The main steps in proving Carathéodory's Extension Theorem

Define the set function $\mu^*: 2^{\mathbb{X}} \to [0,\infty]$ such that for any $A \in 2^{\mathbb{X}}$

$$\mu^*(A) = \inf_{C(A)} \left\{ \sum_{j \in \mathbb{N}} \mu(C_j) \right\},\,$$

with $C(A) = \left\{ \{C_j\}_{j \in \mathbb{N}} \subset \mathcal{S} : A \subset \bigcup_{j \in \mathbb{N}} C_j \right\}$. $\bigcup_{j \in \mathbb{N}} C_j$ is a countable cover for A and μ^* is well defined because μ is defined on \mathcal{S} . If $C(A) = \emptyset$, then $\mu^*(A) = \infty$.

Step 1: Prove that μ^* is an *outer measure*, i.e., a function that satisfies

1.
$$\mu^*(\emptyset) = 0,$$

2. $A \subset B \implies \mu^*(A) \le \mu^*(B),$
3. $\mu^*\left(\bigcup_{j \in \mathbb{N}} A_j\right) \le \sum_{j \in \mathbb{N}} \mu^*(A_j).$

Step 2: Prove that $\mu^*(S) = \mu(S)$ for all $S \in \mathcal{S}$. That is, μ^* is an extension of μ to 2^X .

Step 3: Show that $\mathcal{S} \subset \mathcal{A}^*$ where

$$\mathcal{A}^* = \{ A \subset \mathbb{X} : \mu^*(A \cap Q) + \mu^*(A^c \cap Q) = \mu^*(Q), \, \forall Q \subset \mathbb{X} \}.$$

The sets in \mathcal{A}^* are called the μ^* -measurable sets. The proof reveals that we cannot expect μ^* to be σ -additive outside \mathcal{A}^* .

Step 4: Show that \mathcal{A}^* is a σ -algebra and μ^* is a measure on $(\mathbb{X}, \mathcal{A}^*)$. Since $\sigma(\mathcal{S}) \subset \mathcal{A}^*, \mu^*$ is a measure on $(\mathbb{X}, \sigma(\mathcal{S}))$ which extends μ from \mathcal{S} to $\sigma(\mathcal{S})$.