nhn

∫
K 2(-)d-

∫
+2(x)
gX (x)

dx ,

where ĥn = n−1/5
( ∫

+2(x)gX (x)−1dx
∫
K (-)2d-

+4K
∫
Bc (x ;&,$)2dx

)1/5. In our simulations, the unknown
components of the optimal bandwidth expression—m(x), m(1)(x),
m(2)(x)—are known, but in practice they must be estimated.8 It is
important to note that here the optimal bandwidth is a function of &.
In all cases, we use the standard Gaussian kernel.

Tables 2 and 3 provide the simulation results for DGP1 and DGP2,
respectively. In Table 2 the true DGP is given as 2 + sin 2'x , P 1

1 = $̂0 +
$̂1 sin 2'x , P 1

2 = $̂0 + $̂1x , P 1
3 = $̂0 + $̂1x + $̂2x2 + $̂3x3 and the standard

deviation of the error is 0#50. The rows associated with Glad, Add, and
LL represent the results corresponding to the multiplicative corrected
estimator of Glad, the additively corrected estimator, and the local linear
estimator. The row best is associated with the value of & that produces
the estimator in the class with smallest MSE, given the chosen parametric

TABLE 2 Bias (B), Variance (V), Mean Square Error (MSE), and Eff for DGP1

P 1
1 P 1

2 P 1
3Guide

Model n B2 V MSE Eff B2 V MSE Eff B2 Var MSE Eff

Best 50 0#61 327#23 327#84 1#00 0#64 328#23 328#27 1#00 2#16 329#23 331#39 1#00
100 0#44 168#44 168#88 1#00 0#50 170#44 170#95 1#00 0#45 168#44 168#89 1#00
200 0#31 85#25 85#56 1#00 0#31 85#65 85#97 1#00 0#31 85#25 85#57 1#00
400 0#03 39#32 39#35 1#00 0#04 38#32 38#36 1#00 0#03 39#32 39#35 1#00

Glad 50 5#96 337#23 343#88 0#95 51#70 337#23 388#93 0#84 5#95 337#23 343#18 0#96
100 4#37 169#44 173#20 0#97 42#63 169#44 212#07 0#80 4#40 169#44 173#84 0#97
200 2#71 86#05 88#75 0#96 26#36 86#05 112#42 0#76 2#72 86#05 88#79 0#96
400 1#27 40#32 41#59 0#95 12#98 40#32 53#30 0#71 1#29 40#32 41#51 0#95

Add 50 2#14 338#00 340#42 0#96 59#51 397#23 456#74 0#72 1#69 337#25 338#94 0#97
100 1#16 171#44 172#10 0#97 44#02 198#44 242#46 0#70 1#15 171#44 172#59 0#97
200 0#61 90#25 90#86 0#94 27#22 88#25 115#47 0#74 0#61 91#25 91#86 0#93
400 0#46 43#32 43#78 0#90 12#95 45#32 58#27 0#65 0#46 47#33 47#79 0#82

LL 50 59#51 397#23 456#74 0#71 59#51 397#23 456#74 0#72 59#51 397#23 456#74 0#72
100 44#02 198#44 242#46 0#69 44#02 198#44 242#46 0#70 44#02 198#44 242#46 0#69
200 27#22 88#25 115#47 0#74 27#22 88#25 115#47 0#74 27#22 88#25 115#47 0#74
400 12#95 45#32 58#27 0#67 12#95 45#32 58#27 0#65 12#95 45#32 58#27 0#67

Note: All entries for bias squared, variance, and mean square error are multiplied by 104.

8Suitable estimators are given in the comments following Theorem 2.
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TABLE 3 Bias (B), Variance (V), Mean Square Error (MSE) And Eff for DGP2

P 2
1 P 2

2 P 2
3Guide

Model n B2 V MSE Eff B2 V MSE Eff B2 V MSE Eff

Best 50 0#91 602#13 603#04 1#00 0#92 608#82 609#74 1#00 1#01 606#16 607#18 1#00
100 0#84 298#73 299#57 1#00 0#85 303#43 304#28 1#00 0#80 305#63 306#43 1#00
200 0#38 152#51 152#90 1#00 0#39 157#38 157#77 1#00 0#39 152#65 153#05 1#00
400 0#08 76#99 77#08 1#00 0#08 83#84 83#93 1#00 0#08 80#54 80#62 1#00

Glad 50 3#05 606#21 609#26 0#99 33#87 609#53 643#40 0#94 3#96 607#97 611#93 0#99
100 2#71 299#39 302#10 0#98 28#48 306#56 335#04 0#90 2#92 308#64 311#56 0#98
200 1#32 153#64 154#96 0#98 15#25 160#02 175#27 0#90 1#59 152#54 154#13 0#99
400 0#43 85#43 85#86 0#90 8#43 85#77 94#20 0#89 0#88 80#39 81#27 0#98

Add 50 3#23 608#44 611#67 0#98 36#64 611#02 647#67 0#94 3#02 607#20 610#22 0#99
100 2#61 303#10 305#71 0#98 29#32 307#77 337#09 0#90 2#53 310#76 313#29 0#97
200 1#40 161#41 162#81 0#93 15#98 154#10 170#08 0#92 0#89 159#86 160#75 0#95
400 0#70 77#53 78#23 0#98 8#82 83#78 92#61 0#90 0#33 88#18 88#51 0#90

LL 50 36#64 611#02 647#67 0#93 36#64 611#02 647#67 0#94 36#64 611#02 647#67 0#93
100 29#32 307#77 337#09 0#88 29#32 307#77 337#09 0#90 29#32 307#77 337#09 0#90
200 15#98 154#10 170#08 0#89 15#98 154#10 170#08 0#92 15#98 154#10 170#08 0#91
400 8#82 83#78 92#61 0#83 8#82 83#78 92#61 0#90 8#82 83#78 92#61 0#92

Note: All entries for bias squared, variance and mean square error are multiplied by 104.

guide. We define Effj = MSEbest

MSE j ≤ 1, and consequently desirable estimators
must have high Eff.

In Table 3 the true DGP is given as 2 + x − 2x2 + 3x5, P 2
1 = $̂0 + $̂1x +

$̂2x2 + $̂3x5, P 2
2 = $̂0 + $̂1x , P 2

3 = $̂0 + $̂1x + $̂2e x . The standard deviation of
the error is 0#70. All other entries in Table 3 correspond to those in
Table 2.

To evaluate the performance of our class of estimators, we estimate the
model using all 51 values of & and report the results for that & which yields
the lowest sample MISE.9 We use r and j to denote the index of replication
and parametric guide, respectively. Let

Bj
i = 1

M

M∑

r=1

3m̂r
j (xi , &, $̂) − m(xi)4,

S j
i = 1

M

M∑

r=1

[
m̂j(xi , &, $̂) − 1

M

M∑

r=1

m̂r
j (xi , &, $̂)

]2

,

Bj = [Bj
1, # # # ,Bj

n]′, and S j = [S j
1, # # # , S j

n]′, where m̂r
j (xi , &, $̂) is estimated

conditional mean for the r th replication and the j th parametric
guide. m(xi) is the true nonparametric function. Let B2j = n−1 ∑n

i=1(B
j
i )

2,
V j = n−1 ∑n

i=1 S
j
i , and MSEj

i = (Bj
i )

2 + S j
i be the squared bias, variance and

9As we do not prove the strict convexity of MISE with respect to & there may be several &
that minimize MISE.
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mean square error of estimates, respectively. Thus MSE for model j is given
by MSEj = n−1 ∑n

i=1 MSEj
i . While comparing two estimators, the one with

higher Effj is preferable.
We find that for both DGPs when the parametric guide is correct,

i.e., coincides with the true regression, there is substantial bias reduction
for all sample sizes and all combined estimators vis a vis the local linear
estimator.10 If the linear guide is a poor approximation for the true
regression, we find that both Glad and the additively corrected estimator
provide negligible improvement over the local linear estimator. This
conclusion coincides with the results obtained in the simulations of Glad
(1998). It can be theoretically shown that, when the parametric guide is
linear the additively corrected estimator and the local linear estimator have
the same leading term for the bias. Hence, for both DGPs we find that
the Eff statistic is the same for the additively corrected and local linear
estimators in the case of a linear parametric guide. As the variances of
the estimators in the class do not depend on & and first stage estimation,
it is expected that variances across parametric guides and & should be
of similar magnitude, which is observed in our simulation results. For
DGP1 we find that Glad’s estimator is closest to the best model when
the parametric guide is not linear. However, for the best model there is
significant improvement in terms of bias reduction. For DGP2 we find
that the estimators’ performance depends on the parametric guide. Both
estimators outperform the local linear estimator when the parametric
guide is not linear. Also, it is observed that in all cases the best model does
not coincide with either the additively corrected or Glad’s estimators.

Finally, we note that the optimal & obtained via the grid search
described above and used in the simulations is very close to the & obtained
by solving Eq. (15). This suggests that the asymptotic approximation for
the bias in Theorem 2 seems to be fairly reasonable for sample sizes of
relative small size, i.e., n = 400. For example, we find that for DGP1 with
n = 400, the & obtained from the grid search method are −1#7, and −1#8
for parametric guides P 1

2 and P 1
3 , respectively. The corresponding numbers

obtained from solving Eq. (11) are −1#75 and −1#76 respectively.11

For DGP 2 we derive a similar conclusion.12

10Under the unrealistic assumption of a correctly specified parametric DGP, a suitable
parametric estimator (possibly unbiased and efficient in an appropriately defined class) can be
chosen, and the bias-variance tradeoff intrinsic to all nonparametric estimators considered herein
can be bypassed.

11When the parametric guide is equal to m(x) the left-hand side of Eq. (15) is identically zero
for all x .

12In fact, optimal values of & do not vary significantly with n for n ≥ 100 in our simulations.
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5. CONCLUSION

This article proposes a class of nonparametric regression estimators
that improve the bias of traditional kernel based nonparametric estimators
without an increase in variance. This class of estimators is associated with
the minimization of a new loss function, which depends on a parameter &,
that includes as special cases well-known estimators such as the local linear
(polynomial), Nadaraya–Watson, Glad (1998), and an additively corrected
estimator. The estimators in the class can be obtained in a two stage
procedure. In the first stage, a parametric estimation reduces the variability
of the regressand, and in the second stage a local linear (polynomial)
estimator is fitted to the modified regressand that incorporates the impact
of the curvature of the first stage parametric fit in the neighborhood of x .

We obtain reduced bias due to smaller variability of the modified
regressand. Inclusion of & allows for a larger scope for bias reduction
compared to the existing combined estimators. The variance of the
estimators in the class does not change asymptotically, although our
simulations reveal that in finite samples variance is also reduced relative to
that of the local linear estimator.

Bias and variance of the estimators in the class are derived and
asymptotic normality is established. As the second stage modified
regressand includes the parametric fit, first asymptotic normality is
established for a nonstochastic parametric guide. Subsequently, it is shown
that when the first stage estimator is obtained via pseudo maximum
likelihood estimation, the final estimator inherits the asymptotic properties
of the estimator obtained with a nonstochastic guide.

We perform a small Monte Carlo study to evaluate the performance
of the new estimator relative to that of the existing alternatives.
The indexing parameter & is allowed to vary over a range negative and
positive values. Our simulations provide following conclusions: (1) when
the parametric guide coincides with the true regression, all combined
estimators outperform the local linear estimator; (2) even when the
parametric guide is highly misspecified there exists an estimator in the
proposed class that provides significant bias reduction vis a vis the local
linear estimator. This is significant, since currently available estimators
that attempt to reduce bias with parametric guides, do not significantly
reduce bias relative to the local linear estimator when the guide is severely
misspecified.

6. APPENDIX

Proof of Lemma 1. (a) We prove the case where j = 0. Similar
arguments can be used for j = 1, 2 given A2. Let B(x0, r ) = !x ∈ ' :
|x − x0|< r " for r ∈ '+. G compact implies that there exists x0 ∈ G such
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that G ⊆ B(x0, r ). Therefore for all x , x ′ ∈ G , |x − x ′|< 2r . Let hn > 0
be a sequence such that hn → 0 as n → ∞ where n ∈ !1, 2, 3, # # # ". For
any n, by the Heine–Borel theorem there exists a finite collection of
sets !B(xk , ( n

h3n
)−1/2)"lnk=1 such that G ⊂ ⋃ln

k=1 B(xk , (
n
h3n
)−1/2) for xk ∈ G with

ln < ( n
h3n
)1/2r . For x ∈ B(xk , ( n

h3n
)−1/2),

|sn,0(x) − sn,0(xk)| ≤ (nhn)−1
n∑

t=1

C |h−1
n (xk − x)|<C(nhn)−1/2 and

|E(sn,0(xk)) − E(sn,0(x))|<C(nhn)−1/2#

Hence, |sn,0(x) − E(sn,0(x))| ≤| sn,0(xk) − E(sn,0(xk))| + 2C(nhn)−1/2 and

sup
x∈G

|sn,0(x) − E(sn,0(x))| ≤ max
1≤k≤ln

|sn,0(xk) − E(sn,0(xk))| + 2C(nhn)−1/2#

Since 2
( nhn
ln(n)

)1/2C(nhn)−1/2 → 0, then to prove (a) it suffices to show that
there exists a constant 5 > 0 such that for all 0 > 0 there exists N
such that for all n > N , P

(( nhn
ln(n)

)1/2 max1≤k≤ln |sn,0(x) − E(sn,0(x))| ≥5
)

≤ 0.
Let *n =

( ln(n)
nhn

)1/2
5. Then, for every n,

P
(
max
1≤k≤ln

|sn,0(xk) − E(sn,0(xk))| ≥ *n

)
≤

ln∑

k=1

P (|sn,0(xk) − E(sn,0(xk))| ≥ *n)#

But |sn,0(xk) − E(sn,0(xk))|= | 1n
∑n

i=1 Win | where Win = 1
hn
K ( xi−xk

hn
) − 1

hn
E(K ( xi−xk

hn
)) with E(Win) = 0 and |Win | ≤ C

hn
. Since !Win"ni=1 is an

independent sequence, by Bernstein’s inequality

P (|sn,0(xk) − E(sn,0(xk))| ≥ *n) < 2 exp
( −nhn*2

n

2hn +̄2 + 2C*n
3

)

where +̄2 = n−1 ∑n
i=1 V (Win) = h−2

n E(K 2( xi−xk
hn

)) − (h−1
n E(K ( xi−xk

hn
)))2. Under

assumptions A1 and A2, we have that hn +̄2 → B+̄2 by Lebesgue’s dominated
convergence theorem for some constant B+̄2 . Let cn = 2hn +̄2 + 2

3C*n # Then,
−nhn*2n

2hn +̄2+ 2C*n
3

= −52ln(n)
cn

. Hence, for any 0 > 0 there exists N such that for all
n > N ,

P
(
max
1≤k≤ln

|sn,0(xk) − E(sn,0(xk))| ≥ *n

)

< 2lnn−52/cn < 2
(
n
h2
n

)1/2

rn−52/cn < 2(nh2
n)

−1/2r < 0

since cn → 2B+̄2 and therefore there exists 52 > 2B+̄2 .
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(b) The result follows directly from part (a) and the assumption that
nh3n
ln(n) → ∞.

(c) Let S(x) =
( gX (x) 0

0 gX (x)+2K

)
and An(x) ≡ m̃(x , &) − m(x) − 1

nhngX (x)∑n
i=1 K ( xi−x

hn
)Z̃ ∗

i , then

|An | = 1
nhn

∣∣∣∣
n∑

i=1

(
Wn

(
xi − x
hn

, x
)

− 1
gX (x)

K
(
xi − x
hn

))
Z̃ ∗
i

∣∣∣∣

= 1
nhn

∣∣∣∣(1, 0)(S
−1
n (x) − S−1(x))

( ∑n
i=1 K

( xi−x
hn

)
Z̃ ∗
i∑n

i=1 K
( xi−x

hn

) xi−x
hn

Z̃ ∗
i

) ∣∣∣∣

≤ 1
hn

((1, 0)(S−1
n (x) − S−1(x))2(1, 0)′)1/2

× 1
n

(∣∣∣∣
n∑

i=1

K
(
xi − x
hn

)
Z̃ ∗
i

∣∣∣∣ +
∣∣∣∣

n∑

i=1

K
(
xi − x
hn

)
xi − x
hn

Z̃ ∗
i

∣∣∣∣

)
#

By part (b) Bn(x) ≡ 1
hn
((1, 0)(S−1

n (x) − S−1(x))2(1, 0)′)1/2 = Op(1) uni-
formly in G . Hence, if we put Rn,1(x) ≡ n−1(|∑n

i=1 K ( xi−x
hn

)Z̃ ∗
i | + |∑n

i=1

K ( xi−x
hn

) xi−x
hn

Z̃ ∗
i |) the proof is complete.

Proof of Theorem 1. Given that gX (x) < C for all x from A1 and part
(c) of Lemma 1, we have
∣∣∣∣m̂(x , &) − m(x) − 1

nhngX (x)

n∑

i=1

K
(
xi − x
hn

)
Z̃ ∗
i

∣∣∣∣

≤ ChnBn(x)
(∣∣∣∣

1
nhn

n∑

i=1

K
(
xi − x
hn

)
Z̃ ∗
i

∣∣∣∣ +
∣∣∣∣
1
nhn

n∑

i=1

K
(
xi − x
hn

)(
xi − x
hn

)
Z̃ ∗
i

∣∣∣∣

)

= ChnBn(x)(|c1(x)| + |c2(x)|)

Since Bn(x) = Op(1) uniformly in G from part (b) of Lemma 1, it suffices
to investigate the order in probability of |c1(x)| and |c2(x)|. Here, we
establish the order of c1(x) noting that the proof for c2(x) follows a
similar argument given assumption A2. We write c1(x) = I1n − I2n − I3n +
I4n , where

I1n(x) = 1
nhn

n∑

i=1

K
(
xi − x
hn

)

×
(

−B(1)(x)(xi − x) − 1
2
B(2)(x)(xi − x)2 − o((xi − x)2)

)
,
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I2n(x) = 1
nhn

n∑

i=1

K
(
xi − x
hn

)

×
(

−.(1)(x)(xi − x) − 1
2
.(2)(x)(xi − x)2 − o((xi − x)2)

)
,

I3n(x) = 1
nhn

n∑

i=1

K
(
xi − x
hn

)
m(1)(x)(xi − x),

I4n(x) = 1
nhn

n∑

i=1

K
(
xi − x
hn

)
r &i *i ,

where B(v) = m(v, $)(m(x ;$)
m(v,$) )

&, .(v) = m(v)(m(x ;$)
m(v,$) )

&, and B(d)(v) and .(d)(v)
are derivatives of order d evaluated at v, whose existence follows from
Assumption A4. Now,

I1n(x) = −B(1)(x)hnsn,1(x) − 1
2
B(2)(x)h2

nsn,2(x) − o(1)h2
nsn,2(x),

and since from A4 |B(1)(x)|, |B(2)(x)|<C for all x ∈ G , we have

sup
x∈G

|I1n(x)| ≤ Chn sup
x∈G

|sn,1(x)| +Ch2
n sup

x∈G
|sn,2(x)| + o(1)h2

n sup
x∈G

|sn,2(x)|

≤ Chn sup
x∈G

|sn,1(x)| +Ch2
n sup

x∈G
|sn,2(x) − E(sn,2(x))|

+ Ch2
n sup

x∈G
|E(sn,2(x))| + o(1)h2

n sup
x∈G

|sn,2(x) − E(sn,2(x))|

+ o(1)h2
n sup

x∈G
|E(sn,2(x))|

≤ hnOp

((
nhn
ln(n)

)−1/2)
+ h2

nOp

((
nhn
ln(n)

)−1/2)
+ Ch2

n ,

where the last inequality follows from part (a) of Lemma 1 and the fact
that supx∈G |E(sn,2(x))| =O(1). Similarly, given that |.(1)(x)|, |.(2)(x)|<C for
all x ∈ G we have that

sup
x∈G

|I2n(x)| ≤ hnOp

((
nhn
ln(n)

)−1/2)
+ h2

nOp

((
nhn
ln(n)

)−1/2)
+ Ch2

n # (16)

I3n(x) = m(1)(x)hnsn,1(x), and consequently, from part (a) of Lemma 1 and
the fact that |m(1)(x)|<C for all x ∈ G by A4,

sup
x∈G

|I3n(x)| ≤ ChnOp

((
nhn
ln(n)

)−1/2)
# (17)
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Now, we consider

I4n(x) = m(x ; $)&
(

1
nhn

n∑

i=1

K
(
xi − x
hn

)
*i

m(xi , $)&

)

= m(x ; $)&q(x) where q(x) ≡ 1
nhn

n∑

i=1

K
(
xi − x
hn

)
*i

m(xi , $)&

|I4n(x)| ≤ C |q(x)| by A4.

Now consider an open covering !B(xk , ( n
h2n
)−1/2)"lnk=1 such that G ⊂ ⋃ln

k=1

B
(
xk ,

(
n
h2n

)−1/2) for xk ∈ G with ln <
(

n
h2n

)1/2r as described in the proof of
Lemma 1. Then, we can write

|q(x)| ≤| q(x) − q(xk)| + |q(xk)|#

Now, observe that

|q(x) − q(xk)| =
∣∣∣∣
1
nhn

n∑

i=1

(
K

(
xi − x
hn

)
− K

(
xi − xk
hn

))
*i

m(xi , $)&

∣∣∣∣

≤ 1
nhn

n∑

i=1

C
∣∣∣∣
xk − x
hn

∣∣∣∣
|*i |

|m(xi , $)&|
by A2

≤ C(nh2
n)

−1/2 1
n

n∑

i=1

|*i | by A4.

Also, by the fact that the conditional variance of *i is bounded for all x ,
we have that E(|q(x) − E(q(xk))|) ≤ C(nh2

n)
−1/2, hence

sup
x∈G

|q(x)| ≤ max
1≤k≤ln

|q(xk)|+C(nh2
n)

−1/2 1
n

n∑

i=1

|*i |

≤ max
1≤k≤ln

|q(xk)|+C(nh2
n)

−1/2#

The last inequality follows since by Kolmogorov’s law of large numbers
1
n

∑n
i=1|*i |= Op(1). Hence, we now focus on max1≤k≤ln |q(xk)|. First, put

f (xi , *i) = *i
m(xi ,$)&

and let

qB(x) = 1
nhn

n∑

i=1

K
(
xi − x
hn

)
f (xi , *i)I (|f (xi , *i)| ≤Bn),
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where B1 ≤ B2 ≤ · · · such that
∑∞

i=1 B
−s
i < ∞ for some s > 0 and I (·) is the

indicator function. Consider

sup
x∈G

|q(x) − qB(x) − E(q(x) − qB(x))| ≤T1n + T2n

where

T1n = sup
x∈G

|q(x) − qB(x)|

= sup
x∈G

∣∣∣∣
1
nhn

n∑

i=1

K
(
xi − x
hn

)
f (xi , *i)I (|f (xi , *i)|>Bn)

∣∣∣∣,

T2n = sup
x∈G

|E(q(x) − qB(x))|#

By the Borel–Cantelli Lemma, for all 0 > 0 and for all m such that
m ′ < m < n we have that P (|f (xm , *m)| ≤Bn) > 1 − 0, and by Chebyshev’s
inequality and the increasing nature of the Bi sequence, for n > N ∈ ' we
have P (|f (xi , *i |) < Bn) > 1 − 0. Hence, for n > max!N ,m" we have that
for all i ≤ n P (|f (xi , *i)|<Bn) > 1 − 0, and therefore I (|f (xi , *i)|>Bn) = 0
with probability 1, which gives T1n = oas(1). Now,

|E(q(x) − qB(x))| ≤ 1
nhn

n∑

i=1

∫ ∫

|f (xi ,*i )|>Bn

K
(
xi − x
hn

)
|f (xi , *i)|g (xi , *i)dxid*i

≤ 1
C &
Lhn

∫ ∫

|*i |>BnCL

K
(
xi − x
hn

)
|*i |g (xi , *i)dxid*i

≤ C
∫

K (-i)

∫

|*i |>BnCL

|*i |g (x + hn-i , *i)d*id-i

≤ C sup
x∈G

∫

|*i |>BnCL

|*i |g (x , *i)d*i #

By Hölder’s inequality, for s > 1,

∫

|*i |>BnCL

|*i |g (x , *i)d*i

≤
( ∫

|*i |sg (x , *i)d*i

)1/s( ∫
I (|*i |>BnCL)g (x , *i)d*i

)1−1/s

#
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The first integral after the inequality is uniformly bounded, and since
gxi | *i (x) < C , we have by Chebyshev’s Inequality

( ∫
I (|*i |>BnCL)g (x , *i)d*i

)1−1/s

≤ C(P (|*i |> BnCL))
1−1/s ≤ CB1−s

n ,

hence T2n = O(B1−s
n ) and supx∈G |q(x) − qB(x) − E(q(x) − qB(x))| =

Oas(B1−s
n ). Now,

P
(
max
1≤k≤ln

|qB(xk) − E(qB(xk))| ≥ 0n
)

≤
ln∑

i=1

P (|qB(xk) − E(qB(xk))| ≥ 0n)

and let qB(xk) − E(qB(xk)) = n−1 ∑n
i=1 Zin , where

Zin = 1
hn

K
(
xi − x
hn

)
f (xi , *i)I (|f (xi , *i)| ≤Bn)

− E
(
1
hn

K
(
xi − x
hn

)
f (xi , *i)I (|f (xi , *i | ≤Bn)

)
#

Since f (xi , *i)I (|f (xi , *i)| ≤Bn) ≤ Bn we have that |Zin | ≤CBn/hn , E(Zin)= 0,
and since !Zin"ni=1 is an independent sequence, by Bernstein’s inequality

P (|qB(xk) − E(qB(xk))| ≥ 0n) < 2 exp
( −nhn02n
hn

(
2+̄2 + 2CBn0n

3hn

)
)
,

where

+̄2 = n−1
n∑

i=1

V (Zi) = 1
h2
n
E

(
K 2

(
xi − x
hn

)
f (xi , *i)

2I (|f (xi , *i)| ≤Bn)

)

−
(
1
hn

E
(
K

(
xi − x
hn

)
f (xi , *i)I (|f (xi , *i)| ≤Bn)

))2

≤ 1
h2
n
E

(
K 2

(
xi − x
hn

)
1

m(xi , $)2&

)
E(*2

i | xi)

+
(
1
hn

∫
K

(
xi − x
hn

)
1

|m(xi , $)&|
gX (xi)

×
∫
∣∣ *i
m(xi ,$)&

∣∣≤Bn

|*i |g*i |xi (*i)d*idxi

)2

≤ h−1
n C

∫
K 2(-)gX (x + hn-)d-

+ C 2

( ∫
K (-)gX (x + hn-)d-

)2

≤ C/hn ,
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where the bound follows form Assumption A1 and the fact that E(*2
i | xi) =

+2(x) < ∞ for all x . Given that 0n =
( ln(n)

nhn

)1/2
5, we have

P
(
max
1≤k≤ln

|qB(xk) − E(qB(xk))| ≥ 0n
)
< 2

n1/2

hn
n−52

cn ,

where cn = 2hn +̄2 + 2
3CBn0n . Now, hn +̄2 = O(1) and cn = o(1) provided

Bn0n → 0 as n → ∞. Hence, for 52 sufficiently large

P
(
max
1≤k≤ln

|qB(xk) − E(qB(xk))| ≥ 0n
)
<

n1−52
cn

(nh2
n)

1/2
< 0#

Hence,

sup
x∈G

|q(x)| ≤ sup
x∈G

|qB(x) − E(qB(x))| + sup
x∈G

|q(x) − qB(x) − E(q(x) − qB(x))|

= sup
x∈G

|qB(x) − E(qB(x))| +Oas(B1−s
n )

≤ max
1≤k≤ln

|qB(xk) − E(qB(xk))| +C(nh2
n)

−1/2 + Oas(B1−s
n )#

By choosing Bn = n 1
s +,, , > 0, and s > 2 we have O(B1−s

n ) = o(n−1/2). Then,

sup
x∈G

|q(x)| = Op

((
nhn
ln(n)

)−1/2)
and therefore

sup
x∈G

|I4n(x)| = Op

((
nhn
ln(n)

)−1/2)
#

(18)

Combining the results for I1n(x), I2n(x), I3n(x), and I4n(x), we have
hn supx∈G |c1(x)|= Op

(( hn ln(n)
n

)1/2) + Op(h3
n). Hence, given that Bn(x) =

Op(1), we have that

sup
x∈G

∣∣∣∣m̃(x , &) − m(x) − 1
nhngX (x)

n∑

i=1

K
(
xi − x
hn

)
Z̃ ∗
i

∣∣∣∣

= Op

((
hn ln(n)

n

)1/2)
+ Op(h3

n)#

Proof of Theorem 2. From Theorem 1, and given that h2
n ln(n) → 0, we

have that

√
nhn

(
m̃(x , &) − m(x) − 1

nhngX (x)

n∑

i=1

K
(
xi − x
hn

)
Z̃ ∗
i

)
= op(1),
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thus we focus on the asymptotic behavior of

√
nhn

(
1

nhngX (x)

n∑

i=1

K
(
xi − x
hn

)
Z̃ ∗
i

)

=
√
nhn

1
gX (x)

(I1n(x) − I2n(x) − I3n(x) + I4n(x)),

where Iin(x) for i = 1, # # # , 4 are as defined in the proof of Theorem 1.

We first examine
√
nhn 1

gX (x) I4n(x) = ∑n
i=1 Zin , where Zin = K (

xi−x
hn )r &i *i√

nhngX (x) . Note
that E(Zin) = 0, V (Zin) = +2

nhngX (x)2E(K
2( xi−x

hn
)r 2&i ), and define

s2n =
n∑

i=1

V (Zin) = +2

gX (x)2hn
E

(
K 2

(
xi − x
hn

)
r 2&i

)
#

By Lebesgue’s dominated convergence theorem and assumption A4,
we have that s2n → +2

gX (x)

∫
K 2(-)d-.

By Liapounov’s central limit theorem
∑n

i=1
Zin
sn

d→ N (0, 1) provided that∑n
i=1 E(| Zinsn |2+,) = o(1) for some , > 0. To verify this, note that

n∑

i=1

E
(∣∣∣∣

Zin

sn

∣∣∣∣
2+,)

= (s2n)
−1−,/2 gX (x)

−2−,

(nhn),/2
1
hn

E
(∣∣∣∣K

(
xi − x
hn

)
*i r &i

∣∣∣∣
2+,)

= (s2n)
−1−,/2 gX (x)

−2−,

(nhn),/2
1
hn

× E
(
K 2+,

(
xi − x
hn

)
E(|*i |2+,|xi)|r &i |2+,

)

≤ (s2n)
−1−,/2 gX (x)

−2−,

(nhn),/2
C
hn

E
(
K 2+,

(
xi − x
hn

))

→ CgX (x)
∫

K 2+,(-)d-,

given E(|*i |2+,|xi) < C and assumptions A1 and A2. Now, since
C
hn
E(K 2+,( xi−x

hn
)) → CgX (x)

∫
K 2+,(-)d-, s2n → +2

gX (x)

∫
K 2(-)d- and nhn →

∞ we have
∑n

i=1 E(| Zinsn |2+,) = o(1).
From Theorem 1 we have that,

−1
nhngX (x)

n∑

i=1

K
(
xi − x
hn

)
B(1)(x)(xi − x) ≤ ChnOp

((
nhn
ln(n)

)−1/2)
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and therefore −1√
nhngX (x)

∑n
i=1 K ( xi−x

hn
)B(1)(x)(xi − x) ≤ (h2

n ln(n))
1/2Op(1) =

o(1). Similarly,

−1√
nhngX (x)

n∑

i=1

K
(
xi − x
hn

)
.(1)(x)(xi − x) ≤ (h2

n ln(n))
1/2Op(1) = o(1)

and 1√
nhngX (x)

∑n
i=1 K ( xi−x

hn
)m(1)(x)(xi − x) ≤ (h2

n ln(n))
1/2Op(1) = o(1). Now,

let

vn(x) = −B(2)(x)h2
n

2nhngX (x)

n∑

i=1

K
(
xi − x
hn

)(
xi − x
hn

)2

,

then E(vn (x))
h2n

→ −B(2)(x)
2 +2

K gX (x) and

V
(
vn(x)
h2
n

)
=

(
B(2)(x)

2

)2 1
nh2

ng
2
X (x)

×
(
hn

∫
-4K 2(-)gX (x + hn-)d- − h2

n+
4
K

)
→ 0#

Hence, by Chebyshev’s inequality vn (x)
h2n

− −B(2)(x)
2 +2

K gX (x) = op(1). Following
the same arguments,

1
h2
n

−.(2)(x)h2
n

2nhngX (x)

n∑

i=1

K
(
xi − x
hn

)(
xi − x
hn

)2

− −.(2)(x)
2

+2
K gX (x) = op(1)#

Hence,

√
nhn(m̃(x , &) − m(x) − B(x ; &, $)) d→ N

(
0,

+2

gX (x)

∫
K 2(-)d-

)
,

where B(x ; &, $) = 1
2h

2
n+

2
K (.

(2)(x) − B(2)(x)) + op(h2
n). Simple manipulations

give,

Bc(x ; &, $) = .(2)(x) − B(2)(x) = m(2)(x) − (1 − &)m(2)(x ; $)

− &

(
2m(1)(x)m(1)(x ; $) + m(x)m(2)(x ; $)

m(x ; $)

)

+ &(& + 1)m(x)(m(1)(x ; $))2

m(x ; $)2
+ &(& − 1)m(1)(x ; $)

m(x ; $)

and therefore we can write B(x ; &, $) = 1
2h

2
n+

2
KBc(x ; &, $) + op(h2

n)#
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Proof of Theorem 3. We prove the theorem by establishing that

√
nhn(m̃(x , &) − m̂(x , &)) = e ′S−1

n (x)

( 1√
nhn

∑n
i=1 K

( xi−x
gn

)
qi

1√
nhn

∑n
i=1 K

( xi−x
gn

)( xi−x
hn

)
qi

)

= op(1),

where qi = Z̃i − Ẑi . Since S−1
n (x) = Op(1) and K has compact support, it

suffices to show that &n = 1√
nhn

∑n
i=1 K (Xi−x

hn
)qi = op(1). We write

&n =
√
nhn

(
1
nhn

n∑

i=1

K
(
Xi − x
hn

)
(m(x ; $0) − m(x ; $̂))

+ 1
nhn

n∑

i=1

K
(
Xi − x
hn

)
(m(xi) − m(xi , $0))(r &i − r̂ &i )

+ 1
nhn

n∑

i=1

K
(
Xi − x
hn

)
(r &i − r̂ &i )*i

+ 1
nhn

n∑

i=1

K
(
Xi − x
hn

)
(m(xi ; $̂) − m(xi , $0))r̂ &i

)

=
√
nhn(Q1n(x) + Q2n(x) + Q3n(x) + Q4n(x))

and treat each
√
nhnQjn for j = 1, # # # , 4 separately:

√
nhnQ1n(x) =

√
nhn((sn,0(x) − gX (x))(m(x ; $0) − m(x ; $̂))

+ gX (x)(m(x ; $0) − m(x ; $̂)))

Now, note that by Taylor’s theorem

|m(x ; $̂)& − m(x ; $0)&| ≤| &‖(m(x ; $m))&−1|
∣∣∣∣
2m(x ; $m)

2$

∣∣∣∣|$̂ − $0|,

$m = ($̂ + (1 − ()$0, where ( ∈ (0, 1),

and given 0<CL ≤ |m(x ; $)| ≤CH <∞ for all $ ∈ %, x ∈ G , and | 2m(x ;$)
2$

|<C ,
we have that supx∈G |m(x ; $̂)& − m(x ; $0)&| ≤C |$̂ − $0|= n−1/2Op(1) by
Theorem 3.2 in White (1982) for every &, which gives m(x ; $0) − m(x ; $̂) =
Op(n−1/2). Together with the fact that |gX (x)|<C and since from
Lemma 1 sn,0(x) − gX (x) = Op(hn) we have that

√
nhnQ1n(x) = h3/2

n Op(1) +
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h1/2
n Op(1) = op(1). Now, note that

|Q2n(x)| ≤ 1
nhn

n∑

i=1

K
(
xi − x
hn

)
|m(xi) − m(xi , $0)||r &i − r̂ &i |

≤ C
1
nhn

n∑

i=1

K
(
xi − x
hn

)
|r &i − r̂ &i | ≤C |sn,0(x)|sup

x∈G
|r &i − r̂ &i |

and,

|r &i − r̂ &i |

≤ |m(xi ; $̂)& − m(xi , $0)&‖m(x ; $0)&| + |m(x ; $0)& −m(x ; $̂)&‖m(xi , $0)&|
|m(xi , $0)&||m(xi ; $̂)&|

#

Since, as established above, supx∈G |m(x ; $̂)& − m(x ; $0)&| =n−1/2Op(1)
we have supx∈G |r &i − r̂ &i | =n−1/2Op(1) and consequently

√
nhnQ2n(x) =

h3/2
n Op(1) = op(1), since sn,0(x) = Op(hn). Now

|Q3n(x)| ≤ 1
nhn

n∑

i=1

K
(
xi − x
hn

)
|r &i − r̂ &i ||*i |

≤ sup
x∈G

|r &i − r̂ &i | 1
nhn

n∑

i=1

K
(
xi − x
hn

)
|*i |

≤ n−1/2Op(1)
1
nhn

n∑

i=1

K
(
xi − x
hn

)
|*i |

= n−1/2Op(1)
1
hn

E
(
K

(
xi − x
hn

)
|*i |

)

= n−1/2Op(1)
1
hn

E
(
K

(
xi − x
hn

))
E(|*i‖xi)

≤ n−1/2Op(1) given that E(|*i‖xi) < C ,

which gives
√
nhnQ3n(x) = op(1). Similarly,

|Q4n(x)| ≤ 1
nhn

n∑

i=1

K
(
xi − x
hn

)
|m(xi , $̂) − m(xi , $0)‖r̂ &i |

≤ sup
xi∈G

|m(xi , $̂) − m(xi , $0)|
1
nhn

n∑

i=1

K
(
xi − x
hn

)
|r̂ &i |

≤ n−1/2Op(1)sn,0(x),
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where the last inequality follows from the fact that r̂ &i = Op(1) and
supxi∈G |m(xi , $̂) − m(xi , $0)| =Op(n−1/2). Finally, since sn,0(x) uniformly
converges to gX (x) by Lemma 1, we have

√
nhnQ4n(x) = op(1), which

concludes the proof.
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