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Chapter 1

Probability spaces

It is universally accepted, and intuitively understood, that the probability associated with

the occurrence of a certain event can be expressed by a number between 0 and 1. For

example, we may be informed by a meteorological service that the probability that it will

snow tomorrow is 70%. In fact, in many settings we can easily assess the probabilities

associated with certain events. Thus, stating that the probability of observing heads after

tossing a fair coin is 50% is normally taken to be self-evident. In this chapter we develop

a mathematical framework that will allow a formal treatment of the notions of event and

probability. The development of this framework, which relies on concepts and results from

measure theory, leads us to the concept of a probability space, foundational to all subsequent

topics in this monograph.

1.1 �-algebras

A set formed by subsets of a given setX is called a system of sets associated withX. Systems

are commonly described by certain properties that involve taking unions, intersections and

differences of their elements. In what follows, we will introduce several systems that will be

useful in constructing probability spaces. We start with the definition of the most important

of these systems in the study of probability, it is called a �-algebra.
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Definition 1.1. Let X be an arbitrary set. A �-algebra F is a system of subsets of X having

the following properties:

1. X 2 F ,

2. A 2 F =) Ac 2 F ,

3. Ai 2 F for i 2 N =)
S
i2N

Ai 2 F .

In this context we say that F is a �-algebra associated with X. It is evident from this

definition that many �-algebras may be associated with a set X. As a matter of terminology,

if A 2 F it is said to be an F -measurable set and the pair (X,F) is called a measurable

space. The word “measurable,” in this very general setting, suggests that a notion of measure

(or size) will be subsequently attached to the sets in F , but for now it is just a label given

to the members of F .

Remark 1.1. 1. Since X 2 F , by property 2, Xc = X � X = ; 2 F . Hence, every

�-algebra contains the empty set. Note that complementation is taken with respect to

the set X.

2. By de Morgan’s Laws
✓S

i2N

Ai

◆c

=
T
i2N

Ac

i
and by properties 2 and 3, if Ai 2 F for i 2 N,

then Ac

i
2 F and

T
i2N

Ac

i
2 F . Hence, countable intersections of sets in a �-algebra are

measurable sets.

3. Given Definition 1.1 and Remark 1.1.2 we say that F is “closed” under complementa-

tion, countable unions and countable intersections.

4. For A1, A2 2 F , and given that A2 � A1 = A2 \ Ac

1 we have that A2 � A1 2 F . Also,

denoting the symmetric difference between sets A1 and A2 by A1�A2 := (A1 � A2) [

(A2 � A1), we have that A1�A2 2 F . Hence, F is closed under set difference and

under symmetric difference.
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5. A system associated with X is said to be an algebra if properties 1 and 2 in Definition

1.1 hold and if Ai 2 F for i = 1, · · · ,m implies
S

m

i=1 Ai 2 F with m 2 N. Clearly,

every �-algebra is also an algebra.

We now provide examples of important �-algebras.

Example 1.1. 1. For any X, F := {X, ;} is a �-algebra. It is called the minimal �-

algebra.

2. For any X, the collection 2X of all subsets of X is a �-algebra. It is called the maximal

�-algebra.

3. Let A ⇢ X. Then, F := {X, A,Ac, ;} is a �-algebra.

4. Let S ⇢ X and F a �-algebra associated with X. Then, FS := S\F := {S\F : F 2 F}

is a �-algebra associated with S. It is called the trace �-algebra. We verify that FS is

a �-algebra by establishing that it satisfies the properties of Definition 1.1:

1. S 2 FS.

Note that since X 2 F , then S \X = S 2 FS.

2. A 2 FS =) Ac 2 FS (note that Ac = S � A, i.e., complementation is relative to

S).

A 2 FS =) 9F 2 F 3 A = S \ F 2 FS. Since F 2 F then F c 2 F and

S \ F c 2 FS. Furthermore, S = (S \ F )[ (S \ F c) = A[ (S \ F c). But by definition,

A [ Ac = S, hence Ac = S \ F c 2 FS.

3. Ai 2 FS for i 2 N =)
S
i2N

Ai 2 FS.

Ai 2 FS =) 9Fi 2 F 3 Ai = S \ Fi. Hence,
S
i2N

Ai =
S
i2N

(S \ Fi) = S \
✓S

i2N

Fi

◆
.

But since Fi 2 F , we have
S
i2N

Fi 2 F , hence
S
i2N

Ai 2 FS.
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5. Let f : X! Y be a function, Y be a �-algebra associated with Y and f�1(S) := {x 2

X : f(x) 2 S} denote the inverse image of the set S under f . Then, F := f�1(Y) =

{f�1(S) : S 2 Y} is a �-algebra associated with X. F is called the inverse image

�-algebra. Again, we verify that F is a �-algebra by establishing that it satisfies the

properties of Definition 1.1:

1. X 2 F .

Since Y is a �-algebra associated with Y, Y 2 Y. f�1(Y) = {x 2 X: f(x) 2 Y} = X.

Thus, X 2 F .

2. A 2 F =) Ac 2 F .

A 2 F =) 9SA 2 Y 3 A = f�1(SA). Now, SA 2 Y =) Sc

A
:= Y � SA 2 Y and

f�1(Y � SA) = X� f�1(SA). Thus, f�1(Y � SA) = X� A = Ac 2 F .

3. Ai 2 F for i 2 N =)
S
i2N

Ai 2 F .

Ai 2 F =) 9 SAi 2 Y 3 Ai = f�1(SAi). Now, SAi 2 Y, 8i 2 N =)
S
i2N

SAi 2 Y

and f�1

✓S
i2N

SAi

◆
=
S
i2N

f�1(SAi) =
S
i2N

Ai 2 F .

The following theorem shows that the intersection of an arbitrary collection of �-algebras

associated with X is itself a �-algebra.

Theorem 1.1. Let F := {F : F is a �-algebra associated with the set X}. Then, I :=
T

F2F

F is a �-algebra associated with X, i.e., I 2 F .

Proof. We verify that I satisfies Definition 1.1.

1. Since X 2 F 8 F 2 F then X 2 I.

2. A 2 I =) A 2 F 8 F 2 F . Then, Ac 2 F 8 F 2 F . Consequently, Ac 2 I.

3. Let Ai 2 I for i 2 N. Then, Ai 2 F 8 F 2 F . Hence,
S
i2N

Ai 2 F 8 F 2 F , which implies
S
i2N

Ai 2 I. ⌅
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By the fact that I is an intersection of �-algebras, I ⇢ F 8 F 2 F , and we can say that

I is the “smallest” �-algebra in F .

It is often instructive to consider �-algebras that are obtained from smaller systems

associated with X by expanding these systems in such a way that the defining properties

in Definition 1.1 are met. In this context it is possible to consider the smallest �-algebra

generated by such a system. This motivates the following definition.

Definition 1.2. Let C be a system of X. The �-algebra generated by C, denoted by �(C), is

a �-algebra satisfying:

1. C ⇢ �(C)

2. If F is a �-algebra such that C ⇢ F , then �(C) ⇢ F .

Property 2 of Definition 1.2 characterizes �(C) as the smallest �-algebra containing C. The

existence of this �-algebra is showed in the next theorem.

Theorem 1.2. For an arbitrary collection of subsets C of X, there exists a unique smallest

�-algebra containing C.

Proof. Let F = {F : F is a �-algebra associated with X and C ⇢ F} be the set of all �-

algebras containing C. F 6= ; since 2X is a �-algebra. By Theorem 1.1,
T

F2F

F is a �-algebra.

Since C is in all F , C 2
T

F2F

F . Thus,
T

F2F

F 2 F . But by construction it is the smallest

�-algebra in F . ⌅

Evidently, if C is a �-algebra then �(C) = C. The generation of the smallest �-algebra

associated with a collection of subsets C of X is “monotonic” in a sense demonstrated in the

following theorem.

Theorem 1.3. Let C and D be two nonempty systems of X. If C ⇢ D then �(C) ⇢ �(D).
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Proof. Let FC := {H : H is a �-algebra associated with X and C ⇢ H} be the collection of

all �-algebras that contain C and FD := {G : G is a �-algebra associated with X and D ⇢ G}

be the collection of all �-algebras that contain D. Since, C ⇢ D ⇢ G, G is a �-algebra that

contains C, therefore G 2 FC. Hence, FD ⇢ FC and
T

H2FC

H ⇢
T

G2FD

G. By definition,

�(C) =
T

H2FC

H ⇢
T

G2FD

G = �(D). ⌅

Example 1.1.4 shows that if F is a �-algebra associated with X and S ⇢ X, we can

easily obtain a �-algebra associated with S by taking S \ F . The next theorem shows that

if F := �(C), then F \ S = �(C \ S).

Theorem 1.4. Let S ⇢ X, C be a collection of subsets of X and C \ S = {A \ S : A 2 C}.

Then, �(C \ S) = �(C) \ S is a �-algebra associated with S.

Proof. First, note that since C ⇢ �(C) we have C\S ⇢ �(C)\S. From Example 1.1.4, �(C)\S

is a �-algebra associated with S. Then, it follows from Theorem 1.3 that �(C\S) ⇢ �(C)\S.

We need only show that �(C \ S) � �(C)\ S to conclude that �(C \ S) = �(C)\ S. To this

end, consider the collection of subsets of X (not necessarily in C) such that their intersection

with S is in �(C \ S), i.e. G := {B ⇢ X : B \ S 2 �(C \ S)}.

By construction, C ⇢ G since A 2 C =) A \ S 2 C \ S ⇢ �(C \ S). Thus, A 2 G

by definition. We will show that G is a �-algebra associated with X. If this is the case,

�(C) ⇢ G. But from the definition of G, if A 2 �(C) then A\S 2 �(C \S). This means that

�(C) \ S ⇢ �(C \ S).

1. X 2 G since X \ S = S 2 �(C \ S).

2. A 2 G, Ac = X � A and Ac \ S = (X � A) \ S = S � (A \ S). But since A 2 G,

A \ S 2 �(C \ S) which implies that S � (A \ S) 2 �(C \ S), so Ac 2 G.

3. Let Ai 2 G, i 2 N and note that
 
[

i2N

Ai

!
\ S =

[

i2N

(Ai \ S).
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Since, Ai \ S 2 �(C \ S),
S
i2N

(Ai \ S) 2 �(C \ S) and
S
i2N

Ai 2 G.

Thus, G is a �-algebra associated with X. ⌅

In what follows, we often have X = Rn for n 2 N. In this case, an important �-algebra

is the one generated by the collection ORn of open sets of Rn, denoted by � (ORn). The

elements of this �-algebra are called the Borel sets of Rn and � (ORn) is called the Borel

�-algebra, which is commonly denoted by B(Rn).

If dX is a metric on X we say that

O ⇢ X is open () 8x 2 O 9 ✏ > 0 3 B(x, ✏) ⇢ O,

where B(x, ✏) := {y 2 X : dX(x, y) < ✏}. In this more general setting, we denote by OX the

collection of open sets of X. When X = Rn a usual choice of metric is dRn(x, y) := kx�yk =

(
P

n

i=1(xi � yi)2)
1/2, called the Euclidean metric. The next theorem shows that B(Rn) can

be generated by systems of rectangles in Rn. Before we prove the theorem we define these

rectangles. But first, recall that an open interval on R is a set (a, b) := {x 2 R : a < x < b},

a closed interval is a set [a, b] := {x 2 R : a  x  b} and a half-open interval is a set

[a, b) := {x 2 R : a  x < b} or (a, b] := {x 2 R : a < x  b}. They are said to be finite if

a, b 2 R and infinite if a = �1 or b = 1.

Definition 1.3. Let ai, bi 2 R for i = 1, · · · , n, n 2 N. Then,

1. Rn,o := ⇥n

i=1(ai, bi) is called an open rectangle in Rn,

2. Rn,h := ⇥n

i=1[ai, bi) is called a half-open rectangle in Rn.

If bi  ai for some i, Rn,o = Rn,h = ;. When ai and bi are restricted to be rational numbers,

i.e., ai, bi 2 Q we write Rn,o

Q and Rn,h

Q . The collections of all open and half-open rectangles

in Rn are denoted by In,o and In,h. Similarly, In,o

Q and In,h

Q denote the collections of all

open and half-open rectangles in Rn having rational endpoints.

7



Theorem 1.5. B(Rn) = �(In,o) = �(In,h) = �(In,o

Q ) = �(In,h

Q ).

Proof. We start by noting that Rn,o is an open set. To verify this, choose any x 2 Rn,o.

Since (ai, bi) is open for all i, there exists � > 0 such that (xi � �, xi + �) ⇢ (ai, bi). Let

B(x, �) = {y : ky � xk < �} and note that ky � xk < � ()
P

n

i=1(yi � xi)2 < �2 =)

(yi � xi)2 < �2 �
P

n

j 6=i
(yj � xj)2 < �2 =) |yi � xi| < � () yi 2 (xi � �, xi + �) ⇢ (ai, bi)

for all i. Hence, B(x, �) ⇢ Rn,o. Since, In,o

Q ⇢ In,o ⇢ ORn , we have �(In,o

Q ) ⇢ �(In,o) ⇢

�(ORn) := B(Rn).

Let O 2 ORn and consider the set
S

R
n,o
Q ⇢O

Rn,o

Q . If x 2
S

R
n,o
Q ⇢O

Rn,o

Q then x 2 Rn,o

Q ⇢ O.

Hence,
S

R
n,o
Q ⇢O

Rn,o

Q ⇢ O.

Now, choose x 2 O. Since O is open, there exists B(x, ✏) ⇢ O. Let Rn,o = {y 2 Rn :

ai < yi < bi for i = 1, · · · , n} be an open rectangle that contains x. Then, |yi � xi| < bi � ai

and
P

n

i=1(yi � xi)2 <
P

n

i=1(bi � ai)2 < nm2
n

where mn = max
1in

(bi � ai). If mn < ✏
p
n
, then

P
n

i=1(yi � xi)2 < ✏2 and we conclude that Rn,o ⇢ B(x, ✏). Since the set of all points in Rn

with rational coordinates is a dense subset of Rn, we can find Rn,o

Q ⇢ Rn,o ⇢ B(x, ✏). Hence,

every x 2 O belongs to a rectangle Rn,o

Q ⇢ O and, consequently, x 2 [
R

n,o
Q ⇢O

Rn,o

Q . Hence,

O ⇢ [
R

n,o
Q ⇢O

Rn,o

Q . Combining this set containment with the one in the previous paragraph we

O = [
R

n,o
Q ⇢O

Rn,o

Q .

Since the open rectangles in
S

R
n,o
Q ⇢O

Rn,o

Q have rational endpoints, the union has countably

many elements. Furthermore, since �-algebras are closed under countable unions, we have

that O 2 �(In,o

Q ). Hence, �(ORn) ⇢ �(In,o

Q ). Combining this set containment with �(In,o

Q ) ⇢

�(In,o) ⇢ �(ORn) := B(Rn), we conclude that �(In,o

Q ) = �(In,o) = �(ORn) := B(Rn).

Lastly, note that if ai, bi 2 Q for all i, Rn,h

Q =
T
i2N

(a1 � 1/i, b1)⇥ · · ·⇥ (an � 1/i, bn) and

Rn,o

Q =
S
i2N

[a1+1/i, b1)⇥ · · ·⇥ [an+1/i, bn). Similarly, if ai, bi 2 R, Rn,h =
T
i2N

(a1�1/i, b1)⇥

· · ·⇥ (an�1/i, bn) and Rn,o =
S
i2N

[a1+1/i, b1)⇥ · · ·⇥ [an+1/i, bn) we have �(In,o) = �(In,h)

and �(In,o

Q ) = �(In,h

Q ), which completes the proof. ⌅
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The collections of rectangles in Definition 1.3 are not the only systems of Rn that generate

the Borel sets. The next theorem shows that the collection of closed sets of Rn, denoted by

CRn , and the collection of compact sets of Rn, denoted by KRn , also generate the Borel sets.

Theorem 1.6. Let CRn , KRn be the collections of closed and compact subsets of Rn. Then,

B(Rn) = �(CRn) = �(KRn).

Proof. Let A ⇢ Rn. Then, A compact () A closed and bounded. Thus, KRn ⇢ CRn .

Hence, by Theorem 1.3, �(KRn) ⇢ �(CRn).

Now, if C 2 CRn and B̄(✓, k) = {x 2 Rn : kxk  k, k 2 N} is a closed ball with

radius k centered at ✓ = (0, · · · , 0)T 2 Rn, then Ck := C \ B̄(✓, k) is closed and bounded.

Boundedness follows by construction and closeness follows from the fact that complements

of open sets are closed, De Morgan’s Laws and the fact that arbitrary unions of open sets

are open. Hence, Ck 2 KRn for all k 2 N. By construction, C =
S
k2N

Ck, thus C 2 �(KRn)

and �(CRn) ⇢ �(KRn). Hence, combining this set containment with �(KRn) ⇢ �(CRn) we

obtain �(CRn) = �(KRn).

Since CRn = (ORn)c, we have that CRn ⇢ �(ORn) and consequently �(CRn) ⇢ �(ORn).

The converse �(ORn) ⇢ �(CRn) follows similarly to give �(CRn) = �(ORn). ⌅

1.2 The structure of R and its Borel sets

Definition 1.4. Let S be an open subset of R. An open finite or infinite interval I is called

a component interval of S if I ⇢ S and if @ an open interval J such that I ⇢ J ⇢ S.

Theorem 1.7. Let I denote a component interval of the open set S. If x 2 S, then 9I 3

x 2 I. If x 2 I, then x 62 J where J is any other component interval of S.

Proof. Since S is open, for any x 2 S there exists an open interval I such that x 2 I

and I ⇢ S. There may be many such intervals, but the largest is Ix = (a(x), b(x)), where
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a(x) = inf{a : (a, x) ⇢ S}, b(x) = sup{b : (x, b) ⇢ S}. Note, a may be �1 and b may be

+1. There is no open interval J 3 Ix ⇢ J ⇢ S and by definition Ix is a component interval

of S. If Jx is another component interval containing x, Ix [ Jx is an open interval with

Ix ⇢ Ix [ Jx ⇢ S and Jx ⇢ Ix [ Jx ⇢ S. By definition of a component interval Ix [ Jx = Ix

and Ix [ Jx = Jx, so Ix = Jx. ⌅

Theorem 1.8. Let S ⇢ R be open and nonempty. Then, S =
S
n2N

In where {In}n2N is a

collection of component intervals of S.

Proof. By Theorem 1.7 if x 2 S, then x belongs to one, and only one, component interval

Ix. Note that
S
x2S

Ix = S and by the definition of component intervals and the proof of the

previous theorem, the collection of component intervals is disjoint (if x belongs to Ix and Jx,

both component intervals, Ix = Jx). Let {q1, q2, · · · } be the collection of rational numbers

(countable). In each component interval, there may be infinitely many of these, but among

these there is exactly one with smallest index n. Define a function F , F (Ix) = n if Ix contains

the rational number qn. If F (Ix) = F (Iy) = n then Ix and Iy contain qn, and Ix = Iy. Thus,

the collection of component intervals is countable, since F is a bijection between a subset of

N and the intervals Ix. ⌅

Remark 1.2. Several collections of subsets of R generate B(R). In particular, we have:

1. Let A1 = {I : I = (a, b) with �1  a < b  1}. Since (a, b) is open in R, A1 ⇢ OR

and �(A1) ⇢ �(OR) := B(R). Every nonempty open set O ⇢ R can be written as

O =
S
n2N

In, where In is a component interval of O. In 2 A1 8n and In 2 �(A1), hence

O 2 �(A1). Thus, OR ⇢ �(A1) and �(OR) ⇢ �(A1). Together with �(A1) ⇢ �(OR)

gives �(OR) = �(A1).

2. Since [a, b] =
T
n2N

(a � 1/n, b + 1/n), we have [a, b] 2 �(A1). Hence, the collection

of closed intervals A2 = {I : I = [a, b], a, b 2 R} is such that A2 ⇢ �(A1). Hence
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�(A2) ⇢ �(A1). Also, since (a, b) =
S
n2N

[a+1/n, b� 1/n], we have that (a, b) 2 �(A2).

Hence, the collection of open intervals A1 is such that A1 ⇢ �(A2) and �(A1) ⇢ �(A2).

Hence, �(A1) = �(A2). But since, �(A1) = �(OR), �(A2) = �(OR).

3. Let A3 = {I : I = (a, b] : �1  a < b < 1}. Note that since (a, b) =
S
n2N

(a, b � 1
n
]

we have that (a, b) 2 �(A3). Consequently, A1 ⇢ �(A3) and �(A1) ⇢ �(A3). Also,

since (a, b] =
S
n2N

(a, b+ 1
n
) we have that (a, b] 2 �(A1). Consequently, A3 ⇢ �(A1) and

�(A3) ⇢ �(A1). Thus, �(A3) = �(A1).

4. Let A4 = {I : I = (�1, a] : a 2 R}. Note that (�1, a] =
T
n2N

(�1, a + 1
n
) 2 �(A1).

Hence, A4 ⇢ �(A1) and �(A4) ⇢ �(A1). Now, for a < b

(a, b) = (�1, b) \ (a,1) = (�1, b) \ (�1, a]c

=

 
[

n2N

(�1, b� 1

n
]

!
\ (�1, a]c 2 �(A4).

Hence, A1 ⇢ �(A4) and �(A1) ⇢ �(A4). Together with the reverse set containment

and item 1. in this remark, we have �(OR) = �(A1) = �(A4).

1.3 Measures

Given a measurable space (X,F), we will now define what is meant by a measure. The

goal is to associate with a measurable set a non-negative number that conveys an idea of

its “size.” This general idea of size must inherit the properties we intuitively associate to

measures of length, area or volume. For example, if we are interested in measuring the area

of two surfaces on a plane that don’t intersect, the area of the two surfaces should be the

sum of the areas of each of the surfaces. Similarly, if we are interested on the length of two

line segments that don’t intersect, the length of the two segments should be the sum of the

length of each segment.
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Definition 1.5. Let (X,F) be a measurable space. A measure µ is a function µ : F ! [0,1]

having the following properties:

1. µ(;) = 0,

2. if {Ai}i2N ⇢ F is a disjoint collection, i.e., Ai\Aj = ; 8 i 6= j, µ
✓S

i2N

Ai

◆
=
P
i2N

µ(Ai).

The triple (X,F , µ) is called a measure space. We note that the definition of µ requires

the specification of F , and that knowledge of F implies knowledge of X, its largest element.

Hence, knowledge of µ is equivalent to knowledge of the measure space.

A pre-measure is a set function that satisfies the properties of a measure but is defined

on a system that is not a �-algebra. In this case, it must be that ; and
S
i2N

Ai are elements

of the system whenever Ai is in the system for i 2 N .

Remark 1.3. 1. Property 2 in Definition 1.5 is called �-additivity or countable additivity

of µ.

2. If µ(X) < 1, the measure µ is called a finite measure. In this case, (X,F , µ) is called

a finite measure space.

3. A sequence {Ai}i2N ⇢ F such that A1 ⇢ A2 ⇢ · · · is said to be exhausting if
S
i2N

Ai = X.

A measure µ is called �-finite if there is an exhausting sequence {Ai}i2N ⇢ F such that

µ(Ai) < 1, 8i.

4. If we assume that for at least one set A 2 F we have µ(A) < 1, then property 1 in

Definition 1.5 follows from property 2 by letting A1 = A and A2 = A3 = · · · = ;.

We are now ready to provide the definition of a probability space and, introduce notation

and terminology that will be used henceforth.

Definition 1.6. Let (⌦,F , P ) be a measure space such that P (⌦) = 1. We call (⌦,F , P ) a

probability space and P is called a probability measure.

12



In the context of probability spaces, ⌦ is called the outcome space and the elements of F

are called events. The construction of useful measure, or probability, spaces requires some

effort as we will soon discover. What follows are simple examples of measure or probability

spaces.

Example 1.2. 1. Let (X,F) be a measurable space and F 2 F . Define µ#(F ) = 1 if

F has infinitely many elements and µ#(F ) = number of elements (cardinality) of F

(denoted by #F ) if F has finitely many elements. µ# is called the counting measure

and (X,F , µ#) is a measure space.

We verify that µ# satisfies the defining properties in Definition 1.5. It is evident

that for any F 2 F , µ#(F ) 2 {0,1,N} ⇢ [0,1], and since the empty set has no

elements µ#(;) = 0. For property 2 in Definition 1.5, consider {Ai}i2N ⇢ F , a disjoint

collection. There are three cases to consider: a) for at least one i, Ai has infinitely

many elements. In this case, µ#(Ai) = 1 and since
S
i2N

Ai has infinitely many elements

µ#

✓S
i2N

Ai

◆
= 1. Also,

P
i2N

µ(Ai) = #A1 + · · · +1 + · · · = 1; b) 8i, Ai has finitely

many elements and there are only N of these sets that are non-empty. Relabel the

sets such that the first N are non-empty. Then, µ#

✓S
i2N

Ai

◆
= µ# (A1 [ · · · [ AN) =

P
N

i=1 µ#(Ai) =
P

1

i=1 µ#(Ai); c) 8i, Ai has finitely many elements and there are only

N of these sets that are empty. Then, as in case a) µ#

✓S
i2N

Ai

◆
= 1 and

P
i2N

µ(Ai) =

#A1 +#A2 + · · · = 1.

2. Let (X,F) be a measurable space and for x 2 X and F 2 F let µx(F ) = 1 if x 2 F

and µx(F ) = 0 if x /2 F . This is called the unit mass at x or Dirac’s delta measure.

(X,F , µx) is a probability space.

Clearly, for fixed x 2 X and any F 2 F , µx(F ) 2 {0, 1} ⇢ [0,1]. Also, since the empty

set has no elements, x /2 ;, hence µx(;) = 0. For property 2 in Definition 1.5, consider

13



{Ai}i2N ⇢ F , a disjoint collection. If x 2
S
i2N

Ai, then it must be that it belongs to one,

and only one, Ai. Then, µx

✓S
i2N

Ai

◆
= 1 and

P
1

i=1 µx(Ai) = 1+0+0+ · · · = 1. If x /2

S
i2N

Ai, then it does not belong to any Ai. Thus, µx

✓S
i2N

Ai

◆
= 0 and

P
1

i=1 µx(Ai) = 0.

3. Let ⌦ = {!i}i2N and pi 2 [0, 1] for i 2 N with
P

i2N pi = 1. Let (⌦, 2⌦) be a measurable

space, then the set function

P (A) =
X

i:!i2A

pi =
X

i2N

piµ!i(A), A ⇢ ⌦

is a probability measure.

Since every A 2 2⌦ is a finite or infinite collection of !i’s and
P

i2N pi = 1,

0  P (A) =
X

i:!i2A

pi =
X

i2N

piµ!i(A)  1,

where µ!i is Dirac’s delta measure. Hence, we immediately have that

P (;) =
X

i2N

piµ!i(;) = 0.

For property 2 in Definition 1.5, consider {Ai}i2N 2 F , a disjoint collection. Then,

P

 
[

i2N

Ai

!
=
X

j2N

pjµ!j

 
[

i2N

Ai

!
=
X

j2N

pj
X

i2N

µ!j(Ai) =
X

i2N

X

j2N

pjµ!j(Ai)

=
X

i2N

P (Ai)

The second equality follows from the properties of the Dirac measure, and the third

follows from the possibility of interchanging infinite sums in this context.

4. Consider tossing a coin, and define the possible outcomes as heads H or tails T . Hence,

the outcome space is ⌦ = {H, T} and associate with it the following �-algebra, F =

{;,⌦, {H}, {T}}. Now, define P : F ! [0, 1] as follows

P (;) = 0, P ({H}) = 0.5, P ({T}) = 0.5,

implying by that P (⌦) = 1 by �-additivity. (⌦,F , P ) is a probability space.
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1.3.1 Properties and characterization of measures

The following theorem gives properties of measures that follow directly from Definition 1.5

and basic operations with sets.

Theorem 1.9. Let (X,F , µ) be a measure space and {Ai}i2N ⇢ F . Then,

1. A2 ⇢ A1 =) µ(A2)  µ(A1) (monotonicity) and if µ(A2) < 1, µ(A1 � A2) =

µ(A1)� µ(A2).

2. µ(A1 [ A2) = µ(A1) + µ(A2)� µ(A1 \ A2)

3. µ

✓S
i2N

Ai

◆

P
i2N

µ(Ai) (sub-additivity)

Proof. 1. Note that A1 = A2 [ (A1 �A2) and that A2 and A1 �A2 are disjoint sets. Hence,

µ(A1) = µ(A2 [ (A1 � A2)) = µ(A2) + µ(A1 � A2), which implies µ(A2)  µ(A1). Now, if

µ(A2) < 1, µ(A1)� µ(A2) = µ(A2)� µ(A2) + µ(A1 � A2) = µ(A1 � A2).

2. A2 [A1 = A2 [ (A1 �A2) and A1 = (A2 \A1)[ (A1 �A2). By the second equality, given

that (A2 \ A1) and (A1 � A2) are disjoint, µ(A1) = µ(A2 \ A1) + µ(A1 � A2). By the first,

µ(A2 [A1) = µ(A2) + µ(A1 �A2). Hence, µ(A1) = µ(A2 \A1) + µ(A2 [A1)� µ(A2), which

gives 2.

3. Let B1 = A1, B2 = A2 � A1, B3 = A3 � [2
j=1Aj, · · · {Bi}i2N is a disjoint collection

and Bi ⇢ Ai for all i. Since,
S
i2N

Ai =
S
i2N

Bi, µ

✓S
i2N

Ai

◆
= µ

✓S
i2N

Bi

◆
=
P

i2N µ(Bi) 
P

i2N µ(Ai). ⌅

Theorem 1.9 establishes for measurable sets and arbitrary measures what seems intuitive

for intervals of R and their lengths. Hence, if we “measure” open or half-open intervals of

the type (a, b) or (a, b] by their length, l = (b � a), then it is easily verified l satisfies all

properties in Theorem 1.9.
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Measures have continuity properties that will play an important role in our study of

probability spaces. For this purpose we define what is meant by the limit of a sequence of

sets.

Definition 1.7. Let {Ai}i2N be a sequence of sets.

1. If A1 ⇢ A2 ⇢ A3 ⇢ · · · then lim
i!1

Ai :=
S
i2N

Ai,

2. if A1 � A2 � A3 � · · · then lim
i!1

Ai :=
T
i2N

An,

3. if {Ai}i2N is an arbitrary sequence of sets and n 2 N, let Bn =
T
i�n

Ai (note that

B1 ⇢ B2 ⇢ · · · ) and Cn =
S
i�n

Ai (note that C1 � C2 � · · · ). Then, let B := lim
n!1

Bn =
S
n2N

T
i�n

Ai and C := lim
n!1

Cn =
T
n2N

S
i�n

Ai. We say that A = lim
n!1

An exists if B = C,

and we write A = B = C. B is called the limit inferior of {Ai}i2N and denoted by

lim inf
i!1

Ai and C is called the limit superior of {Ai}i2N and denoted by lim sup
i!1

Ai.

Theorem 1.10. Let (X,F , µ) be a measure space. Then,

1. if A1 ⇢ A2 ⇢ · · · , µ(A) = lim
n!1

µ(An), where A = lim
n!1

An, and

2. if A1 � A2 � · · · and µ(A1) < 1, µ(A) = lim
n!1

µ(An), where A = lim
n!1

An.

Proof. 1. Let B1 = A1, B2 = A2�A1, B3 = A3�A2 · · · and note that An =
S

n

i=1 Bi. Hence,

µ (An) = µ (
S

n

i=1 Bi). Since Bi \ Bj = ; for all i 6= j, µ (An) =
P

n

i=1 µ(Bi). Taking limits

on both sides of the last equality gives,

lim
n!1

µ (An) = lim
n!1

nX

i=1

µ(Bi) =
X

i2N

µ(Bi) = µ

 
[

i2N

Bi

!
,

where the last equality follows from �-additivity of µ. Since,
S
i2N

Bi =
S
i2N

Ai = A, we have

lim
n!1

µ (An) = µ(A).

2. Since A1 is the largest set in the sequence {An}n2N, consider complements relative to

A1 putting Ac

n
:= A1 � An, and note that Ac

1 ⇢ Ac

2 ⇢ Ac

3 ⇢ · · · . Since A =
T
n2N

An, by
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de Morgan’s Laws A1 � A = Ac =
S
n2N

Ac

n
and, consequently, µ(A1 � A) = µ

✓ S
n2N

Ac

n

◆
=

µ
⇣
lim
n!1

Ac

n

⌘
= lim

n!1

µ(Ac

n
) = lim

n!1

µ (A1 � An), where the next to last equality follows from

part 1. By monotonicity of measures, µ(A1) < 1 =) µ(An), µ(A) < 18n, and by part 1

of Theorem 1.9 we have

µ(A1�A) = µ(A1)�µ(A) = lim
n!1

µ (A1 � An) = lim
i!1

(µ(A1)� µ(An)) = µ(A1)� lim
n!1

µ(An),

giving µ(A) = lim
n!1

µ(An). ⌅

As a matter of terminology, we say that part 1 of Theorem 1.10 establishes continuity of

measures from below, whereas part 2 establishes continuity of measures from above.

The next theorem gives necessary and sufficient conditions for a set function m : F !

[0,1] to be a measure.

Theorem 1.11. Let (X,F) be a measurable space. A function m : F ! [0,1] is a measure

if, and only if,

1. m(;) = 0,

2. for A1, A2 2 F disjoint m(A1 [ A2) = m(A1) +m(A2),

3. for {An}n2N ⇢ F and A1 ⇢ A2 ⇢ · · · with A = lim
n!1

An we have m(A) = lim
n!1

m(An).

Proof. ( =) ) If m is a measure then conditions 1 and 2 in this theorem follow directly

from properties 1 and 2 from the definition of measure. Condition 3 follows from part 1 of

Theorem 1.10.

((=) Now, assume that m satisfies conditions 1-3 in this theorem. Since condition 1 in

this theorem is the same as property 1, we need only show that m satisfies property 2 from

the definition of measure. Let {Bj}j2N be any pairwise disjoint sequence in F and define
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An :=
S

n

j=1 Bj. Then, A1 ⇢ A2 ⇢ · · · and A := lim
n!1

An =
S
n2N

An =
S
j2N

Bj. By condition 2,

we have m(An) =
P

n

j=1 m(Bj) and from condition 3 we conclude that

m

 
[

j2N

Bj

!
= m(A) = lim

n!1

m(An) = lim
n!1

 
nX

j=1

m(Bj)

!
=

1X

j=1

m(Bj),

establishing that m is �-additive.⌅

Remark 1.4. Condition 3 in Theorem 1.11 can be replaced by the assumption that m is

continuous from above if m(X) < 1. To see this, note that if m is a measure, it is continuous

from above by part 2 of Theorem 1.10. Now, assume that m is continuous from above

and consider a sequence {Bj}j2N of disjoint sets in F . Put An =
S

n

j=1 Bj and note that

Ac

1 � Ac

2 � · · · and m(Ac

n
) = m(X� An) = m

⇣
X�

S
n

j=1 Bj

⌘
.

lim
n!1

m(Ac

n
) = m

 
X�

n[

j=1

Bj

!
= m(X)� lim

n!1

m

 
n[

j=1

Bj

!
since m(X) < 1

= m(X)� lim
n!1

nX

j=1

m (Bj) = m(X)�
1X

j=1

m (Bj) by additivity of m. (1.1)

Now,

lim
n!1

m(Ac

n
) = m

 
\

j2N

Ac

j

!
by continuity of m from above

= m

  
[

j2N

Aj

!c!
by de Morgan’s Laws

= m(X)�m

 
[

j2N

Aj

!
= m(X)�m

 
[

j2N

Bj

!
. (1.2)

Combining (1.1) and (1.2) gives m

 
S
j2N

Bj

!
=
P
j2N

m (Bj).

Similarly, condition 3 in Theorem 1.11 can be replaced by the assumption that m is

continuous at ; if m(X) < 1. Continuity at ; means that if A1 � A2 � · · · and lim
n!1

An = ;

with µ(A1) < 1, then lim
n!1

µ(An) = µ(;) = 0.
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Since probability measures are finite, Theorem 1.11 and Remark 1.4 provide character-

izations for probability measures. Consequently, we state the following theorem without

proof.

Theorem 1.12. Let (⌦,F) be a measurable space. A function P : F ! [0, 1] is a probability

measure if, and only if,

1. P (;) = 0,

2. for A1, A2 2 F disjoint P (A1 [ A2) = P (A1) + P (A2),

3. for {An}n2N ⇢ F with A1 ⇢ A2 ⇢ · · · and A = lim
n!1

An we have

P (A) = lim
n!1

P (An).

Condition 3 can be substituted by either

3’. for {An}n2N ⇢ F with A1 � A2 � · · · and A = lim
n!1

An we have P (A) = lim
n!1

P (An)

or

3”. for {An}n2N ⇢ F with A1 � A2 � · · · and lim
n!1

An = ; we have lim
n!1

P (An) = P (;) =

0.

In addition, since in probability spaces P (⌦) = 1, P has properties that general measures

do not have. In the next theorem we establish some of these properties.

Theorem 1.13. Let (⌦,F , P ) be a probability space. Then,

1. P (Ac) = 1� P (A) 8A 2 F ,

2. A ⇢ B =) P (A)  P (B) 8A, B 2 F ,
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3. if {Ai}ni=1 ⇢ F for n 2 N then

P

 
n[

i=1

Ai

!
=

nX

i=1

P (Ai)�
X

1i1<i2n

P (Ai1 \ Ai2) +
X

1i1<i2<i3n

P (Ai1 \ Ai2 \ Ai3)

+ · · ·+ (�1)n+1P

 
n\

i=1

Ai

!
(1.3)

Proof. 1. ⌦ = A [ Ac. Hence, 1 = P (⌦) = P (A) + P (Ac) =) P (Ac) = 1� P (A).

2. follows from Theorem 1.9.1.

3. Let n = 2. Then, from Theorem 1.9.2 we have

P (A1 [ A2) = P (A1) + P (A2)� P (A1 \ A2). (1.4)

Now, let B1 = A1, B2 = B1 [ A2 = A1 [ A2, B3 = B2 [ A3 = A1 [ A2 [ A3, · · · , Bn�1 =

Bn�2 [ An�1 = A1 [ · · · [ An�1. Now, suppose

P (Bn�1) = P

 
n�1[

i=1

Ai

!
=

n�1X

i=1

P (Ai)�
X

1i1<i2n�1

P (Ai1 \ Ai2)

+
X

1i1<i2<i3n�1

P (Ai1 \ Ai2 \ Ai1) + · · ·+ (�1)nP (A1 \ A2 \ · · · \ An�1). (1.5)

We will show that (1.4) and (1.5) imply (1.3), establishing 3. by induction. From (1.4) we

have that

P (Bn) = P ([n

i=1Ai) = P (Bn�1 [ An) = P (Bn�1) + P (An)� P (Bn�1 \ An)

= P (Bn�1) + P (An)� P (([n�1
i=1 Ai) \ An)

= P (Bn�1) + P (An)� P ([n�1
i=1 (Ai \ An))

= P (Bn�1) + P (An)� P ([n�1
i=1 Ci), where Ci = (Ai \ An).

But,

P
�
[n�1

i=1 Ci

�
=

n�1X

i=1

P (Ci)�
X

1i1<i2n�1

P (Ci1 \ Ci2) +
X

1i1<i2<i3n�1

P (Ci1 \ Ci2 \ Ci3)+

· · ·+ (�1)nP (C1 \ C2 \ · · · \ Cn�1),
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with

n�1X

n=1

P (Ci) =
n�1X

i=1

P (Ai \ An)

X

1i1<i2n�1

P (Ci1 \ Ci2) =
X

1i1<i2n�1

P (Ai1 \ An \ Ai2 \ An)

=
X

1i1<i2n�1

P (Ai1 \ Ai2 \ An)

X

1i1<i2<i3n�1

P (Ci1 \ Ci2 \ Ci3) =
X

1i1<i3<i3n�1

P (Ai1 \ Ai2 \ Ai3 \ An)

...

P (C1 \ C2 \ · · · \ Cn�1) = P (A1 \ · · · \ An).

Then, we have

P (Bn) =
n�1X

i=1

P (Ai)�
X

1i1<i2n�1

P (Ai1 \ Ai2) +
X

1i1<i2<i3n�1

P (Ai \ Aj \ Ak)+

· · ·+ (�1)nP (A1 \ A2 \ · · · \ An�1) + P (An)

�
n�1X

i=1

P (Ai \ An) +
X

1i1<i2n�1

P (Ai1 \ Ai2 \ An)

�
X

1i1<i2<i3n�1

P (Ai1 \ Ai2 \ Ai3 \ An) + · · ·+ (�1)n+1P (Ai1 \ · · · \ An)

=
nX

i=1

P (Ai)�
X

i1<i2

P (Ai1 \ Ai2) +
X

i1<i2<i3

P (Ai1 \ Ai2 \ Ai3) + · · ·

+ (�1)n+1P (\n

i=1Ai).

⌅

Remark 1.5. Note that the terms on the right side of (1.3) alternate in sign.

The next theorem shows that probability measures are continuous set functions.

Theorem 1.14. Let (⌦,F , P ) be a probability space, {An}n2N ⇢ F and suppose A = lim
n!1

An

exists. Then, A 2 F and P (An) ! P (A) as n ! 1.
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Proof. Since {An}n2N ⇢ F has a limit, there exist C1 � C2 � C3 � · · · and B1 ⇢ B2 ⇢

B3 ⇢ · · · as in Definition 1.7. Furthermore, since F is closed under countable unions and

intersections, Bn, Cn 2 F 8 n 2 N. Since A exists, B =
S
n2N

Bn =
T
n2N

Cn = C = A and

A 2 F . By construction, B = B1[ (B2�B1)[ (B3�B2)[ · · · = �1[�2[ · · · . The collection

{�1,�2, · · · } is pairwise disjoint. By �-additivity of measures we have P (B) =
P
i2N

P (�i) =

lim
n!1

P
n

i=1 P (�i). But,
P

n

i=1 P (�i) = P (Bn), where Bn = B1[ (B2�B1)[ · · ·[ (Bn�Bn�1).

Hence, P (B) = lim
n!1

P (Bn).

By De Morgan’s Laws C =
T
i2N

Ci =

✓S
i2N

Cc

i

◆c

. Therefore, P (C) = 1�P

✓S
i2N

Cc

i

◆
. Now,

S
i2N

Cc

i
= Cc

1 [ (Cc

2 � Cc

1) [ (Cc

3 � Cc

2) · · · = ✓1 [ ✓2 [ ✓3 · · · , where the collection {✓1, ✓2, · · · }

is pairwise disjoint. Hence, P
✓S

i2N

Cc

i

◆
=
P
i2N

P (✓i) = lim
n!1

P
n

i=1 P (✓i). But
P

n

i=1 P (✓i) =

P (Cc

n
) and P (Cc

n
) = 1 � P (Cn). Hence, P

✓S
i2N

Cc

i

◆
= lim

n!1

(1 � P (Cn)) = 1 � lim
n!1

P (Cn).

Consequently, P (C) = 1�
⇣
1� lim

n!1

P (Cn)
⌘
= lim

n!1

P (Cn).

Finally, by construction, Bn ⇢ An ⇢ Cn, for all n. Therefore, P (Bn)  P (An)  P (Cn)

and lim
n!1

P (Bn)  lim
n!1

P (An)  lim
n!1

P (Cn) or P (B)  lim
n!1

P (An)  P (C) and consequently

since A = B = C, lim
n!1

P (An) = P (A). ⌅

1.4 Null sets and complete measure spaces

Definition 1.8. Let (X,F , µ) be a measure space. N 2 F is called a µ-null set or, simply,

a null set if µ(N) = 0. The collection containing all µ-null sets in F is denoted by Nµ.

Since ; 2 F and µ(;) = 0 we have that ; 2 Nµ. Also, if N 2 Nµ, M ⇢ N and M 2 F ,

by monotonicity of measures 0  µ(M)  µ(N) = 0. Hence, M 2 Nµ. In addition, if

{Nj}j2N ⇢ Nµ, by sub-additivity of measures 0  µ

 
S
j2N

Nj

!

P
j2N

µ(Nj) = 0. Hence,
S
j2N

Nj 2 Nµ.

Note that there might be subsets M of µ-null sets that are not in F . This motivates the
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following definition.

Definition 1.9. A measure space (X,F , µ) is said to be complete if every subset of µ-null

sets is an element of F .

The next theorem shows that any measure space can be “completed” in such a way that

the resulting measure space is complete.

Theorem 1.15. Let (X,F , µ) be a measure space and define:

1. F̄ := {F [M : F 2 F and M 2 S} where S is the collection of all subsets of µ-null

sets,

2. µ̄ : F̄ ! [0, 1] such that µ̄(F [M) = µ(F ).

(X, F̄ , µ̄) is a complete measure space and F ⇢ F̄ .

Proof. First, note that since ; 2 S, we have 8 F 2 F that F [ ; = F 2 F̄ . Hence, F ⇢ F̄ .

Now, we verify the that F̄ satisfies the defining characteristics for �-algebras.

1. X 2 F̄ : this follows from the fact that X 2 F ⇢ F̄ .

2. A 2 F̄ =) Ac 2 F̄ : A 2 F̄ =) A = F[M where F 2 F and M 2 S and M ⇢ N 2

Nµ. Ac = F c\M c = F c\M c\X = F c\M c\(N c[N) = (F c\M c\N c)[(F c\M c\N).

Since M ⇢ N , M c � N c and therefore Ac = (F c \ N c) [ (F c \ M c \ N). But since

(F c \N c) 2 F and F c \M c \N ⇢ N , by definition Ac 2 F̄ .

3. {Aj}j2N ⇢ F̄ =)
S
j2N

Aj 2 F̄ : since Aj 2 F̄ , Aj = Fj[Mj where Fj 2 F and Mj 2 S.

Now,
[

j2N

Aj =
[

j2N

(Fj [Mj) =

 
[

j2N

Fj

!
[
 
[

j2N

Mj

!
.

Now,
S
j2N

Fj 2 F and
S
j2N

Mj ⇢
S
j2N

Nj where Nj 2 Nµ. Hence,
S
j2N

Nj 2 Nµ and
S
j2N

Mj 2 S. Then, by definition
S
j2N

Aj 2 F̄ .
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We now show that µ̄ is a measure on F̄ . Note that A 2 F̄ is not uniquely represented

as we may have G [ O = A = F [M . Note that for µ̄ to be well-defined we need µ(G) =

µ̄(G [O) = µ̄(A) = µ̄(F [M) = µ(F ), i.e., µ(G) = µ(F ). Now,

F ⇢ F[M = G[O ⇢ G[N where N 2 Nµ and G ⇢ G[O = F[M ⇢ F[N 0 where N 0 2 Nµ.

Consequently, µ(F )  µ(G) + µ(N) and µ(G)  µ(F ) + µ(N 0). Since µ(N) = µ(N 0) = 0 we

have µ(F ) = µ(G).

Now, we verify that µ̄ satisfies the defining properties of measures.

1. Since ; = ; [ ; 2 F̄ , we have µ̄(;) = µ(;) = 0.

2. Let {Aj}j2N ⇢ F̄ be a pairwise disjoint collection. Since Aj = Fj [ Mj, it must be

that {Fj}j2N is a pairwise disjoint collection.

µ̄

 
[

j2N

Aj

!
= µ̄

 
[

j2N

(Fj [Mj)

!
= µ̄

  
[

j2N

Fj

!
[
 
[

j2N

Mj

!!

= µ

 
[

j2N

Fj

!
=
X

j2N

µ(Fj) =
X

j2N

µ̄(Fj [Mj) =
X

j2N

µ̄(Aj).

Hence, (X, F̄ , µ̄) is a measure space. We now verify that it is complete. Take N 2 Nµ̄ and

A ⇢ N . We need to show that A 2 F̄ . Note that A ⇢ N = F [M where F 2 F and M 2 S.

Since 0 = µ̄(N) = µ(F ) and M is a subset of a µ-null set (N 0), then

A ⇢ N = F [M ⇢ F [N 0 2 F and µ(F [N 0)  µ(F ) + µ(N 0) = 0.

Hence, A is a subset of a µ-null set and therefore A 2 S. In particular, A = A [ ; and

A 2 F̄ .⌅

1.5 Independence of events and conditional probability

We start by defining probabilistic independence of events.
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Definition 1.10. Let (⌦,F , P ) be a probability space, 2  n 2 N and {Ei}1in ⇢ F . The

events E1, · · · , En 2 F are said to be independent if

P

 
\

m2I

Em

!
=
Y

m2I

P (Em) for all I ⇢ {1, · · · , n} with #I � 2 . (1.6)

Remark 1.6. Note that (1.6) contains
P

n

i=2

✓
n
i

◆
= 2n � n � 1 equations. All of them

must hold to characterize independence of the events E1, · · · , En 2 F .

If two events are independent, their complements are independent and so are any of the

events with the complement of the other.

Theorem 1.16. Let (⌦,F , P ) be a probability space. If E1, E2 2 F are independent, then:

1. E1 and Ec

2 are independent (or Ec

1 and E2 are independent).

2. Ec

1 and Ec

2 are independent.

Proof. 1. Recall that E1 [ E2 = E2 [ (E1 \ Ec

2) and P (E1 [ E2) = P (E2) + P (E1 \ Ec

2).

The last equality together with Theorem 1.9.2 gives P (E1) � P (E1 \ E2) = P (E1 \ Ec

2).

Now, by independence of E1 and E2 we have P (E1 \ Ec

2) = P (E1) � P (E1)P (E2). Hence,

P (E1 \ Ec

2) = P (E1)(1� P (E2)) = P (E1)P (Ec

2).

2. Note that

Ec

1 \ Ec

2 = (E1 [ E2)
c by DeMorgan’s Laws. Hence,

P (Ec

1 \ Ec

2) = P ((E1 [ E2)
c)

P (Ec

1 \ Ec

2) = 1� P (E1 [ E2) by Theorem 1.13

= 1� (P (E1) + P (E2)� P (E1)P (E2)) by independence of E1 and E2

= (1� P (E1))(1� P (E2)) = P (Ec

1)P (Ec

2),

as desired. ⌅
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There is a useful probability measure that can easily be defined from knowledge of

(⌦,F , P ), given a certain event E. It is called conditional probability on E. What fol-

lows is a definition.

Definition 1.11. Let (⌦,F , P ) be a probability space. Given any E 2 F such that P (E) > 0,

we define P (·|E) : F ! [0, 1] as

P (A|E) =
P (A \ E)

P (E)
8A 2 F .

Note that P (;|E) = P (;\E)/P (E) = P (;)/P (E) = 0 and P (⌦|E) = P (⌦\E)/P (E) =

P (E)/P (E) = 1. In addition, if {Ej}j2N forms a pairwise disjoint collection of events

P

 
[

j2N

Ej|E
!

=

P

  
S
j2N

Ej

!
\ E

!

P (E)
=

P

 
S
j2N

(Ej \ E)

!

P (E)
=
X

j2N

P (Ej \ E)

P (E)
=
X

j2N

P (Ej|E).

Hence, P (·|E) is a probability measure on (⌦,F) and P (A|E) is called the probability of A

conditional on E.

The notion of independence between two events is related to the notion of conditional

probability. In fact, as the next theorem demonstrates, if knowledge of event E does not

change the probability of event A, i.e., if P (A|E) = P (A), then A and E are independent.

Theorem 1.17. Let (⌦,F , P ) be a probability space and E1, E2 2 F such that P (E2) > 0.

E1 and E2 are independent () P (E1|E2) = P (E1).

Proof. (=)) Since E1 and E2 are independent P (E1\E2) = P (E1)P (E2) and since P (E1|E2) =

P (E1\E2)
P (E2)

we have P (E1|E2) =
P (E1)P (E2)

P (E2)
= P (E1).

((=) P (E1|E2) = P (E1) =) P (E1 \ E2)/P (E2) = P (E1). Hence, P (E1 \ E2) =

P (E1)P (E2) =) E1 and E2 are independent. ⌅
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Theorem 1.18. Let (⌦,F , P ) be a probability space and {Ej}1jn ⇢ F . If P

 
T

1jn�1
Ej

!
>

0 then

P

 
\

1jn

Ej

!
= P (E1)P (E2|E1)P (E3|E1 \ E2) · · ·P (En|E1 \ E2 \ · · · \ En�1). (1.7)

Proof. Note that if P

 
T

1jn�1
Ej

!
> 0 then P

 
T

1jm

Ej

!
> 0 for all m < n � 1. Hence,

all conditional probabilities on the right-hand side of (1.7) are well defined.

For n = 2, we have that if P (E1) > 0, P (E2|E1) = P (E1 \ E2)/P (E1) which implies

P (E1 \ E2) = P (E1)P (E2|E1). (1.8)

Now, assume that

P

 
\

1jn�1

Ej

!
= P (E1)P (E2|E1)P (E3|E1 \ E2) · · ·P (En�1|E1 \ E2 \ · · · \ En�2) (1.9)

and define Bn = (E1 \ E2 · · ·En�1) \ En. Then,

P (Bn) = P (E1 \ · · · \ En�1)P (En|E1 \ · · · \ En�1) by (1.8)

= P (E1)P (E2|E1) · · ·P (En�1|E1 \ E2 \ · · · \ En�2)P (En|E1 \ · · · \ En�1) by (1.9).

The result follows by induction. ⌅

The next theorem provides the total probability formula for an event. It is the foundation

for Bayes’ Theorem, which plays an important role in statistics. First, we define a partition

of a set ⌦.

Definition 1.12. {E1, E2, · · · } is a partition of ⌦ if
S
i2N

Ei = ⌦ and Ei \ Ej = ;, for all

i 6= j.

Theorem 1.19. Let (⌦,F , P ) be a probability space and {E1, E2, · · · } 2 F be a partition of

⌦ with P (Ei) > 0 for all i 2 N. If A 2 F ,

P (A) =
X

i2N

P (A|Ei)P (Ei).
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Proof. A = A\⌦ = A\
✓S

i2N

Ei

◆
=
S
i2N

(A\Ei). The collection {(A\E1), (A\E2), · · · } is

pairwise disjoint. Therefore, P (A) =
P

i2N P (A \ Ei) =
P

i2N P (A|Ei)P (Ei). ⌅

Theorem 1.20. (Bayes’ Theorem) Let (⌦,F , P ) be a probability space and {Ej}j2N ⇢ F be

a partition of ⌦ with P (Ei) > 0 for all i 2 N. Let A 2 F such that P (A) > 0. Then,

P (Ei|A) =
P (A|Ei)P (Ei)P

j2N

P (A|Ej)P (Ej)
,

Proof. By Theorem (1.19) P (A) =
P
j2N

P (A|Ej)P (Ej) 6= 0. Hence,

P (Ei|A) =
P (Ei \ A)

P (A)
=

P (A|Ei)P (Ei)P
j2N

P (A|Ej)P (Ej)

which establishes the desired result. ⌅

In the context of Bayes’ Theorem, P (Ei) is called the prior probability of Ei and P (Ei|A)

is called the posterior probability of Ei given the event A. The following example illustrates

how posterior probabilities can be obtained from priors.

Example 1.3. Suppose that each student in a class can be classified as good G or bad B.

The probability of selecting a good student from a class is P (G) = 0.7 and, consequently, the

probability of selecting a bad student is P (B) = 0.3. A student may pass A or fail F a class.

The probability that a good student will pass is P (A|G) = 0.9 and the probability that a bad

student will pass is P (A|B) = 0.4. We are interested in the probability that a student that

fails is a good student, i.e., P (G|F ). From Bayes’ Theorem,

P (G|F ) =
P (F |G)P (G)

P (F |G)P (G) + P (F |B)P (B)
=

0.1⇥ 0.7

0.1⇥ 0.7 + 0.6⇥ 0.3
= 0.28.

Taking the prior probabilities as given, minimization P (G|F ) involves maximizing P (F |B)

and minimizing P (F |G).
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1.6 Exercises

1. Let f : N⇥N! R be a double sequence with typical value given by f(m,n). Assume

that

(a) for every n 2 N, f(m1, n)  f(m2, n) whenever m1  m2,

(b) for every m 2 N, f(m,n1)  f(m,n2) whenever n1  n2.

Show that lim
n!1

⇣
lim

m!1

f(m,n)
⌘
= lim

m!1

⇣
lim
n!1

f(m,n)
⌘
= lim

n!1

f(n, n).

As a corollary, show that if f(m,n) � 0 then
P
n2N

P
m2N

f(m,n) =
P
m2N

P
n2N

f(m,n).

2. Let X be an arbitrary set and consider the collection of all subsets of X that are

countable or have countable complements. Show that this collection is a �-algebra.

Use this fact to obtain the �-algebra generated by C = {{x} : x 2 R}.

3. Denote by B(x, r) an open ball in Rn centered at x and with radius r. Show that the

Borel sets are generated by the collection B = {Br(x) : x 2 Rn, r > 0}.

4. Let (⌦,F) be a measurable space. Show that: a) if µ1 and µ2 are measures on (⌦,F),

then µc(F ) := c1µ1(F ) + c2µ2(F ) for F 2 F and all c1, c2 � 0 is a measure; b) if

{µi}i2N are measures on (⌦,F) and {↵i}i2N is a sequence of positive numbers, then

µ1(F ) =
P

i2N ↵iµi(F ) for F 2 F is a measure.

5. Let (⌦,F , µ) be a measure space and G ⇢ F be a �-algebra. In this case, we call G a

sub-�-algebra of F . Let ⌫ := µ|G be the restriction of µ to G. That is, ⌫(G) = µ(G)

for all G 2 G. Is ⌫ a measure? If µ is finite, is ⌫ finite? If µ is a probability, is ⌫ a

probability?

6. Show that a measure space (⌦,F , µ) is �-finite if, and only if, there exists {Fn}n2N 2 F

such that [n2NFn = ⌦ and µ(Fn) < 1 for all n.
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7. Let (⌦,F , P ) be a probability space and {En}n2N ⇢ F . Show that if
P

1

n=1 P (En) < 1

then P

✓
limsup
n!1

En

◆
= 0.

8. Let {Ej}j2J be a collection of pairwise disjoint events. Show that if P (Ej) > 0 for

each j 2 J , then J is countable.

9. Consider the extended real line, i.e., R̄ := R [ {�1} [ {1}. Let B̄ := B(R̄) be

defined as the collection of sets B̄ such that B̄ = B [ S where B 2 B(R) and S 2

{;, {�1}, {1}, {�1,1}}. Show that B̄ is a �-algebra and that it is generated by a

collection of sets of the form [a,1] where a 2 R.

10. If E1, E2, · · · , En are independent events, show that the probability that none of them

occur is less than or equal to exp (�
P

n

i=1 P (Ei)).

11. Let {An}n2N and {Bn}n2N be events (measurable sets) in a probability space with

measure P with limAn = A, limBn = B, P (Bn), P (B) > 0 for all n. Show that

P (An|B) ! P (A|B), P (A|Bn) ! P (A|B), P (An|Bn) ! P (A|B) as n ! 1.

12. Let (X, F̄ , µ̄) be the measure space defined in Theorem 1.15 and C = {G 2 X :

9A, B 2 F 3 A ⇢ G ⇢ B and µ(B � A) = 0}. Show that F̄ = C.
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