
Chapter 10

Central limit theorems

10.1 Characteristic functions

We will start with the definition of a characteristic function. To this end recall that by a

complex number x we mean an ordered pair of real numbers. The set of all complex numbers

is denoted by C. Thus, if x = (x1, x2) is a complex number, we say that x1 is the real part

of x and x2 is the imaginary part of x. If x, y 2 C we define x + y = (x1 + y1, x2 + y2) and

xy = (x1y1 � x2y2, x1y2 + x2y1). We write x = y if, and only if, x1 = y1 and x2 = y2. The

complex number (0, 1) is denoted by i and is called the imaginary unit. Given the definition

of product of complex numbers, i2 = �1 (or i2 = (�1, 0)).

Every complex number x can be written as x = x1+ ix2. To see this, let x1 = (x1, 0) and

x2 = (x2, 0). Then, ix2 = (0, 1)(x2, 0) = (0, x2) and x1+ix2 = (x1, 0)+(0, x2) = (x1, x2) = x.

The complex number x̄ = x1� ix2 is called the complex conjugate of x and xx̄ = (x2
1+x2

2, 0).

The “absolute value” of a complex number is defined by |x| = (x2
1 + x2

2)
1/2 and if x 6= (0, 0)

then x�1 = (x1/(x2
1 + x2

2),�x2/(x2
1 + x2

2)) so that x�1x = (1, 0).

If x = x1 + ix2 we define ex = ex1+ix2 := ex1(cos(x2) + i sin(x2)) (Euler’s formula). This

definition gives the following desirable properties of complex exponentials,

exey = ex+y, ex 6= 0, |eix2 | = | cos(x2) + i sin(x2)| = (cos(x2)
2 + sin(x2)

2)1/2 = 1.

If X1, X2 : (⌦,F , P ) ! (R,B) are random variables, we say that X = X1+ iX2 is a complex
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valued random variable and its distribution FX is defined as usual in terms of the joint

distribution of X1 and X2, i.e.,

FX(x1, x2) = P ({! : X1(!)  x1} \ {! : X2(!)  x2}) = PX ((�1, x1]⇥ (�1, x2]) .

Since, |X| = (X2
1 + X2

2 )
1/2 we have that E(|X|2) = E(X2

1 ) + E(X2
2 ). Thus, if X1, X2 2

L2(⌦,F , P ) then E(|X|2) < 1. Also, we naturally write E(X) = E(X1) + iE(X2).

Note that algebraically |X| is the Euclidean norm for vectors in R2 and, therefore, it is

a convex function. By Jensen’s Inequality, for any Borel measurable convex function g and

integrable random variable Z we have that g(E(Z))  E(g(Z)). Consequently, |E(X)| 

E(|X|).

Definition 10.1. The characteristic function of a random variable X : (⌦,F , P ) ! (R,B)

with distribution FX is the complex valued function

�X(t) := E(eitX) for t 2 R.

Remark 10.1. 1. By definition (or Euler’s formula) eitx = cos(tx) + i sin(tx). Hence,

�X(t) = E(cos(tX) + i sin(tX)) =

Z

⌦

cos(tX)dP + i

Z

⌦

sin(tX)dP

=

Z

R

cos(tX)dPX + i

Z

R

sin(tX)dPX

=

Z

R

cos(tx)dFX(x) + i

Z

R

sin(tx)dFX(x).

2. |�X(t)| = |E(eitX)|  E(|eitX |) = E(| cos(tX)+i sin(tX)|) = E
�
(cos2(tX) + sin2(tX))1/2

�
=

1. Hence, E(eitX) always exists and �X(0) = 1.

166



3. Now, for h 2 R

|�X(t+ h)� �X(t)| = |E
�
ei(t+h)X

�
� E

�
eitX

�
| = |E(eitX+ihX � eitX)|

= |E(eitX(eihX � 1))|

 E
�
|eitX ||eihX � 1|

�

 E
�
|eihX � 1|

�
=

Z

R

|eihX � 1|dPX .

Now, eihx � 1 = cos(hx)� 1 + i sin(hx) and

|eihx � 1| =
�
(cos(hx)� 1)2 + sin2(hx)

�1/2
= (2(1� cos(hx)))1/2  2.

Hence, as |h| ! 0, |eihx�1| ! 0. Consequently, by Lebesgue’s Dominated Convergence

Theorem,
R
R
|eihX � 1|dPX ! 0 as |h| ! 0. Thus, �X(t) is uniformly (the bound is

independent of t) continuous.

4. Let Y = X�µ

�
, for µ 2 R and � > 0. Then,

�Y (t) = E(eitY ) = E(eit(
X�µ

� )) = E(e
�itµ
� e

itX
� )

= e�
itµ
� E(e

itX
� ) = e�

itµ
� �X

✓
t

�

◆
.

5. The characteristic function of �X is ��X(t) = E(ei(�t)X) = �X(�t).

�X(�t) =

Z

R

cos(�tX)dPX + i

Z

R

sin(�tX)dPX

=

Z

R

cos(tX)dPX � i

Z

R

sin(tX)dPX , because cos(x) is even and sin(x) is odd.

= �̄X(t), the complex conjugate of �X(t).

Since the imaginary part of a complex number x is (x � x̄)/2 and �X(t) � �̄X(t) =

i 2
R
R
sin(tX)dPX , �X(t) is real valued if, and only if,

R
R
sin(tX)dPX = 0. In this case,

�X and X have the same characteristic function.

167



6. If there exists a density fX associated with PX , e.g.,

FX(x) =

Z

(�1,x]

fXd�

such that fX is even, then

�X(t) =

Z

R

eitxfX(x)dx =

Z 0

�1

eitxfX(x)dx+

Z
1

0

eitxfX(x)dx

changing variables in the first integral by setting �y = x,

=

Z 0

1

e�ityfX(�y)(�1)dy +

Z
1

0

eitxfX(x)dx

=

Z
1

0

e�itxfX(x)dx+

Z
1

0

eitxfX(x)dx

=

Z
1

0

(e�itx + eitx)fX(x)dx

=

Z
1

0

(cos(tx)� i sin(tx) + cos(tx) + i sin(tx))fX(x)dx

= 2

Z
1

0

cos(tx)fX(x)dx.

Hence, symmetric densities give real-valued characteristic functions.

7. If X and Y are independent, then �X+Y (t) is E(eit(X+Y )) = E(eitX)E(eitY ) = �X(t)�Y (t).

8. Let {Xj}j=1,2,··· ,n be a sequence of IID random variables and Sn =
P

n

j=1 Xj.

E(eitSn) =
nY

j=1

E(eitXj) = (�X1(t))
n .

Theorem 10.1. Let �X(t) be a characteristic function. If E(|X|s) < 1 for s = 1, 2, · · ·

ds

dts
�X(t) =

Z

R

(iX)seitXdPX = E((iX)seitX).

Proof. For h 6= 0 consider

�X(t+ h)� �X(t)

h
=

1

h

�
E(ei(t+h)X)� E(eitX)

�

=
1

h

✓Z

R

ei(t+h)XdPX �
Z

R

eitXdPX

◆

=

Z

R

ei(t+h)X � eitX

h
dPX .
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Then, for x 6= 0

ei(t+h)x � eitx

h
= x

cos(x(t+ h))� cos(tx)

hx
+ ix

sin(x(t+ h))� sin(tx)

hx
.

Taking limits on both sides as h ! 0 we have that

d

dt
eitx = lim

h!0

ei(t+h)x � eitx

h
= �x sin(tx) + ix cos(tx) = ix(cos(tx) + i sin(tx)) = ixeitx.

In addition, |ixeitx| = (x2 sin2(tx) + x2 cos2(tx))1/2 = |x|. Hence, if
R
R
|X|dPX < 1 we have

by Theorem 3.15
d

dt
�X(t) =

Z

R

(iX)eitXdPX = E((iX)eitX).

For s = 2, 3, · · · use the same argument with integrands (ix)s�1eitx. ⌅

An immediate consequence of this theorem is that d
s

dts
�X(0) = isE(Xs).

Theorem 10.2. For x 2 R we have
�����e

ix �
nX

k=0

(ix)k

k!

�����  min

⇢
|x|n+1

(n+ 1)!
,
2|x|n
n!

�
.

Proof. Note that for n � 0, x > 0 and integration by parts (Riemann-Stieltjes integrals)
Z

x

0

eis(x� s)nds =

Z
x

0

eisd

✓
�(x� s)n+1

n+ 1

◆

= �eis
(x� s)n+1

n+ 1
|x0 �

Z
x

0

✓
�(x� s)n+1

(n+ 1)

◆
deis

=
xn+1

n+ 1
+ i

Z
x

0

(x� s)n+1

n+ 1
eisds. (10.1)

For n = 0,
R

x

0 eisds = x+ i
R

x

0 (x� s)eisds. By Taylor’s Theorem, with remainder in integral

form, at x = 0

eix = 1 + ix+ i2
Z

x

0

(x� s)eisds

= 1 + ix+ i2
✓
x2

2!
+

i

2!

Z
x

0

(x� s)2eisds

◆
using equation (10.1) with n = 1.
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Repeated substitution of the integral inside the parenthesis gives

eix = 1 + ix+
(ix)2

2!
+ · · ·+ (ix)n

n!
+

in+1

n!

Z
x

0

(x� s)neisds

=
nX

k=0

(ix)k

k!
+

in+1

n!

Z
x

0

(x� s)neisds. (10.2)

Hence, �����e
ix �

nX

k=0

(ix)k

k!

����� =
����
in+1

n!

Z
x

0

(x� s)neisds

���� .

But,
����
Z

x

0

(x� s)neisds

���� 
Z

x

0

(x� s)n|eis|ds =
Z

x

0

(x� s)nds = �(x� s)n+1

n+ 1
|x0 =

xn+1

n+ 1
.

Thus, �����e
ix �

nX

k=0

(ix)k

k!

����� 
|in+1|
n!

xn+1

(n+ 1)
=

xn+1

(n+ 1)!
.

Now, from equation (10.1)
Z

x

0

eis(x� s)n�1ds� xn

n
=

i

n

Z
x

0

(x� s)neisds.

Multiplying by i
n

(n�1)! , we get

in

(n� 1)!

Z
x

0

eis(x� s)n�1ds� (ix)n

n!
=

in+1

n!

Z
x

0

(x� s)neisds.

Hence, using equation (10.2)

in

(n� 1)!

Z
x

0

eis(x� s)n�1ds� (ix)n

n!
= eix �

nX

k=0

(ix)k

k!

and consequently �����e
ix �

nX

k=0

(ix)k

k!

����� 
|in|

(n� 1)!

xn

n
+

xn

n!
= 2

xn

n!
.

Hence, combining the two bounds we have
�����e

ix �
nX

k=0

(ix)k

k!

�����  min

⇢
xn+1

(n+ 1)!
, 2

xn

n!

�
.
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A similar argument applies for x < 0 to give,
�����e

ix �
nX

k=0

(ix)k

k!

�����  min

⇢
|x|n+1

(n+ 1)!
, 2

|x|n
n!

�
.

If x = 0 the two sides of the weak inequality coincide. ⌅

Remark 10.2. 1. Suppose X is a random variable such that E(|X|k) < 1 for k =

1, 2, · · · , n. Then,
������X(t)�

nX

k=0

(it)k

k!
E(Xk)

����� =

�����E(eitX)� E

 
nX

k=0

(it)k

k!
Xk

!�����  E

 �����e
itX �

nX

k=0

(itX)k

k!

�����

!

 E

✓
min

⇢
2|tX|n
n!

,
|tX|n+1

(n+ 1)!

�◆
.

Note that,

E

✓
min

⇢
2|tX(!)|n

n!
,
|tX(!)|n+1

(n+ 1)!

�◆

Z

⌦

2|t|n
n!

|X(!)|ndP = 2
|t|n
n!

E(|X|n).

Hence, in this context there is no need to assume that E(|X|n+1) exists, only E(|X|n).

2. In the case where E(|X|n) exist and, if for all t

lim
n!1

|t|nE(|X|n)
n!

= 0

we have �X(t) =
P

1

k=0
(it)k

k! E(Xk).

3. Different bounds can be obtained for the E
⇣
min

n
2|tX(!)|n

n! , |tX(!)|n+1

(n+1)!

o⌘
= E (min {g(!), h(!)}).

In particular, for any ✏ > 0 and A = {! : |X(!)| > ✏}

E

✓
min

⇢
2|tX(!)|n

n!
,
|tX(!)|n+1

(n+ 1)!

�◆

Z

g(!)IAdP +

Z
h(!)IAcdP

 2
|t|n
n!

Z

A

|X(!)|ndP +
|t|n+1

(n+ 1)!
✏

Z
|X(!)|ndP

or

E

✓
min

⇢
2|tX(!)|n

n!
,
|tX(!)|n+1

(n+ 1)!

�◆
=

Z
g(!)IAdP +

Z
h(!)IAcdP

 2
|t|n
n!

Z

A

|X(!)|ndP +
|t|n+1

(n+ 1)!
✏n+1

4. If X ⇠ N(µ, �2) then E(eitX) = eiµt�
�2

2 t
2.

171



The characteristic function for a random vector X 2 Rd is defined as follows.

Definition 10.2. The characteristic function of a random vector X : (⌦,F , P ) ! (Rd,Bd)

with distribution FX is the complex valued function

�X(t) := E(eit
T
X) for t 2 Rd.

Remark 10.3. If X ⇠ N(µ,⌃) where µ 2 Rd and ⌃ is a d ⇥ d matrix, the characteristic

function �X(t) is given by E(eit
T
X) = eit

T
µ�

1
2 t

T⌃t.

It follows directly from the definition of a characteristic function � that if F = G where

F and G are distribution functions, then � associated with F is identical to the � associated

with G. That is, if two distributions coincide, so do their characteristic functions. The next

theorem establishes that if two characteristic functions are the same they are associated with

the same distribution function.

Theorem 10.3. Let F and G be two distributions with the same characteristic function.

That is, Z

R

eitxdF (x) =

Z

R

eitxdG(x) for all t 2 R.

Then, F = G.

Proof. Let F (x)�G(x) = D(x). We need to show that
Z

R

eitxdD(x) = 0 for all t 2 R (10.3)

implies D(x) = 0. We first note that D(x) is the difference between two distributions

functions, i.e., two bounded monotone increasing functions. Hence, D(x) is of bounded

variation on R.1. Now, equation (10.3) holds for any trigonometric polynomial

T (x) =
nX

v=�n

ave
i(�v)x

1
See Natanson (1955, The Theory of Functions of a Real Variable, Frederick Ungar Publishing Co., New

York) Theorem 5, p. 239.
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for � 2 R. Consequently, (10.3) also holds for any function which is the uniform limit of a

trigonometric polynomial T (x). Hence, by Weierstrass approximation theorem it also holds

for any continuous periodic function h(x).2

Let g be a continuous function that vanishes outside a bounded interval I, and choose

m > 0 sufficiently large so that I ⇢ (�m,m]. Define hm as a continuous periodic function

of periods 2m such that hm(x) = g(x) for �m < x  m. Then, equation (10.3) holds for

hm. Since D is of bounded variation it is possible to choose m sufficiently large so that the

variation of D(x) for |x| > m is arbitrarily small. Hence, the integral
Z

R

hm(x)dD(x) !
Z

R

g(x)dD(x) as m ! 1.

Thus, Z

R

g(x)dD(x) =

Z

I

g(x)dD(x) = 0

for every continuous function that is zero outside of I. By the uniform boundedness of g

(continuous on a bounded interval) it follows that
Z

b

a

g(x)dD(x) =

Z

I

gdD(x) = 0

provided that a and b are points of continuity of D and that g is continuous for a  x  b.

But then, D(x) must be a constant on its continuity points. Hence, G(x) = F (x) for

x 2 C(F ) \ C(G). But since when F and G coincide on their points of continuity they

coincide everywhere, and the proof is complete. ⌅

The next theorem gives an explicit representation of F in terms of �.

Theorem 10.4. Let (R,F , µ) be a finite measure space and �(t) =
R
R
eitxdµ(x). For all

a, b 2 R such that a < b we have

1

2
(µ({a}) + µ({b})) + µ((a, b)) =

1

2⇡
lim
T!1

Z
T

�T

1

it

�
e�ita � e�itb

�
�(t)dt.

2
See Natanson (1955) Theorem 4, p. 111.
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Before presenting the proof of this theorem, we note that that 1
it

�
e�ita � e�itb

�
is not

defined at t = 0. But since lim
t!0

1
it

�
e�ita � e�itb

�
= b� a, we define

g(t; a, b) =

⇢
b� a, if t = 0,
1
it

�
e�ita � e�itb

�
, otherwise.

and note that

|g(t; a, b)| =
����
1

it

�
e�ita � e�itb

����� =
����
Z

b

a

e�itudu

����  b� a for all t 2 [�T, T ]. (10.4)

Proof. First, we write
Z

T

�T

g(t; a, b)�(t)dt =

Z
T

�T

e�ita � e�itb

it

✓Z

R

eitxdµ(x)

◆
dt

=

Z
T

�T

Z

R

e�it(a�x) � e�it(b�x)

it
dµ(x)dt

=

Z
T

�T

Z

R

g(t; a� x, b� x)dµ(x)dt. (10.5)

From the remarks that precede the proof, we have |g(t; a� x, b� x)|  b� a and lim
t!0

g(t; a�

x, b� x) = b� a for all x 2 R. Furthermore,
Z

T

�T

Z

R

|g(t; a� x, b� x)|dµ(x)dt 
Z

T

�T

Z

R

(b� a)dµ(x)dt = (b� a)

Z
T

�T

Z

R

dµ(x)dt

= 2T (b� a)µ(R) < 1 since µ(R) < 1.

Hence, by Fubini’s Theorem, we can interchange the integrals in (10.5) and write,
Z

T

�T

g(t; a, b)�(t)dt =

Z

R

Z
T

�T

g(t; a� x, b� x)dtdµ(x) :=

Z

R

fT (x; a, b)dµ(x), (10.6)

where fT (x; a, b) =
R

T

�T
g(t; a� x, b� x)dt. Now,

fT (x; a, b) =

Z 0

�T

g(t; a� x, b� x)dt+

Z
T

0

g(t; a� x, b� x)dt

=

Z
T

0

(g(t; a� x, b� x) + g(�t; a� x, b� x))dt

= 2

Z
T

0

✓
1

t
sin(t(b� x))� 1

t
sin(t(a� x))

◆
dt.
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We note that
R

T

0
1
t
sin(t✓)dt = sgn(✓)

R
T |✓|

0
1
t
sin(t)dt, where sgn(✓) = 1 if ✓ > 0, �1 if ✓ < 0

and 0 if ✓ = 0. Letting �(T |✓|) :=
R
T |✓|

0
1
t
sin(t)dt we have fT (x; a, b) = 2(sgn(b� x)�(T |b�

x|)� sgn(a� x)�(T |a� x|)) and |fT (x; a, b)|  2 (|�(T |b� x|)|+ |�(T |a� x|)|).

For any 0 < y < M for some M < 1 the function y 7! �(y) is uniformly continuous

on (0,M) since for any 0 < y0 6= y such that y0 < M we have |�(y) � �(y0)|  |y � y0|

given that |1
t
sin(t)|  1. Since uniformly continuous functions on bounded sets are bounded,

there exists a constant 0 < C < 1 such that |�(y)| < C for every y < M . Now, given that

lim
y!1

�(y) = lim
y!1

R
y

0
1
t
sin t dt = ⇡

2 [see (Apostol, 1974, p. 286)] we conclude that there exists

y0 such that for all y > y0, |�(y)| < ⇡/2. Hence, by choosing M > y0 we have |�(y)|  C+⇡/2

for all y. Hence, for all T , x and pairs a < b, |fT (x; a, b)| < C.

Letting h(t; x, a, b) = 1
t
sin(t(b�x))� 1

t
sin(t(a�x)), we note that lim

t!0
h(t; x, a, b) = b� a

and that h(t; x, a, b) is continuous on [0, T ]. Consequently,

fT (x; a, b) = 2

Z
T

0

h(t; x, a, b)dt < 1 for all T .

Riemann integrability of h(t; x, a, b) on [0, T ] implies h(t; x, a, b) 2 L(R,B,�) and
Z

T

0

h(t; x, a, b)dt =

Z

[0,T ]

h(t; x, a, b)d�(t) for all T .

Hence, we have

1

2⇡
lim
T!1

fT (x) =
1

⇡
lim
T!1

Z

[0,T ]

h(t; x, a, b)d�(t) =

8
<

:

0 if x < a or x > b,
1/2 if x = a or x = b,
1 if a < x < b.

(10.7)

Since |fT (x; a, b)| < C for all T , a < b and x 2 R, and since µ(R) < 1, by Lebesgue’s

dominated convergence theorem,

1

2⇡
lim
T!1

Z

R

fT (x; a, b)dµ(x) =
1

2⇡

Z

R

lim
T!1

fT (x; a, b)dµ(x)

=

Z

R

✓
I{x:a<x<b} +

1

2
I{x:x=a}[{x:x=b}

◆
dµ(x)

=
1

2
(µ({a}) + µ({b})) + µ((a, b)).

⌅
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Remark 10.4. 1. Let Fµ(x) =

8
<

:

µ((0, x]) if x > 0,
0 if x = 0,
�µ((x, 0]) if x < 0,

be the Stieltjes function associ-

ated with µ. It is right-continuous, increasing and ⌫Fµ((a, b]) = Fµ(b) � Fµ(a) for all

a, b 2 R with a < b is a measure on (R,B) such that µ = ⌫Fµ. Hence, we can always

write,

1

2
(µ({a}) + µ({b})) + µ((a, b)) =

1

2

✓
Fµ(a)� lim

x"a

Fµ(x) + Fµ(b)� lim
x"b

Fµ(x)

◆

+ Fµ(b)� Fµ(a). (10.8)

2. From equation (10.8) and Theorem 10.4, if a and b are points of continuity of Fµ, then

we can write

Fµ(b)� Fµ(a) =
1

2⇡
lim
T!1

Z
T

�T

1

it

�
e�ita � e�itb

�
�(t)dt.

3. Suppose � 2 L(R,B,�), and let f(x) = 1
2⇡

R
R
e�itx�(t)d�(t). Then, if {xn}n2N ⇢ R,

for every x 2 R,

|f(xn)� f(x)| =
����
1

2⇡

Z

R

�
e�itxn � eitx

�
�(t)d�(t)

���� 
1

2⇡

Z

R

��e�itxn � eitx
�� |�(t)|d�(t)

=
1

⇡

Z

R

(1� cos(t(xn � x)))|�(t)|d�(t) = 1

⇡

Z

R

fn(t)d�(t)

where fn(t) := (1 � cos(t(xn � x)))|�(t)|. Now, since |fn(t)|  2|�(t)| and � 2

L(R,B,�), fn 2 L(R,B,�). In addition, if xn ! x as n ! 1, lim
n!1

fn(t) = 0,

and consequently, by Lebesgue’s dominated convergence theorem,

|f(xn)� f(x)| ! 1

⇡

Z

R

lim
n!1

(1� cos(t(xn � x)))|�(t)|d�(t) = 0.

Hence, for any a, b 2 R with a < b we have that f is continuous on [a, b] and

therefore Riemann integrable on [a, b]. In addition, |f(x)| 
R
R
|e�itx|�(t)|d�(t) 
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R
R
|�(t)|d�(t) < C < 1 for all x. Thus, consider

Z
b

a

f(x)dx =

Z
b

a

✓
1

2⇡

Z

R

e�itx�(t)d�(t)

◆
dx

=
1

2⇡

Z

R

�(t)

Z
b

a

e�itxdx d�(t), by Fubini’s Theorem

=
1

2⇡

Z

R

�(t)

✓
e�iat � e�ibt

it

◆
d�(t)

Now, since �(t) and e
�iat

�e
�ibt

it
are continuous functions on any interval [�T, T ], the

Riemann integral Z
T

�T

�(t)

✓
e�iat � e�ibt

it

◆
dt

exists. Since,
R
R
�(t)

⇣
e
�iat

�e
�ibt

it

⌘
d�(t) = 2⇡

R
b

a
f(x)dx < 1, we have

lim
T!1

Z
T

�T

�(t)

✓
e�iat � e�ibt

it

◆
dt =

Z

R

�(t)

✓
e�iat � e�ibt

it

◆
d�(t)

and we write, Z
b

a

f(x)dx =
1

2⇡
lim
T!1

Z
T

�T

�(t)

✓
e�iat � e�ibt

it

◆
dt.

Hence, if a and b are points of continuity of Fµ, then from item 2 of this remark
Z

b

a

f(x)dx = Fµ(b)� Fµ(a).

Since, f is continuous on [a, b], Fµ(y) =
R

y

a
f(x)dx is a primitive of f for y 2 [a, b].

That is, the derivative d

dy
Fµ(y) exists and d

dy
Fµ(y) = f(y) for almost all y 2 (a, b). The

set of points in (a, b) for which this is possibly not true is at most finite. Since, Fµ is

an increasing function f(y) � 0 for almost all y 2 (a, b). Then, if µ is a probability

measure on R, lim
a!�1

R
b

a
f(x)dx :=

R
b

�1
f(x)dx = Fµ(b) = µ((�1, b]) and f is a density

associated with Fµ.

Corollary 10.1. If µ is a probability measure on (R,B) and x is a point of continuity of

the Stieltjes function Fµ, then

Fµ(x) =
1

2
+

1

2⇡
lim
T!1

Z
T

0

eitx�(�t)� e�itx�(t)

it
dt.
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10.2 A central limit theorem for independent random
variables

Theorem 10.5. Let {Xj}j=1,2,··· be a sequence of IID random variables with E(Xj) = µ,

V (Xj) = �2 and Sn =
P

n

j=1 Xj.

n�1Sn � µ
�
p
n

=
n�1(Sn � nµ)

�
p
n

=
Sn � nµp

n�
d! Z ⇠ N(0, 1).

Proof. Without loss of generality take E(Xj) = 0 and V (Xj) = 1 (otherwise, define Yj =

Xj�µ

�
and note that E(Yj) = 0, V (Yj) = 1). Then,

Sn � nµp
n�

=
Snp
n
,

and by the fact that {Xj}j=1,2,··· is IID we have

� Snp
n
(t) = E

⇣
eit

Snp
n

⌘
= E

⇣
eit

X1p
n

⌘
· · ·E

⇣
eit

Xnp
n

⌘
=
⇣
E(eit

X1p
n )
⌘n

=

✓
�X1

✓
tp
n

◆◆n

.

Since E(X1) = 0, E(X2
1 ) = 1,

������X1

✓
tp
n

◆
� 1� itp

n
E(X1)�

✓
itp
n

◆2 1

2!
E(X2

1 )

�����  E

 
min

(
| tX1p

n
|3

3!
,
2| tX1p

n
|2

2

)!

�����X1

✓
tp
n

◆
� 1 +

1

2

t2

n

����  E

✓
min

⇢
|tX1|3
6n3/2

,
|tX1|2
n

�◆

=
1

n
E

✓
min

⇢
|tX1|3
6n1/2

, |tX1|2
�◆

Now, min
n

|tX1|
3

6n1/2 , |tX1|2
o

 |tX1|2 2 L, since E(X2
1 ) = 1. Also, min

n
|tX1|

3

6n1/2 , |tX1|2
o


|tX1|

3

6n1/2 ! 0 as n ! 1. Thus, by Lebesgue’s Dominated Convergence Theorem,

E

✓
min

⇢
|tX1|3
6n1/2

, |tX1|2
�◆

! 0,

and lim
n!1

n
����X1

⇣
t

p
n

⌘
� 1 + 1

2
t
2

n

���! 0.

Now, note that for i = 1, 2, · · · , n and ai, bi 2 C with |ai|, |bi|  1, |
Q

n

i=1 ai �
Q

n

i=1 bi| 
P

n

i=1 |ai � bi|. Then,
�����X1

✓
tp
n

◆n

�
✓
1� 1

2

t2

n

◆n
����  n

�����X1

✓
tp
n

◆
�
✓
1� 1

2

t2

n

◆����! 0.
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Since
⇣
1� 1

2
t
2

n

⌘n
! e�

1
2 t

2 we see that � Snp
n
(t) ! �(t) = e�

1
2 t

2 . Then, by Theorem 10.3 it

must be that Z ⇠ N(0, 1). ⌅

Remark 10.5. We observe that if the sequence of random variables {Xt}t2N is heteroge-

neously distributed with µt = E(Xt) and V (Xt) = �2
t
< 1, then

E

✓
Sn

n

◆
= E

✓P
n

t=1 Xt

n

◆
=

1

n

nX

t=1

µt,

V

✓
Sn

n

◆
= V

✓P
n

t=1 Xt

n

◆
=

1

n2

nX

t=1

V (Xt) =
1

n2

nX

t=1

E(Xt � µt)
2 =

s2
n

n2
.

Let Ytn = Xt�µt

sn
and note that E(Ytn) = 0 and V (Ytn) = E(Y 2

tn
) = 1

s2n
E(Xt � µt)2. Then,

1
n

P
n

t=1(Xt � µt)q
s2n
n2

=

P
n

t=1(Xt � µt)

sn
=

nX

t=1

Xt � µt

sn
=

nX

t=1

Ytn.

Theorem 10.6. Let {Ytn}t=1,2,··· ,n be an independent triangular array of random variables

with E(Ytn) = 0, �2
tn

:= V (Ytn) =
1
s2n
E(Xt � µt)2 with

P
n

t=1 �
2
tn

= 1. Then, if

lim
n!1

nX

t=1

Z

|Ytn|>✏

Y 2
tn
dP = 0

for all ✏ > 0, we have that Sn =
P

n

t=1 Ytn

d! N(0, 1).

Proof. We must show that |�Sn(�)�e�
1
2�

2 | =
���
Q

n

t=1 �Ytn(�)�
Q

n

t=1 e
�

1
2�

2
�
2
tn

���! 0 as n ! 1,

since
P

n

t=1 �
2
tn

= 1. Now,

|�Sn(�)� e�
1
2�

2 | =

�����

nY

t=1

�Ytn(�)�
nY

t=1

(1� 1

2
�2�2

tn
) +

nY

t=1

(1� 1

2
�2�2

tn
)�

nY

t=1

e�
1
2�

2
�
2
tn

�����



�����

nY

t=1

�Ytn(�)�
nY

t=1

(1� 1

2
�2�2

tn
)

�����+

�����

nY

t=1

(1� 1

2
�2�2

tn
)�

nY

t=1

e�
1
2�

2
�
2
tn

�����

= T1n + T2n.

For all z 2 C with |z|  1/2, |ez � 1� z|  |z|2. To see this, note that

|ez � 1� z| =

�����

1X

j=0

zj

j!
� 1� z

����� =

�����

1X

j=2

zj

j!

����� =

�����z
2

1X

j=0

zj

(j + 2)!

�����  |z|2
1X

j=0

|z|j
(j + 2)!

.
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But |z|  1/2, so
P

1

j=0
|z|

j

(j+2)! 
P

1

j=0
1
2j

1
(j+2)! <

1
2

P
1

j=0
1
2j = 1.

Also, note that by Lindeberg’s condition

�2
tn

= E(I{Ytn✏}Y
2
tn
) + E(I{Ytn>✏}Y

2
tn
)  ✏2 + E(I{Ytn>✏}Y

2
tn
) ! ✏2

as n ! 1. Since ✏ can be made arbitrarily small lim
n!1

max
1tn

�2
tn

= 0.

Letting z = �1
2�

2�2
tn

and taking n to be sufficiently large we can make |z|  1/2. Hence,

T1n 
P

n

t=1 |�Ytn(�)� (1� 1
2�

2�2
tn
)|. Using item 3 in Remark 10.2, for n = 2, we have

�����Ynt(�)�
✓
1� 1

2
�2�2

tn

◆����  E

✓
min

⇢
|�Ytn|3

3!
, |�Ytn|2

�◆

 �2E(Y 2
tn
I{|Ytn|>✏}) +

1

6
|�|3✏E(Y 2

tn
).

Thus,

nX

t=1

|�Ytn(�)� (1� 1

2
�2�2

tn
)|  �2

nX

t=1

E(Y 2
tn
I{|Ytn|>✏}) +

1

6
|�|3✏

nX

t=1

�2
tn

= �2
nX

t=1

E(|Ytn|2I{|Ytn|>✏}) +
1

6
|�|3✏ ! ✏

1

6
|�|3, as n ! 1,

since
P

n

t=1 E
�
|Ytn|2I{|Ytn|>✏}

�
! 0 by Lindeberg’s condition. Now, for T2n we have

T2n =

�����

nY

t=1

e�
1
2�

2
�
2
tn �

nY

t=1

(1� 1

2
�2�2

tn
)

����� 
nX

t=1

|� 1

2
�2�2

tn
|2 = 1

4
�4

nX

t=1

(�2
tn
)2

 1

4
�4

✓
max
1tn

�2
tn

◆ nX

t=1

�2
tn

| {z }
=1

=
1

4
�4

✓
max
1tn

�2
tn

◆
! 0,

completing the proof. ⌅

Remark 10.6. We observe that

lim
n!1

nX

t=1

E(|Ytn|2+�) = 0 for some � > 0 =) lim
n!1

nX

t=1

Z

|Ytn|>✏

Y 2
tn
dP = 0,
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for all ✏ > 0. This is easily verified by noting that

E|Ytn|2+� � E
�
I|Ytn|>✏|Ytn|2+�

�
for all ✏ > 0

� ✏�E(I|Ytn|>✏|Ytn|2).

Hence,
P

n

t=1 E(|Ytn|2+�) � ✏�
P

n

t=1 E(I|Ytn|>✏|Ytn|2). Letting n ! 1, we have, for fixed ✏,

lim
n!1

nX

t=1

E(|Ytn|2+�) = 0 =) lim
n!1

nX

t=1

E(I|Ytn|>✏|Ytn|2) = 0.

The requirement that limn!1

P
n

t=1 E(|Ytn|2+�) = 0 is called Lyapounov’s condition. Note

that
nX

t=1

E(|Ytn|2+�) =
nX

t=1

E

����
Xt � µt

sn

����
2+�

=
nX

t=1

E|Xt � µt|2+�

s2+�
n

=
1

s2+�
n

nX

t=1

E|Xt � µt|2+�.

and E|Xt + (�µt)|2+�  21+�(E|Xt|2+� + | � µt|2+�). This inequality is a special case of

Loéve’s cr-Inequality, which states that for m finite, r > 0

E(|
mX

t=1

Xt|r)  cr

mX

t=1

E|Xt|r, where cr =

(
1 if r  1

mr�1 if r > 1

So, E|Xt � µt|2+�  21+�E|Xt|2+� + 21+�|µt|2+�. If E|Xt|2+� and |µt|2+� < C uniformly in t,

then
P

n

t=1 E|Xt�µt

sn
|2+�  nC

s
2+�
n

= C

s2n
n s�n

< C 0 < 1, if infn s
2
n
n
> 0.

Consequently, we have that if s
2
n
n

> 0 uniformly in n and E|Xt|2+�, |µt|2+� < 1 uniformly

in t, Liapounov’s condition holds. By consequence, Lindeberg’s condition holds.

Theorem 10.7. (Lévy’s Continuity Theorem) Let {Fn}n2N be a sequence of distribution

functions in R with Fn =) F (Fn converges pointwise to F for every point of continuity of

F ), where F is any non-negative, bounded, non-decreasing, right-continuous function. Let

{�n}n2N be the sequence of characteristic functions for Fn. If

�n(t) ! �(t) where �(t) is continuous at t = 0,

F is a distribution function and � is its characteristic function.
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Proof. See Billingsley (1986, Probability and Measure, Chapter 5). ⌅

The following theorem allows the use of the central limit theorems we studied to obtain

the asymptotic distribution of random vectors. It os known in Statistics as the Cramér-Wold

device.

Theorem 10.8. Let {Xn}n=0,1,2,··· be a sequence of random vectors taking values in RK.

Then, for any � 2 RK

�TXn

d! �TX0 , Xn

d! X0.

Proof. If Xn

d! X0

�tTXn
(x) = E(eixt

T
Xn) = �Xn(xt) ! �X0(xt) = �tTX0

(x)

which shows that �TXn

d! �TX0.

If �TXn

d! �TX0 then

�Xn(x) = E(eix
T
Xn) = �xTXn

(1) ! �xTX0
(1) = �X0(x)

which shows that Xn

d! X0. ⌅
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