
Chapter 2

Construction of probability measures

In the previous chapter we assumed the existence of measures. In this chapter we consider

their existence and construction.

2.1 ⇡ systems, Dynkin systems, semi-rings and �-algebras

We start by introducing two additional systems that may be associated with a set X.

Definition 2.1. 1. A system P associated with X is called a ⇡ system if A,B 2 P =)

A \ B 2 P.

2. A system D associated with X is called a Dynkin1 system if:

a) X 2 D

b) A 2 D =) Ac 2 D

c) {Aj}j2N ⇢ D and Ai [ Aj = ; 8 i 6= j, i, j 2 N =)
S
j2N

Aj 2 D.

It is evident from part 2. of this definition that a �-algebra associated with X is also a

Dynkin system associated with X. As in the case of �-algebras, there exist smallest Dynkin

systems generated by subsets of X.
1
Eugene Borisovich Dynkin was a Russian mathematician that made important contributions to algebra

and probability. He was a student of Andrei Kolmogorov.
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Theorem 2.1. Let C ⇢ 2X. There exists a smallest Dynkin system �(C) such that C ⇢ �(C).

It is called the Dynkin system generated by C. In addition, �(C) ⇢ �(C).

Proof. Existence and characterization of �(C) is proved as in Theorem 1.2. Since �(C) is a

Dynkin system �(�(C)) = �(C). Since C ⇢ �(C), �(C) ⇢ �(�(C)) = �(C) as in Theorem 1.3.

⌅

The next theorem shows that a Dynkin system is a �-algebra if, and only if, it is a ⇡

system.

Theorem 2.2. A Dynkin system D is a �-algebra () A,B 2 D =) A \ B 2 D.

Proof. ( =) ) If D is a �-algebra, then A,B 2 D =) A \ B 2 D, since �-algebras are

closed under countable intersections.

((=) If D is a Dynkin system it satisfies requirements 1 and 2 for �-algebras in Definition

1.1. Let Ai 2 D for i 2 N, we must show that
S
i2N

Ai 2 D. Define B1 := A1, B2 := A2�B1 =

A2\Bc

1, B3 := A3�[2
i=1Bi = A3\ ([2

i=1Bi)c · · · Bn := An�[n�1
i=1 Bi = An\ ([n�1

i=1 Bi)c. The

collection {Bi}i2N is pairwise disjoint, and since each Bi is the intersection of two sets in D,

using closeness under finite intersections,
S
i2N

Bi =
S
i2N

Ai 2 D. ⌅

Theorem 2.3. If P is a ⇡ system associated with X, then �(P) = �(P).

Proof. From Theorem 2.1, �(P) ⇢ �(P) and from Theorem 2.2 if �(P) is a ⇡ system it is a �-

algebra. Since �(P) is the smallest �-algebra generated by P , it must be that �(P) = �(P),

so it suffices to show that �(P) is a ⇡-system. For any D 2 �(P), let DD = {A ⇢ X : A\D 2

�(P)}. First, we show that DD is a Dynkin system. We verify conditions a), b) and c) in

Definition 2.1.

a) Note that X \D = D 2 �(P), hence X 2 DD.
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b) If A 2 DD, then A\D 2 �(P). Now, Ac\D = (Ac[Dc)\D = (A\D)c\D = ((A\D)[Dc)c

where A\D and Dc are disjoint. Also, since D 2 �(P), we have Dc 2 �(P), and A\D 2 �(P)

by assumption, so ((A \D) [Dc)c 2 �(P). Thus Ac 2 DD.

c) Let Ai for i 2 N be pairwise disjoint with Ai \ D 2 �(P) and note that {(Ai \ D)}i2N

forms a disjoint collection. Thus,
S
i2N

(Ai \D) = D \
S
i2N

Ai and
S
i2N

Ai 2 DD. Thus, DD is a

Dynkin system.

Fix G 2 P . Then, G 2 �(P) and we can define DG = {A ⇢ X : A \ G 2 �(P)}. Now,

consider G0 2 P . Since, P is a ⇡-system, G0 \ G 2 P ⇢ �(P). Hence, G0 2 DG, showing

that P ⇢ DG for all G 2 P . But DG is a Dynkin system and consequently, by definition

�(P) ⇢ DG, 8G 2 P .

Thus, we have that if D 2 �(P) and G 2 P , then G \ D 2 �(P) and P ⇢ DD (by

definition of DD). Then, �(P) ⇢ DD for all D 2 �(P) implying that �(P) is a ⇡ system by

definition of DD. ⌅

Definition 2.2. A semi-ring, denoted by S, is a non-empty system associated with X having

the following properties:

1. ; 2 S,

2. A,B 2 S =) A \ B 2 S,

3. for all A,B 2 S there exists m 2 N and {Sj}mj=1 ⇢ S that is pairwise disjoint such

that B � A = [m

j=1Sj.

Remark 2.1. 1. A semi-ring is a ⇡ system in view of condition 2.

2. Property 3 in Definition 2.2 is equivalent to the following:

3’. if A,B 2 S and A ⇢ B, then B = A[
⇣S

m

j=1 Sj

⌘
where the collection {A, S1, · · ·Sm} ⇢

S is pairwise disjoint.
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To verify that 3 =) 3’ note that A ⇢ B =) B = A [ (B �A) = A [
⇣S

m

j=1 Sj

⌘
by

3, where {A, S1, · · ·Sm} ⇢ S is pairwise disjoint. Now, to verify that 3’ =) 3 note

that B = (B \ A) [ (B � A). Since (B \ A) ⇢ B, by 3’ B = (B \ A) [
⇣S

m

j=1 Sj

⌘
.

Thus, (B \A) [ (B �A) = (B \A) [
⇣S

m

j=1 Sj

⌘
which implies that B �A =

S
m

j=1 Sj

where {Sj}mj=1 ⇢ S is pairwise disjoint.

3. A ring R is a non-empty system of sets associated with X such that A,B 2 R =)

A [ B 2 R and A � B 2 R. If A 2 R then A � A = ; 2 R. Also, if A,B 2 R, and

noting that A\B = A� (A�B), we have that A\B 2 R. Now let A ⇢ B, A,B 2 R.

Since B = A [ (B � A) and (B � A) 2 R, we conclude that every ring is a semi-ring

using property 3’.

4. If A is an algebra, then for A,B 2 A we have that A [ B,A \ B,Bc 2 A, and since

A� B = A \ Bc 2 A, an algebra is a ring.

It follows from these remarks that we have the following hierarchy of systems: A (algebras)

are R (rings) are S (semi-rings) are ⇡ systems.

2.2 Uniqueness of measures

The following theorem shows that under some conditions, measures that coincide on some

generating class G coincide on �(G).

Theorem 2.4. Let (X, �(P)) be a measurable space and P a collection of subsets of X, such

that:

1. P is a ⇡ system,

2. there exists {Pj}j2N ⇢ P with P1 ⇢ P2 ⇢ · · · such that
S
j2N

Pj := lim
j!1

Pj = X (the

sequence {Pj}j2N is exhausting).
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If µ and v are measures that coincide on P and, are finite for all Pj, then µ(A) = v(A) for

all A 2 �(P).

Proof. For j 2 N let Dj = {A 2 �(P) : µ(A\ Pj) = v(A\ Pj)}. First, we show that Dj is a

Dynkin system.

1. X 2 Dj since µ(X \ Pj) = µ(Pj) = v(Pj) = v(X \ Pj).

2. Let A 2 Dj. Note that Pj = (A \ Pj) [ (Ac \ Pj) and note that the two sets in

the union are disjoint. Since µ is a measure µ(Pj) = µ(A \ Pj) + µ(Ac \ Pj). Hence,

µ(Ac\Pj) = µ(Pj)�µ(A\Pj). Since µ and v coincide in P we have that v(Pj) = µ(Pj)

and since A 2 Dj we have that µ(A \ Pj) = v(A \ Pj). Hence,

µ(Ac \ Pj) = µ(Pj)� µ(A \ Pj) = v(Pj)� v(A \ Pj) = v(Ac \ Pj).

Thus, Ac 2 Dj.

3. Let A1, A2, · · · be a pairwise disjoint collection in Dj.

µ

  
[

i2N

Ai

!
\ Pj

!
= µ

 
[

i2N

(Ai \ Pj)

!
=

1X

i=1

µ(Ai \ Pj)

=
1X

i=1

v(Ai \ Pj) since Ai 2 Dj

= v

 
[

i2N

(Pj \ Ai)

!
= v

 
Pj \

 
[

i2N

Ai

!!

and consequently,
S
i2N

Ai 2 Dj.

Since P is a ⇡-system, by Theorem 2.3 and the definition �(P), we have P ⇢ �(P) = �(P) ⇢

Dj. But by construction Dj ⇢ �(P) and we conclude that Dj = �(P). So, for all A 2 �(P)

and j = 1, 2, · · · ,

µ(A \ Pj) = v(A \ Pj). (2.1)
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By continuity of measures from below and noting that (A \ P1) ⇢ (A \ P2) ⇢ · · · , letting

j ! 1 in (2.1) we have for all A 2 �(P),

lim
j!1

µ(A \ Pj) = µ

✓
lim
j!1

(A \ Pj)

◆
= µ

✓
[

j2N
(A \ Pj)

◆

= µ

✓
A \

✓
[

j2N
Pj

◆◆
= µ (A \X)

= µ(A)

Similarly, limj!1 v(A \ Pj) = v(A) and we conclude that µ(A) = v(A). ⌅

2.3 Existence of measures - Carathéodory’s Extension
Theorem

We take the following path to construct a measure on F . We start with a class of subsets

S of X, such that F = �(S), and define a pre-measure µ on S. If S and µ satisfy the

requirements of Theorem 2.4, then µ will extend uniquely to F , provided we are able to

extend it from S to F . The result that provides the conditions and possibility for such an

extension is known as Carathéodory’s Extension Theorem.

Theorem 2.5. (Carathéodory) Let S be a semi-ring of subsets of X and µ : S ! [0,1] be a

pre-measure. Then, µ has an extension to a measure µ on �(S). If there exists {Ej}j2N 2 S

with E1 ⇢ E2 · · · such that lim
j!1

Ej ! X and µ(Ej) < 1 for all j, then the extension is

unique.

Proof. Step 1. We start by defining the set function µ⇤ : 2X ! [0,1]. For any A ⇢ X

define the collection of countable covers for A that are composed of sets in S by

C(A) = {{Sj}j2N ⇢ S : A ⇢ [
j2N

Sj}.

If A cannot be covered by some [
j2N

Sj, then C(A) = ;. Now, define

µ⇤(A) := inf

(
X

j2N

µ(Sj) : {Sj}j2N 2 C(A)

)
,
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where inf ; := 1. Note that,

a) µ⇤(;) = 0, by taking S1 = S2 = · · · = ;

b) A ⇢ B implies that every cover for B is also a cover for A, i.e., C(B) ⇢ C(A).

Therefore,

µ⇤(A) = inf

(
X

j2N

µ(Sj) : {Sj}j2N 2 C(A)

)
 inf

(
X

j2N

µ(Tj) : {Tj}j2N 2 C(B)

)
= µ⇤(B).

c) Let An ⇢ X for n 2 N and, without loss of generality, assume that µ⇤(An) < 1 (that

is C(An) 6= ;). Choose ✏ > 0 and let {Snk}k2N 2 C(An) be such that

X

k2N

µ(Snk)  µ⇤(An) + ✏/2n.

Now, [
n2N

An ⇢ [
n2N

[
k2N

Snk and by the definition of infimum and sub-additivity of

pre-measures

µ⇤

✓
[

n2N
An

◆

X

n2N

X

k2N

µ(Snk)


X

n2N

(µ⇤(An) + ✏/2n) =
X

n2N

µ⇤(An) + ✏.

Hence, µ⇤

✓
[

n2N
An

◆


P
n2N

µ⇤(An). If µ⇤(An) = 1 for some n, then the last inequality

holds trivially.

Since µ⇤ satisfies properties a)-c), it is called an outer-measure on 2X.

Step 2. We now show that µ⇤ extends µ (defined on S) to 2X. By this we mean that

µ⇤(S) = µ(S) for S 2 S.

First, let SU = {S : S = [m

j=1Sj, Sj 2 S, Si \ Sj = ; 8i 6= j and m 2 N} be the

collection of sets that can be written as disjoint finite unions of elements of S and let

µ̄(S) =
P

m

j=1 µ(Sj) for S 2 SU . Note that µ̄(S) is invariant to the pairwise disjoint finite

union used to represent S. To see this, suppose S = [m

j=1Sj and S = [n

k=1Tk for m,n 2 N.
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Then, [m

j=1Sj = [n

k=1Tk and Sj = Sj \ ([n

k=1Tk) = [n

k=1(Sj \ Tk) and Sj \ Tk 2 S, since a

semi-ring is a ⇡-system. Since µ is a pre-measure on S, and {Tk}nk=1 is a pairwise disjoint

collection, µ(Sj) =
P

n

k=1 µ(Tk \ Sj). Then,

µ̄(S) =
mX

j=1

µ(Sj) =
nX

k=1

mX

j=1

µ(Tk \ Sj) =
nX

k=1

µ(Tk).

We now show that SU is closed under (arbitrary) finite intersections and unions. If

A,B 2 SU then A\B = ([m

j=1Sj)\ ([n

k=1Tk) where the two unions are over pairwise disjoint

sets. Then, A\B = [m

j=1[n

k=1 (Sj\Tk) 2 SU since Sj\Tk 2 S for all j, k and {Sj\Tk}m,n

j=1,k=1

is pairwise disjoint.

Also, since Sj, Tk 2 S, their difference can be written as a finite union of pairwise disjoint

elements of S. Hence, Sj � Tk 2 SU . Now,

A� B = [m

j=1Sj � [n

k=1Tk = [m

j=1 \n

k=1 (Sj \ T c

k
) = [m

j=1 \n

k=1 (Sj � Tk).

Since, Sj�Tk 2 SU and given that we have shown that SU is closed under finite intersections,

\n

k=1(Sj � Tk) 2 SU . Hence, A � B is the finite union of pairwise disjoint elements in SU

and we conclude that A�B 2 SU , since SU is closed under pairwise disjoint unions. Lastly,

since A[B = (A�B)[ (A\B)[ (B �A) and all sets in the union are disjoint and in SU ,

we conclude that A [ B 2 SU .

We now show that µ̄ is �-additive on SU , i.e., a pre-measure. Let {Tk}k2N ⇢ SU such that

{Tk}k2N is pairwise disjoint and such that T := [
k2N

Tk 2 SU . Since Tk 2 SU , by definition

there exist {Sj}j2N 2 S and a sequence of 0 = n0  n1  · · · of integers such that

Tk = Sn(k�1)+1 [ Sn(k�1)+2 [ · · · [ Snk
for k 2 N,

where the collection {Sn(k�1)+1, Sn(k�1)+2, · · · , Snk
} is pairwise disjoint and

T =
[

k2N

nk[

j=n(k�1)+1

Sj.
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Also, since T 2 SU , it can be written as T =
S

N

l=1 Ul where N 2 N with Ul 2 S and {Ul}Nl=1

a pairwise disjoint collection. Hence,
N[

l=1

Ul =
[

k2N

nk[

j=n(k�1)+1

Sj.

Defining disjoint subsets J1, · · · , JN of N such that [N

l=1Jl = N we write Ul =
S
j2Jl

Sj and

note that Ul 2 S. Now, T =
S
k2N

Tk = [N

l=1Ul and

µ̄(T ) =
NX

l=1

µ(Ul) by definition of µ̄

=
NX

l=1

X

j2Jl

µ(Sj) by µ being a pre-measure on S

=
X

k2N

nkX

j=n(k�1)+1

µ(Sj) =
X

k2N

µ̄(Tk).

Now, for any S 2 S and any S-covering of S, i.e., {Sj}j2N 2 C(S)

µ(S) = µ̄(S) = µ̄

 
[

j2N

Sj \ S

!
since S 2 S =) S 2 SU


X

j2N

µ̄(Sj \ S) since µ̄ is a pre-measure and sub-additive

=
X

j2N

µ(Sj \ S) 
X

j2N

µ(Sj).

Taking the infimum over C(S), we have µ(S)  µ⇤(S). Now, taking (S, ;, · · · ) 2 C(S) gives

µ⇤(S)  µ(S). Combining the two inequalities, we have

µ⇤(S) = µ(S) for all S 2 S.

Step 3. We will show that S ⇢ A⇤ where

A⇤ = {A ⇢ X : µ⇤(Q) = µ⇤(Q \ A) + µ⇤(Q \ Ac), 8 Q ⇢ X}. (2.2)

Let S, T 2 S and note that T = (T \S)[ (T \Sc) = (T \S)[ (T �S) = (T \S)[ ([m

j=1Sj)

with {Sj}mj=1 disjoint, m 2 N and where the last equality follows from the third defining
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property of semi-rings. Since µ is a pre-measure on S we have

µ(T ) = µ(T \ S) +
mX

j=1

µ(Sj).

Since µ⇤ and µ coincide on S and T \ S 2 S, and since µ⇤ is sub-additive, from c) in Step

1, we have µ⇤(T � S) = µ⇤([m

j=1Sj) 
P

m

j=1 µ
⇤(Sj) =

P
m

j=1 µ(Sj). Consequently,

µ(T ) = µ(T \ S) +
mX

j=1

µ(Sj) � µ⇤(T \ S) + µ⇤(T � S). (2.3)

Take Q ⇢ X and {Tj}j2N 2 C(Q). Using µ⇤(Tj) = µ(Tj) and summing (2.3) over j taking

T = Tj

X

j2N

µ⇤(S \ Tj) +
X

j2N

µ⇤(Tj � S) 
X

j2N

µ⇤(Tj).

Sub-additivity and monotonicity of µ⇤ together with Q ⇢
S
j2N

Tj give

µ⇤(Q \ S) + µ⇤(Q� S)  µ⇤([j2N(Tj \ S)) + µ⇤([j2N(Tj � S))


X

j2N

µ⇤(Tj) =
X

j2N

µ(Tj).

Taking the infimum over C(Q), µ⇤(Q \ S) + µ⇤(Q � S)  µ⇤(Q). The reverse inequality

follows easily from sub-additivity of µ⇤. Consequently, if S 2 S we have that S 2 A⇤.

Step 4. We show that A⇤ is a �-algebra and µ⇤ is a measure on (X,A⇤).

1. For all Q ⇢ X, Q \X = Q and Q \Xc = ;. Since µ⇤(;) = 0 we have that X 2 A⇤.

2. For all Q ⇢ X suppose A 2 A⇤, i.e.

µ⇤(Q) = µ⇤(Q \ A) + µ⇤(Q \ Ac).

But by symmetry of the right hand side of the equality due to (Ac)c = A, we have Ac 2 A⇤.
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3. If A,A0 2 A⇤, for all Q ⇢ X

µ⇤(Q \ (A [ A0)) + µ⇤(Q� (A [ A0))

= µ⇤(Q \ (A [ (A0 � A))) + µ⇤(Q� (A [ A0))

= µ⇤((Q \ A) [ [Q \ (A0 � A)]) + µ⇤(Q� (A [ A0))

 µ⇤(Q \ A) + µ⇤(Q \ (A0 � A)) + µ⇤(Q� (A [ A0))

using subadditivity of µ⇤

= µ⇤(Q \ A) + µ⇤((Q� A) \ A0) + µ⇤((Q� A)� A0)

= µ⇤(Q \ A) + µ⇤(Q� A) = µ⇤(Q)

using the defining expression for A⇤ twice, once for Q� A and once for Q.

Thus,

µ⇤(Q \ (A [ A0)) + µ⇤(Q� (A [ A0))  µ⇤(Q). (2.4)

Now, Q = {Q \ (A [ A0)} [ {Q \ (A [ A0)c}. By sub-additivity of µ⇤

µ⇤(Q)  µ⇤(Q \ (A [ A0)) + µ⇤(Q� (A [ A0)). (2.5)

Combining inequalities (2.4) and (2.5) we conclude that µ⇤(Q) = µ⇤(Q\ (A[A0)) +µ⇤(Q�

(A [ A0)) and consequently A⇤ is closed under finite unions.

If A, A0 2 A⇤ such that A \A0 = ;, then for Q = (A [A0) \ P with P ⇢ X the equality

µ⇤(Q \ A) + µ⇤(Q� A) = µ⇤(Q) becomes

µ⇤((A [ A0) \ P ) = µ⇤(P \ A) + µ⇤(P \ A0), 8P ⇢ X.

For a disjoint collection {Aj}mj=1 2 A⇤,

µ⇤(([m

j=1Aj) \ P ) =
mX

j=1

µ⇤(P \ Aj).

If A = [j2NAj, where {Aj} is a disjoint collection,

µ⇤(P \ A) � µ⇤(P \ ([m

j=1Aj)) =
mX

j=1

µ⇤(P \ Aj).
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Since [m

j=1Aj 2 A⇤ we have that

µ⇤(P ) = µ⇤(P \ ([m

j=1Aj)) + µ⇤(P � [m

j=1Aj)

� µ⇤(P \ ([m

j=1Aj)) + µ⇤(P � A)

=
mX

j=1

µ⇤(P \ Aj) + µ⇤(P � A).

Let m ! 1, to conclude

µ⇤(P ) �
1X

j=1

µ⇤(P \ Aj) + µ⇤(P � A) � µ⇤(P \ A) + µ⇤(P � A)

The reverse inequality follows directly from sub-additivity of µ⇤. Thus,

µ⇤(P ) = µ⇤(P \ A) + µ⇤(P � A), 8P ⇢ X.

Consequently, A = [j2NAj where the collection {Aj}j2N is pairwise disjoint is in A⇤. Con-

sequently, A⇤ is a Dynkin system that is closed under finite unions. By DeMorgan Laws, A⇤

is closed under finite intersections, and by Theorem 2.2, A⇤ is a �-algebra.

Now, we show that µ⇤ is a measure on �(S). From above, S ⇢ A⇤, so �(S) ⇢ A⇤. Also,

µ⇤ is a measure on A⇤ and on �(S), which extends µ on S. By Theorem 2.4, and under the

conditions in the enunciation of this theorem, any two extensions µ⇤ and v⇤ of µ coincide on

�(S). ⌅

Remark 2.2. (X,A⇤, µ⇤) is a complete measure space. To verify completeness, let E 2 A⇤

such that µ⇤(E) = 0, and consider B ⇢ E. We must verify that B 2 A⇤, i.e., for any

Q ⇢ X, it must be that

µ⇤(Q) = µ⇤(Q \B) + µ⇤(Q \Bc).

Now, Q \ B ⇢ Q \ E ⇢ E =) µ⇤(Q \ B)  µ⇤(E) = 0 and, consequently µ⇤(Q \ B) = 0.

Also, Q \ Bc ⇢ Q =) µ⇤(Q \Bc)  µ⇤(Q). Hence,

µ⇤(Q) � µ⇤(Q \ Bc) + µ⇤(Q \B). (2.6)
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By sub-additivity

µ⇤(Q)  µ⇤(Q \Bc) + µ(Q \ B) (2.7)

Given (2.6) and (2.7) we have µ⇤(Q) = µ⇤(Q \ Bc) + µ⇤(Q \ B). In addition, µ⇤(B) = 0

follows from monotonicity of measures.

2.4 Lebesgue measure on (Rn,B(Rn))

In this section, we use Carathéodory’s Theorem to construct a measure on (Rn,B(Rn)). The

first step is to show that In,h is a semi-ring.

Theorem 2.6. Let Rn,h = ⇥n

i=1[ai, bi) for n 2 N be a half-open rectangle in Rn and In,h be

the collection formed by all such rectangles with real endpoints. In,h is a semi-ring.

Proof. Let I1,h = {[ai, bi) : ai  bi where ai, bi 2 R} and note that:

1. if bi = ai, [ai, bi) = ;,

2. if [ai, bi), [aj, bj) 2 In,h then [ai, bi) \ [aj, bj) =

8
>>><

>>>:

; 2 I1,h

[aj, bi) 2 I1,h

[ai, bj) 2 I1,h

[ai, bi) 2 I1,h

,

3. if [a1, b1) ⇢ [a2, b2) then [a2, b2) = [a2, a1)[ [a1, b1)[ [b1, b2), where the members in the

union are all disjoint.

Hence, I1,h is a semi-ring.

Now, suppose In,h is a semi-ring. We will verify that In+1,h is a semi-ring. First, note

that In+1,h = In,h ⇥ I1,h and since ; 2 In,h we immediately conclude that ; 2 In+1,h. The

intersection of two rectangles in In+1,h is given by

(Rn,h ⇥R1,h) \ (In,h ⇥ I1,h) = (Rn,h \ In,h)⇥ (R1,h \ I1,h)
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where In,h is a half-open rectangle in Rn and the righthand side of the equality is an element

of In+1,h. Also, (Rn,h ⇥R1,h)� (In,h ⇥ I1,h) = (Rn,h ⇥R1,h) \ (In,h ⇥ I1,h)c and note that

(In,h ⇥ I1,h)c = {(x, y) : x 62 In,h, y 62 I1,h, or x 2 In,h and y 62 I1,h, or x 62 In,h and y 2 I1,h}

= ((In,h)c ⇥ (I1,h)c) [ (In,h ⇥ (I1,h)c) [ ((In,h)c ⇥ I1,h)

where the components of the union are disjoint. Thus,

(Rn,h ⇥R1,h)� (In,h ⇥ I1,h) = [(Rn,h ⇥R1,h) \ ((In,h)c ⇥ (I1,h)c)] [ [(Rn,h ⇥R1,h) \ (In,h ⇥ (I1,h)c)]

[ [(Rn,h ⇥R1,h) \ ((In,h)c ⇥ I1,h)]

= [(Rn,h � In,h)⇥ (R1,h � I1,h)] [ [(Rn,h \ In,h)⇥ (R1,h � I1,h)]

[ [(Rn,h � In,h)⇥ (R1,h \ I1,h)].

By the induction assumption, Rn,h � In,h and R1,h � I1,h can be expressed as finite unions

of disjoint rectangles, which completes the proof. ⌅

Definition 2.3. Let �n : In,h ! [0,1) be defined as �n(Rn,h) =
Q

n

j=1(bj � aj) whenever

bj > aj for j = 1, · · · , n and �n(Rn,h) = 0 if bj  aj for some j.

Theorem 2.7. �n is a pre-measure on In,h.

Proof. We start by showing that �1 is a pre-measure on I1,h. Let [a, b) 2 I1,h and [a, b) =

[n

i=1[ai, bi) with a1 = a, a2 = b1, a3 = b2, · · · , an = bn�1, bn = b. Then,

nX

i=1

�1([ai, bi)) = (b1 � a1) + (b2 � a2) + · · ·+ (bn�1 � an�1) + (bn � an)

= (a2 � a) + (a3 � a2) + · · ·+ (an � an�1) + (b� an) = b� a

= �1([a, b)) = �1 ([n

i=1[ai, bi)) .

Therefore, �1 is finitely additive. For �-additivity, we need to show that for [a, b) =
S
i2N

[ai, bi),

where {[ai, bi)}i2N is a pairwise disjoint collection we have b� a =
P

1

i=1(bi � ai).
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For any n 2 N, let {[ai, bi)}ni=1 be a pairwise disjoint collection. Then, since I1,h is a

semi-ring, we can write

[a, b)� [n

i=1[ai, bi) = [m

j=1Ij,

where the last set is the finite union of pairwise disjoint half-open rectangles. Thus, since �1

is finitely additive on I1,h

�1([a, b)) =
nX

i=1

�1([ai, bi)) +
mX

j=1

�1(Ij) �
nX

i=1

�1([ai, bi)).

Thus, �1([a, b)) = b � a � limn!1

P
n

i=1 �
1([ai, bi)) =

P
1

i=1 �
1([ai, bi)). We need only show

that b� a 
P

1

i=1 �
1([ai, bi)) to complete the proof.

Let 0 < ✏ < b � a and consider a pair-wise disjoint collection {[ai, bi)}i2N such that

[a, b) =
S
i2N

[ai, bi). Note that

[a, b� ✏) ⇢ [a, b� ✏] ⇢ [1

i=1(ai � 2�i✏, bi)

⇢ [n

i=1(ai � 2�i✏, bi) for some n 2 N, by the Heine-Borel Theorem

⇢ [n

i=1[ai � 2�i✏, bi).

But �1([ai, bi)) = �1([ai � 2�i✏, bi))� 1
2i ✏. Hence,

�1([a, b� ✏)) 
nX

i=1

�1

✓
[ai �

1

2i
✏, bi)

◆
by subadditivity

=
nX

i=1

(bi � ai +
1

2i
✏)

b� a� ✏ 
nX

i=1

(bi � ai) + ✏
nX

i=1

1

2i
or

b� a 
nX

i=1

(bi � ai) + ✏

 
1 +

nX

i=1

1

2i

!
.

Taking limits as n ! 1 on both sides of the last inequality gives b � a 
P

1

i=1(bi � ai),

which combined with the previously obtained reverse inequality gives b� a =
P

1

i=1(bi � ai).

Hence, �1 is a pre-measure on I1,h.
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Clearly, �n(;) = 0. The proof is completed by using induction on n, the dimension of

the space. Hence, we assume that �n is �-additive on In,h for some n and show that �n+1 is

�-additive on In+1,h. This final step is left as an exercise. ⌅

Theorem 2.8. There exists a unique extension of �n from In,h to a measure on the Borel

sets B(Rn). This extension is denoted by �n and is called Lebesgue measure.

Proof. We know that B(Rn) = �(In,h) from Theorem 1.5. Since, [�k, k)n = [�k, k) ⇥

[�k, k) · · · ⇥ [�k, k) " Rn as k ! 1 is an exhausting sequence of n-rectangles, and since

�n([�k, k)n) = (2k)n < 1, all conditions of Carathéodory’s Theorem are fulfilled. ⌅

Remark 2.3. Let (R, �(I1,h) = B(R)) be a measurable space. From Theorem 1.4 if we

set S = [0, 1) and consider I = I1,h \ S =
�
[0, 1) \ A : A 2 I1,h

 
then �(I1,h \ [0, 1)) =

B(R) \ [0, 1) is a �-algebra associated with [0, 1). Thus, we define B[0,1) := �(I1,h \ [0, 1))

and note that

([0, 1),B[0,1) := �(I))

is a measurable space where I = {[a, b) : 0  a  b  1}. Define the set function � : I !

[0, 1] such that �(;) = 0 and �([a, b)) = b � a. Since � is �-additive (pre-measure) on I (a

semi-ring), using Carathéodory’s Theorem, we can state that

([0, 1),B[0,1) := �(I),�⇤)

is a measure space, where �⇤ is the unique extension of � from I to �(I). In addition,

�⇤([0, 1)) = 1. Thus, we have constructed a specific probability space.

2.5 Distribution functions and probability measures on
(R,B(R))

We will now construct probability measures on (R,B(R)). This will be done using distribu-

tion functions.
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Definition 2.4. Let F : R! [0, 1] be a function with the following properties:

1. lim
h#0

F (x+ h) := F (x+) = F (x) for all x 2 R and h > 0,

2. x < y =) F (x)  F (y),

3. lim
x!1

F (x) = 1, lim
x!�1

F (x) = 0.

F is called a (proper or non-defective) distribution function (df). If only conditions 1 and 2

are met, F is called a defective df .

Remark 2.4. 1. Let F (x�) := lim
h#0

F (x�h) for h > 0. The left jump of F at x is defined as

LJF (x) = F (x)�F (x�) and the right jump of F at x is defined as RJF (x) = F (x+)�F (x).

The jump of F at x is defined as JF (x) = LJF (x)+RJF (x) = F (x+)�F (x�). If F is a df ,

RJF (x) = 0 for all x 2 R and JF (x) = F (x)�F (x�). In addition, since F is nondecreasing

JF (x) � 0. If JF (x) = 0 then F is continuous at x.

2. For any two x  y 2 R we have that 0  F (y)� F (x)  1.

Definition 2.5. Let S(p) = {x 2 R : F (x) � p} for p 2 [0, 1]. The left (generalized) inverse

of a df F , denoted by F�, is defined as F�(p) := inf S(p), for p 2 [0, 1].

Remark 2.5. Note that when p = 0, S(0) = R, which is nonempty but not bounded below.

As such, inf S(0) is not defined as a real number. In this case, we put F�(0) := �1.

Also, when p = 1, either S(1) = [a,1), which is nonempty and bounded below by a, in

which case F�(1) = a 2 R or S(1) = ;, in which case we put F�(1) = 1. Hence,

F� : [0, 1] ! R̄ := R [ {1} [ {�1}.

Theorem 2.9. Let S(p) = {x : F (x) � p} for p 2 (0, 1]. Then,

1. S(p) is a closed set.

2. t < F�(p) () F (t) < p or F�(p)  t () p  F (t).
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Proof. 1. If sn 2 S(p) and sn # s, bp right continuity of F we have p  F (sn) # F (s). Thus,

p  F (s) and s 2 S(p). If sn 2 S(p) and sn " s, we have p  F (sn) " F (s�)  F (s). Thus,

p  F (s) which implies that s 2 S(p). Consequently, by a characterization of closed sets,

S(p) is closed.

2. Since S(p) is closed, its infimum F�(p) 2 S(p) and therefore F (F�(p)) � p. t <

F�(p) =) t 62 S(p) =) F (t) < p. The reverse implications all apply. ⌅

Theorem 2.10. Let A ⇢ R, SF (A) = {p 2 (0, 1] : F�(p) 2 A} and I1 = {(a, b] : �1 

a < b < 1}. If A 2 B(R), then SF (A) 2 B(0,1] = �(I1) \ (0, 1].

Proof. Let G = {A ⇢ R : SF (A) 2 B(0,1]}. Note that

SF ((a, b]) = {p 2 (0, 1] : F�(p) 2 (a, b]} = {p 2 (0, 1] : a < F�(p)  b}

= {p 2 (0, 1] : F (a) < p  F (b)} by Theorem 2.9

= (F (a), F (b)] 2 B(0,1].

Hence, (a, b] 2 G and I1 ⇢ G. If G is a �-algebra, �(I1) = B(R) ⇢ G. Hence, A 2 B(R)

implies SF (A) 2 B(0,1]. Consequently, we need only show that G is a �-algebra associated

with R.

1. SF (R) = {p 2 (0, 1] : F�(p) 2 R} = (0, 1) =
S
n2N

(0, 1� n�1] 2 B(0,1], thus R 2 G.

2. By definition of SF

SF (A
c) = {p 2 (0, 1] : F�(p) 2 Ac} = {p 2 (0, 1] : F�(p) /2 A}

= (SF (A))
c 2 B(0,1]

where the last inclusion statement follows if A 2 G and the fact that B(0,1] is a �-algebra.
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3. If {An}n2N 2 G we have by definition of SF

SF

 
[

n2N

An

!
=

(
p 2 (0, 1] : F�(p) 2

[

n2N

An

)
= {p 2 (0, 1] : F�(p) 2 An for some n}

=
[

n2N

{p 2 (0, 1] : F�(p) 2 An} =
[

n2N

SF (An) 2 B(0,1] (2.8)

where the last inclusion statement follows since An 2 G and the fact that B(0,1] is a

�-algebra.

⌅

Definition 2.6. Let A 2 B(R) and define PF (A) = �1(SF (A)) where �1 is the Lebesgue

measure on B(0,1].

Theorem 2.11. Let PF be given in Definition 2.6. Then, (R,B(R), PF ) is a probability

space.

Proof. First, note that

PF (;) = �1(SF (;)) = �1({p 2 (0, 1] : F�(p) 2 ;}) = �1(;) = 0.

Second, if {An}n2N is a pairwise disjoint collection of sets in B(R) then

PF

✓
[

n2N
An

◆
= �1

✓
SF

✓
[

n2N
An

◆◆
= �1

✓
[

n2N
SF (An)

◆
by (2.8)

=
1X

n=1

�1(SF (An)) =
1X

n=1

PF (An).

where the next to last equality follows from the fact that �1 is a measure and {SF (An)}n2N

is a pairwise disjoint collection.

Lastly,

PF (R) = �1(SF (R)) = �1({p 2 (0, 1] : F�(p) 2 R}) = �1((0, 1))

= �1

 
[

n2N

(0, 1� n�1]

!
= �1 ((0, 1/2] [ (1/2, 2/3] [ (2/3, 3/4] [ · · · )

= 1/2 + (2/3� 1/2) + (3/4� 2/3) + · · · = 1.

49



⌅

Remark 2.6. Note that

PF ((�1, x]) = �1 (SF ((�1, x])) = �1({p 2 (0, 1] : F�(p) 2 (�1, x]})

= �1({p 2 (0, 1] : p  F (x)}) = �1((0, F (x)]) = F (x).

2.6 Exercises

1. Let µ be a measure on (R,B(R)) such that µ([�n, n)) < 1 for all n 2 N. Define,

Fµ(x) :=

8
<

:

µ([0, x)) if x > 0,
0 if x = 0,
�µ([x, 0)) if x < 0.

Show that Fµ : R! R is monotonically increasing and left continuous.

2. Let Fµ be defined as in question 1 and let ⌫Fµ (([a, b)) = Fµ(b) � Fµ(a) for all a  b,

a, b 2 R. Show that ⌫Fµ extends uniquely to a measure on B(R) and ⌫Fµ = µ.

3. If F is a distribution function, show that it can have an infinite number of jump

discontinuities, but at most countably many.

4. Show that �1((a, b)) = b� a for all a, b 2 R, a  b. State and prove the same for �n.

5. Consider the measure space (Rn,B(Rn),�n). Show that for every B 2 B(Rn) and x 2

Rn, x+B 2 B(Rn) and that �n(x+B) = �n(B). Note: x+B := {z : z = x+b, b 2 B}.
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