Chapter 2

Construction of probability measures

In the previous chapter we assumed the existence of measures. In this chapter we consider their existence and construction.

2.1 π systems, Dynkin systems, semi-rings and σ -algebras

We start by introducing two additional systems that may be associated with a set X.

Definition 2.1. 1. A system \mathcal{P} associated with \mathbb{X} is called a π system if $A, B \in \mathcal{P} \implies A \cap B \in \mathcal{P}$.

- 2. A system \mathcal{D} associated with \mathbb{X} is called a Dynkin system if:
 - a) $\mathbb{X} \in \mathcal{D}$

$$b) \ A \in \mathcal{D} \implies A^c \in \mathcal{D}$$

c) $\{A_j\}_{j\in\mathbb{N}} \subset \mathcal{D} \text{ and } A_i \cup A_j = \emptyset \ \forall \ i \neq j, \ i, j \in \mathbb{N} \implies \bigcup_{j\in\mathbb{N}} A_j \in \mathcal{D}.$

It is evident from part 2. of this definition that a σ -algebra associated with X is also a Dynkin system associated with X. As in the case of σ -algebras, there exist smallest Dynkin systems generated by subsets of X.

¹Eugene Borisovich Dynkin was a Russian mathematician that made important contributions to algebra and probability. He was a student of Andrei Kolmogorov.

Theorem 2.1. Let $\mathcal{C} \subset 2^{\mathbb{X}}$. There exists a smallest Dynkin system $\delta(\mathcal{C})$ such that $\mathcal{C} \subset \delta(\mathcal{C})$. It is called the Dynkin system generated by \mathcal{C} . In addition, $\delta(\mathcal{C}) \subset \sigma(\mathcal{C})$.

Proof. Existence and characterization of $\delta(\mathcal{C})$ is proved as in Theorem 1.2. Since $\sigma(\mathcal{C})$ is a Dynkin system $\delta(\sigma(\mathcal{C})) = \sigma(\mathcal{C})$. Since $\mathcal{C} \subset \sigma(\mathcal{C})$, $\delta(\mathcal{C}) \subset \delta(\sigma(\mathcal{C})) = \sigma(\mathcal{C})$ as in Theorem 1.3.

The next theorem shows that a Dynkin system is a σ -algebra if, and only if, it is a π system.

Theorem 2.2. A Dynkin system \mathcal{D} is a σ -algebra $\iff A, B \in \mathcal{D} \implies A \cap B \in \mathcal{D}$.

Proof. (\implies) If \mathcal{D} is a σ -algebra, then $A, B \in \mathcal{D} \implies A \cap B \in \mathcal{D}$, since σ -algebras are closed under countable intersections.

(\Leftarrow) If \mathcal{D} is a Dynkin system it satisfies requirements 1 and 2 for σ -algebras in Definition 1.1. Let $A_i \in \mathcal{D}$ for $i \in \mathbb{N}$, we must show that $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{D}$. Define $B_1 := A_1, B_2 := A_2 - B_1 = A_2 \cap B_1^c, B_3 := A_3 - \bigcup_{i=1}^2 B_i = A_3 \cap (\bigcup_{i=1}^2 B_i)^c \cdots B_n := A_n - \bigcup_{i=1}^{n-1} B_i = A_n \cap (\bigcup_{i=1}^{n-1} B_i)^c$. The collection $\{B_i\}_{i \in \mathbb{N}}$ is pairwise disjoint, and since each B_i is the intersection of two sets in \mathcal{D} , using closeness under finite intersections, $\bigcup_{i \in \mathbb{N}} B_i = \bigcup_{i \in \mathbb{N}} A_i \in \mathcal{D}$.

Theorem 2.3. If \mathcal{P} is a π system associated with \mathbb{X} , then $\delta(\mathcal{P}) = \sigma(\mathcal{P})$.

Proof. From Theorem 2.1, $\delta(\mathcal{P}) \subset \sigma(\mathcal{P})$ and from Theorem 2.2 if $\delta(\mathcal{P})$ is a π system it is a σ algebra. Since $\sigma(\mathcal{P})$ is the smallest σ -algebra generated by \mathcal{P} , it must be that $\delta(\mathcal{P}) = \sigma(\mathcal{P})$,
so it suffices to show that $\delta(\mathcal{P})$ is a π -system. For any $D \in \delta(\mathcal{P})$, let $\mathcal{D}_D = \{A \subset \mathbb{X} : A \cap D \in \delta(\mathcal{P})\}$. First, we show that \mathcal{D}_D is a Dynkin system. We verify conditions a), b) and c) in
Definition 2.1

a) Note that $\mathbb{X} \cap D = D \in \delta(\mathcal{P})$, hence $\mathbb{X} \in \mathcal{D}_D$.

b) If $A \in \mathcal{D}_D$, then $A \cap D \in \delta(\mathcal{P})$. Now, $A^c \cap D = (A^c \cup D^c) \cap D = (A \cap D)^c \cap D = ((A \cap D) \cup D^c)^c$ where $A \cap D$ and D^c are disjoint. Also, since $D \in \delta(\mathcal{P})$, we have $D^c \in \delta(\mathcal{P})$, and $A \cap D \in \delta(\mathcal{P})$ by assumption, so $((A \cap D) \cup D^c)^c \in \delta(\mathcal{P})$. Thus $A^c \in \mathcal{D}_D$.

c) Let A_i for $i \in \mathbb{N}$ be pairwise disjoint with $A_i \cap D \in \delta(\mathcal{P})$ and note that $\{(A_i \cap D)\}_{i \in \mathbb{N}}$ forms a disjoint collection. Thus, $\bigcup_{i \in \mathbb{N}} (A_i \cap D) = D \cap \bigcup_{i \in \mathbb{N}} A_i$ and $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{D}_D$. Thus, \mathcal{D}_D is a Dynkin system.

Fix $G \in \mathcal{P}$. Then, $G \in \delta(\mathcal{P})$ and we can define $\mathcal{D}_G = \{A \subset \mathbb{X} : A \cap G \in \delta(\mathcal{P})\}$. Now, consider $G' \in \mathcal{P}$. Since, \mathcal{P} is a π -system, $G' \cap G \in \mathcal{P} \subset \delta(\mathcal{P})$. Hence, $G' \in \mathcal{D}_G$, showing that $\mathcal{P} \subset \mathcal{D}_G$ for all $G \in \mathcal{P}$. But \mathcal{D}_G is a Dynkin system and consequently, by definition $\delta(\mathcal{P}) \subset \mathcal{D}_G, \forall G \in \mathcal{P}$.

Thus, we have that if $D \in \delta(\mathcal{P})$ and $G \in \mathcal{P}$, then $G \cap D \in \delta(\mathcal{P})$ and $\mathcal{P} \subset \mathcal{D}_D$ (by definition of \mathcal{D}_D). Then, $\delta(\mathcal{P}) \subset \mathcal{D}_D$ for all $D \in \delta(\mathcal{P})$ implying that $\delta(\mathcal{P})$ is a π system by definition of \mathcal{D}_D .

Definition 2.2. A semi-ring, denoted by S, is a non-empty system associated with X having the following properties:

1.
$$\emptyset \in \mathcal{S}$$

- 2. $A, B \in \mathcal{S} \implies A \cap B \in \mathcal{S},$
- 3. for all $A, B \in S$ there exists $m \in \mathbb{N}$ and $\{S_j\}_{j=1}^m \subset S$ that is pairwise disjoint such that $B A = \bigcup_{j=1}^m S_j$.

Remark 2.1. 1. A semi-ring is a π system in view of condition 2.

2. Property 3 in Definition 2.2 is equivalent to the following:
3'. if A, B ∈ S and A ⊂ B, then B = A∪(U^m_{j=1} S_j) where the collection {A, S₁, · · · S_m} ⊂ S is pairwise disjoint.

To verify that $3 \implies 3$ note that $A \subset B \implies B = A \cup (B - A) = A \cup \left(\bigcup_{j=1}^{m} S_{j}\right)$ by 3, where $\{A, S_{1}, \dots, S_{m}\} \subset S$ is pairwise disjoint. Now, to verify that $3' \implies 3$ note that $B = (B \cap A) \cup (B - A)$. Since $(B \cap A) \subset B$, by $3' B = (B \cap A) \cup \left(\bigcup_{j=1}^{m} S_{j}\right)$. Thus, $(B \cap A) \cup (B - A) = (B \cap A) \cup \left(\bigcup_{j=1}^{m} S_{j}\right)$ which implies that $B - A = \bigcup_{j=1}^{m} S_{j}$ where $\{S_{j}\}_{j=1}^{m} \subset S$ is pairwise disjoint.

- 3. A ring R is a non-empty system of sets associated with X such that A, B ∈ R ⇒
 A ∪ B ∈ R and A − B ∈ R. If A ∈ R then A − A = Ø ∈ R. Also, if A, B ∈ R, and noting that A ∩ B = A − (A − B), we have that A ∩ B ∈ R. Now let A ⊂ B, A, B ∈ R. Since B = A ∪ (B − A) and (B − A) ∈ R, we conclude that every ring is a semi-ring using property 3'.
- 4. If \mathcal{A} is an algebra, then for $A, B \in \mathcal{A}$ we have that $A \cup B, A \cap B, B^c \in \mathcal{A}$, and since $A B = A \cap B^c \in \mathcal{A}$, an algebra is a ring.

It follows from these remarks that we have the following hierarchy of systems: \mathcal{A} (algebras) are \mathcal{R} (rings) are \mathcal{S} (semi-rings) are π systems.

2.2 Uniqueness of measures

The following theorem shows that under some conditions, measures that coincide on some generating class \mathcal{G} coincide on $\sigma(\mathcal{G})$.

Theorem 2.4. Let $(X, \sigma(\mathcal{P}))$ be a measurable space and \mathcal{P} a collection of subsets of X, such that:

- 1. \mathcal{P} is a π system,
- 2. there exists $\{P_j\}_{j\in\mathbb{N}} \subset \mathcal{P}$ with $P_1 \subset P_2 \subset \cdots$ such that $\bigcup_{j\in\mathbb{N}} P_j := \lim_{j\to\infty} P_j = \mathbb{X}$ (the sequence $\{P_j\}_{j\in\mathbb{N}}$ is exhausting).

If μ and v are measures that coincide on \mathcal{P} and, are finite for all P_j , then $\mu(A) = v(A)$ for all $A \in \sigma(\mathcal{P})$.

Proof. For $j \in \mathbb{N}$ let $\mathcal{D}_j = \{A \in \sigma(\mathcal{P}) : \mu(A \cap P_j) = v(A \cap P_j)\}$. First, we show that \mathcal{D}_j is a Dynkin system.

- 1. $\mathbb{X} \in \mathcal{D}_j$ since $\mu(\mathbb{X} \cap P_j) = \mu(P_j) = v(P_j) = v(\mathbb{X} \cap P_j).$
- 2. Let $A \in \mathcal{D}_j$. Note that $P_j = (A \cap P_j) \cup (A^c \cap P_j)$ and note that the two sets in the union are disjoint. Since μ is a measure $\mu(P_j) = \mu(A \cap P_j) + \mu(A^c \cap P_j)$. Hence, $\mu(A^c \cap P_j) = \mu(P_j) - \mu(A \cap P_j)$. Since μ and v coincide in \mathcal{P} we have that $v(P_j) = \mu(P_j)$ and since $A \in \mathcal{D}_j$ we have that $\mu(A \cap P_j) = v(A \cap P_j)$. Hence,

$$\mu(A^{c} \cap P_{j}) = \mu(P_{j}) - \mu(A \cap P_{j}) = v(P_{j}) - v(A \cap P_{j}) = v(A^{c} \cap P_{j})$$

Thus, $A^c \in \mathcal{D}_j$.

3. Let A_1, A_2, \cdots be a pairwise disjoint collection in \mathcal{D}_j .

$$\mu\left(\left(\bigcup_{i\in\mathbb{N}}A_i\right)\cap P_j\right) = \mu\left(\bigcup_{i\in\mathbb{N}}(A_i\cap P_j)\right) = \sum_{i=1}^{\infty}\mu(A_i\cap P_j)$$
$$= \sum_{i=1}^{\infty}v(A_i\cap P_j) \text{ since } A_i\in\mathcal{D}_j$$
$$= v\left(\bigcup_{i\in\mathbb{N}}(P_j\cap A_i)\right) = v\left(P_j\cap\left(\bigcup_{i\in\mathbb{N}}A_i\right)\right)$$

and consequently, $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{D}_j$.

Since \mathcal{P} is a π -system, by Theorem 2.3 and the definition $\delta(\mathcal{P})$, we have $\mathcal{P} \subset \delta(\mathcal{P}) = \sigma(\mathcal{P}) \subset \mathcal{D}_j$. But by construction $\mathcal{D}_j \subset \sigma(\mathcal{P})$ and we conclude that $\mathcal{D}_j = \sigma(\mathcal{P})$. So, for all $A \in \sigma(\mathcal{P})$ and $j = 1, 2, \cdots$,

$$\mu(A \cap P_j) = v(A \cap P_j). \tag{2.1}$$

By continuity of measures from below and noting that $(A \cap P_1) \subset (A \cap P_2) \subset \cdots$, letting $j \to \infty$ in (2.1) we have for all $A \in \sigma(\mathcal{P})$,

$$\lim_{j \to \infty} \mu(A \cap P_j) = \mu\left(\lim_{j \to \infty} (A \cap P_j)\right) = \mu\left(\bigcup_{j \in \mathbb{N}} (A \cap P_j)\right)$$
$$= \mu\left(A \cap \left(\bigcup_{j \in \mathbb{N}} P_j\right)\right) = \mu\left(A \cap \mathbb{X}\right)$$
$$= \mu(A)$$

Similarly, $\lim_{j\to\infty} v(A \cap P_j) = v(A)$ and we conclude that $\mu(A) = v(A)$.

2.3 Existence of measures - Carathéodory's Extension Theorem

We take the following path to construct a measure on \mathcal{F} . We start with a class of subsets \mathcal{S} of X, such that $\mathcal{F} = \sigma(\mathcal{S})$, and define a pre-measure μ on \mathcal{S} . If \mathcal{S} and μ satisfy the requirements of Theorem 2.4, then μ will extend uniquely to \mathcal{F} , provided we are able to extend it from \mathcal{S} to \mathcal{F} . The result that provides the conditions and possibility for such an extension is known as Carathéodory's Extension Theorem.

Theorem 2.5. (Carathéodory) Let S be a semi-ring of subsets of \mathbb{X} and $\mu : S \to [0, \infty]$ be a pre-measure. Then, μ has an extension to a measure μ on $\sigma(S)$. If there exists $\{E_j\}_{j\in\mathbb{N}} \in S$ with $E_1 \subset E_2 \cdots$ such that $\lim_{j\to\infty} E_j \to \mathbb{X}$ and $\mu(E_j) < \infty$ for all j, then the extension is unique.

Proof. Step 1. We start by defining the set function $\mu^* : 2^{\mathbb{X}} \to [0, \infty]$. For any $A \subset \mathbb{X}$ define the collection of countable covers for A that are composed of sets in \mathcal{S} by

$$C(A) = \{\{S_j\}_{j \in \mathbb{N}} \subset \mathcal{S} : A \subset \bigcup_{j \in \mathbb{N}} S_j\}.$$

If A cannot be covered by some $\bigcup_{j \in \mathbb{N}} S_j$, then $C(A) = \emptyset$. Now, define

$$\mu^*(A) := \inf \left\{ \sum_{j \in \mathbb{N}} \mu(S_j) : \{S_j\}_{j \in \mathbb{N}} \in C(A) \right\},\$$

where $\inf \emptyset := \infty$. Note that,

- a) $\mu^*(\emptyset) = 0$, by taking $S_1 = S_2 = \cdots = \emptyset$
- b) $A \subset B$ implies that every cover for B is also a cover for A, i.e., $C(B) \subset C(A)$. Therefore,

$$\mu^*(A) = \inf\left\{\sum_{j \in \mathbb{N}} \mu(S_j) : \{S_j\}_{j \in \mathbb{N}} \in C(A)\right\} \le \inf\left\{\sum_{j \in \mathbb{N}} \mu(T_j) : \{T_j\}_{j \in \mathbb{N}} \in C(B)\right\} = \mu^*(B)$$

c) Let $A_n \subset \mathbb{X}$ for $n \in \mathbb{N}$ and, without loss of generality, assume that $\mu^*(A_n) < \infty$ (that is $C(A_n) \neq \emptyset$). Choose $\epsilon > 0$ and let $\{S_{nk}\}_{k \in \mathbb{N}} \in C(A_n)$ be such that

$$\sum_{k \in \mathbb{N}} \mu(S_{nk}) \le \mu^*(A_n) + \epsilon/2^n.$$

Now, $\bigcup_{n\in\mathbb{N}}A_n\subset \bigcup_{n\in\mathbb{N}}\bigcup_{k\in\mathbb{N}}S_{nk}$ and by the definition of infimum and sub-additivity of pre-measures

$$\mu^* \left(\bigcup_{n \in \mathbb{N}} A_n \right) \le \sum_{n \in \mathbb{N}} \sum_{k \in \mathbb{N}} \mu(S_{nk})$$
$$\le \sum_{n \in \mathbb{N}} \left(\mu^*(A_n) + \epsilon/2^n \right) = \sum_{n \in \mathbb{N}} \mu^*(A_n) + \epsilon.$$

Hence, $\mu^* \left(\bigcup_{n \in \mathbb{N}} A_n \right) \leq \sum_{n \in \mathbb{N}} \mu^*(A_n)$. If $\mu^*(A_n) = \infty$ for some *n*, then the last inequality holds trivially.

Since μ^* satisfies properties a)-c), it is called an outer-measure on $2^{\mathbb{X}}$.

Step 2. We now show that μ^* extends μ (defined on S) to $2^{\mathbb{X}}$. By this we mean that $\mu^*(S) = \mu(S)$ for $S \in S$.

First, let $S_U = \{S : S = \bigcup_{j=1}^m S_j, S_j \in S, S_i \cap S_j = \emptyset \ \forall i \neq j \text{ and } m \in \mathbb{N}\}$ be the collection of sets that can be written as disjoint finite unions of elements of S and let $\bar{\mu}(S) = \sum_{j=1}^m \mu(S_j)$ for $S \in S_U$. Note that $\bar{\mu}(S)$ is invariant to the pairwise disjoint finite union used to represent S. To see this, suppose $S = \bigcup_{j=1}^m S_j$ and $S = \bigcup_{k=1}^n T_k$ for $m, n \in \mathbb{N}$.

Then, $\bigcup_{j=1}^{m} S_j = \bigcup_{k=1}^{n} T_k$ and $S_j = S_j \cap (\bigcup_{k=1}^{n} T_k) = \bigcup_{k=1}^{n} (S_j \cap T_k)$ and $S_j \cap T_k \in \mathcal{S}$, since a semi-ring is a π -system. Since μ is a pre-measure on \mathcal{S} , and $\{T_k\}_{k=1}^{n}$ is a pairwise disjoint collection, $\mu(S_j) = \sum_{k=1}^{n} \mu(T_k \cap S_j)$. Then,

$$\bar{\mu}(S) = \sum_{j=1}^{m} \mu(S_j) = \sum_{k=1}^{n} \sum_{j=1}^{m} \mu(T_k \cap S_j) = \sum_{k=1}^{n} \mu(T_k).$$

We now show that S_U is closed under (arbitrary) finite intersections and unions. If $A, B \in S_U$ then $A \cap B = (\bigcup_{j=1}^m S_j) \cap (\bigcup_{k=1}^n T_k)$ where the two unions are over pairwise disjoint sets. Then, $A \cap B = \bigcup_{j=1}^m \bigcup_{k=1}^n (S_j \cap T_k) \in S_U$ since $S_j \cap T_k \in S$ for all j, k and $\{S_j \cap T_k\}_{j=1,k=1}^{m,n}$ is pairwise disjoint.

Also, since $S_j, T_k \in \mathcal{S}$, their difference can be written as a finite union of pairwise disjoint elements of \mathcal{S} . Hence, $S_j - T_k \in \mathcal{S}_U$. Now,

$$A - B = \bigcup_{j=1}^{m} S_j - \bigcup_{k=1}^{n} T_k = \bigcup_{j=1}^{m} \bigcap_{k=1}^{n} (S_j \cap T_k^c) = \bigcup_{j=1}^{m} \bigcap_{k=1}^{n} (S_j - T_k).$$

Since, $S_j - T_k \in S_U$ and given that we have shown that S_U is closed under finite intersections, $\bigcap_{k=1}^n (S_j - T_k) \in S_U$. Hence, A - B is the finite union of pairwise disjoint elements in S_U and we conclude that $A - B \in S_U$, since S_U is closed under pairwise disjoint unions. Lastly, since $A \cup B = (A - B) \cup (A \cap B) \cup (B - A)$ and all sets in the union are disjoint and in S_U , we conclude that $A \cup B \in S_U$.

We now show that $\bar{\mu}$ is σ -additive on \mathcal{S}_U , i.e., a pre-measure. Let $\{T_k\}_{k\in\mathbb{N}} \subset \mathcal{S}_U$ such that $\{T_k\}_{k\in\mathbb{N}}$ is pairwise disjoint and such that $T := \bigcup_{k\in\mathbb{N}} T_k \in \mathcal{S}_U$. Since $T_k \in \mathcal{S}_U$, by definition there exist $\{S_j\}_{j\in\mathbb{N}} \in \mathcal{S}$ and a sequence of $0 = n_0 \leq n_1 \leq \cdots$ of integers such that

$$T_k = S_{n_{(k-1)}+1} \cup S_{n_{(k-1)}+2} \cup \dots \cup S_{n_k}$$
for $k \in \mathbb{N}$,

where the collection $\{S_{n_{(k-1)}+1}, S_{n_{(k-1)}+2}, \cdots, S_{n_k}\}$ is pairwise disjoint and

$$T = \bigcup_{k \in \mathbb{N}} \bigcup_{j=n_{(k-1)}+1}^{n_k} S_j$$

Also, since $T \in \mathcal{S}_U$, it can be written as $T = \bigcup_{l=1}^N U_l$ where $N \in \mathbb{N}$ with $U_l \in \mathcal{S}$ and $\{U_l\}_{l=1}^N$ a pairwise disjoint collection. Hence,

$$\bigcup_{l=1}^{N} U_l = \bigcup_{k \in \mathbb{N}} \bigcup_{j=n_{(k-1)}+1}^{n_k} S_j$$

Defining disjoint subsets J_1, \dots, J_N of \mathbb{N} such that $\bigcup_{l=1}^N J_l = \mathbb{N}$ we write $U_l = \bigcup_{j \in J_l} S_j$ and note that $U_l \in \mathcal{S}$. Now, $T = \bigcup_{k \in \mathbb{N}} T_k = \bigcup_{l=1}^N U_l$ and

$$\bar{\mu}(T) = \sum_{l=1}^{N} \mu(U_l) \text{ by definition of } \bar{\mu}$$
$$= \sum_{l=1}^{N} \sum_{j \in J_l} \mu(S_j) \text{ by } \mu \text{ being a pre-measure on } S$$
$$= \sum_{k \in \mathbb{N}} \sum_{j=n_{(k-1)}+1}^{n_k} \mu(S_j) = \sum_{k \in \mathbb{N}} \bar{\mu}(T_k).$$

Now, for any $S \in \mathcal{S}$ and any \mathcal{S} -covering of S, i.e., $\{S_j\}_{j \in \mathbb{N}} \in C(S)$

$$\mu(S) = \bar{\mu}(S) = \bar{\mu}\left(\bigcup_{j \in \mathbb{N}} S_j \cap S\right) \text{ since } S \in \mathcal{S} \implies S \in \mathcal{S}_U$$
$$\leq \sum_{j \in \mathbb{N}} \bar{\mu}(S_j \cap S) \text{ since } \bar{\mu} \text{ is a pre-measure and sub-additive}$$
$$= \sum_{j \in \mathbb{N}} \mu(S_j \cap S) \leq \sum_{j \in \mathbb{N}} \mu(S_j).$$

Taking the infimum over C(S), we have $\mu(S) \leq \mu^*(S)$. Now, taking $(S, \emptyset, \dots) \in C(S)$ gives $\mu^*(S) \leq \mu(S)$. Combining the two inequalities, we have

$$\mu^*(S) = \mu(S)$$
 for all $S \in \mathcal{S}$.

Step 3. We will show that $\mathcal{S} \subset \mathcal{A}^*$ where

$$\mathcal{A}^* = \{ A \subset \mathbb{X} : \mu^*(Q) = \mu^*(Q \cap A) + \mu^*(Q \cap A^c), \forall Q \subset \mathbb{X} \}.$$
(2.2)

Let $S, T \in \mathcal{S}$ and note that $T = (T \cap S) \cup (T \cap S^c) = (T \cap S) \cup (T - S) = (T \cap S) \cup (\bigcup_{j=1}^m S_j)$ with $\{S_j\}_{j=1}^m$ disjoint, $m \in \mathbb{N}$ and where the last equality follows from the third defining property of semi-rings. Since μ is a pre-measure on \mathcal{S} we have

$$\mu(T) = \mu(T \cap S) + \sum_{j=1}^{m} \mu(S_j).$$

Since μ^* and μ coincide on S and $T \cap S \in S$, and since μ^* is sub-additive, from c) in Step 1, we have $\mu^*(T - S) = \mu^*(\bigcup_{j=1}^m S_j) \leq \sum_{j=1}^m \mu^*(S_j) = \sum_{j=1}^m \mu(S_j)$. Consequently,

$$\mu(T) = \mu(T \cap S) + \sum_{j=1}^{m} \mu(S_j) \ge \mu^*(T \cap S) + \mu^*(T - S).$$
(2.3)

Take $Q \subset \mathbb{X}$ and $\{T_j\}_{j \in \mathbb{N}} \in C(Q)$. Using $\mu^*(T_j) = \mu(T_j)$ and summing (2.3) over j taking $T = T_j$

$$\sum_{j\in\mathbb{N}}\mu^*(S\cap T_j) + \sum_{j\in\mathbb{N}}\mu^*(T_j-S) \le \sum_{j\in\mathbb{N}}\mu^*(T_j).$$

Sub-additivity and monotonicity of μ^* together with $Q \subset \bigcup_{j \in \mathbb{N}} T_j$ give

$$\mu^*(Q \cap S) + \mu^*(Q - S) \le \mu^*(\bigcup_{j \in \mathbb{N}} (T_j \cap S)) + \mu^*(\bigcup_{j \in \mathbb{N}} (T_j - S))$$
$$\le \sum_{j \in \mathbb{N}} \mu^*(T_j) = \sum_{j \in \mathbb{N}} \mu(T_j).$$

Taking the infimum over C(Q), $\mu^*(Q \cap S) + \mu^*(Q - S) \leq \mu^*(Q)$. The reverse inequality follows easily from sub-additivity of μ^* . Consequently, if $S \in \mathcal{S}$ we have that $S \in \mathcal{A}^*$.

Step 4. We show that \mathcal{A}^* is a σ -algebra and μ^* is a measure on $(\mathbb{X}, \mathcal{A}^*)$.

- 1. For all $Q \subset \mathbb{X}$, $Q \cap \mathbb{X} = Q$ and $Q \cap \mathbb{X}^c = \emptyset$. Since $\mu^*(\emptyset) = 0$ we have that $\mathbb{X} \in \mathcal{A}^*$.
- 2. For all $Q \subset \mathbb{X}$ suppose $A \in \mathcal{A}^*$, i.e.

$$\mu^*(Q) = \mu^*(Q \cap A) + \mu^*(Q \cap A^c).$$

But by symmetry of the right hand side of the equality due to $(A^c)^c = A$, we have $A^c \in \mathcal{A}^*$.

3. If
$$A, A' \in \mathcal{A}^*$$
, for all $Q \subset \mathbb{X}$

$$\begin{split} \mu^*(Q \cap (A \cup A')) &+ \mu^*(Q - (A \cup A')) \\ &= \mu^*(Q \cap (A \cup (A' - A))) + \mu^*(Q - (A \cup A')) \\ &= \mu^*((Q \cap A) \cup [Q \cap (A' - A)]) + \mu^*(Q - (A \cup A')) \\ &\leq \mu^*(Q \cap A) + \mu^*(Q \cap (A' - A)) + \mu^*(Q - (A \cup A')) \\ &\text{ using subadditivity of } \mu^* \end{split}$$

$$= \mu^*(Q \cap A) + \mu^*((Q - A) \cap A') + \mu^*((Q - A) - A')$$
$$= \mu^*(Q \cap A) + \mu^*(Q - A) = \mu^*(Q)$$

using the defining expression for \mathcal{A}^* twice, once for Q - A and once for Q.

Thus,

$$\mu^*(Q \cap (A \cup A')) + \mu^*(Q - (A \cup A')) \le \mu^*(Q).$$
(2.4)

Now, $Q = \{Q \cap (A \cup A')\} \cup \{Q \cap (A \cup A')^c\}$. By sub-additivity of μ^*

$$\mu^*(Q) \le \mu^*(Q \cap (A \cup A')) + \mu^*(Q - (A \cup A')).$$
(2.5)

Combining inequalities (2.4) and (2.5) we conclude that $\mu^*(Q) = \mu^*(Q \cap (A \cup A')) + \mu^*(Q - (A \cup A'))$ and consequently \mathcal{A}^* is closed under finite unions.

If $A, A' \in \mathcal{A}^*$ such that $A \cap A' = \emptyset$, then for $Q = (A \cup A') \cap P$ with $P \subset \mathbb{X}$ the equality $\mu^*(Q \cap A) + \mu^*(Q - A) = \mu^*(Q)$ becomes

$$\mu^*((A \cup A') \cap P) = \mu^*(P \cap A) + \mu^*(P \cap A'), \forall P \subset \mathbb{X}.$$

For a disjoint collection $\{A_j\}_{j=1}^m \in \mathcal{A}^*$,

$$\mu^*((\cup_{j=1}^m A_j) \cap P) = \sum_{j=1}^m \mu^*(P \cap A_j)$$

If $A = \bigcup_{j \in \mathbb{N}} A_j$, where $\{A_j\}$ is a disjoint collection,

$$\mu^*(P \cap A) \ge \mu^*(P \cap (\bigcup_{j=1}^m A_j)) = \sum_{j=1}^m \mu^*(P \cap A_j).$$

Since $\bigcup_{j=1}^{m} A_j \in \mathcal{A}^*$ we have that

$$\mu^{*}(P) = \mu^{*}(P \cap (\cup_{j=1}^{m} A_{j})) + \mu^{*}(P - \cup_{j=1}^{m} A_{j})$$

$$\geq \mu^{*}(P \cap (\cup_{j=1}^{m} A_{j})) + \mu^{*}(P - A)$$

$$= \sum_{j=1}^{m} \mu^{*}(P \cap A_{j}) + \mu^{*}(P - A).$$

Let $m \to \infty$, to conclude

$$\mu^*(P) \ge \sum_{j=1}^{\infty} \mu^*(P \cap A_j) + \mu^*(P - A) \ge \mu^*(P \cap A) + \mu^*(P - A)$$

The reverse inequality follows directly from sub-additivity of μ^* . Thus,

$$\mu^*(P) = \mu^*(P \cap A) + \mu^*(P - A), \,\forall P \subset \mathbb{X}.$$

Consequently, $A = \bigcup_{j \in \mathbb{N}} A_j$ where the collection $\{A_j\}_{j \in \mathbb{N}}$ is pairwise disjoint is in \mathcal{A}^* . Consequently, \mathcal{A}^* is a Dynkin system that is closed under finite unions. By DeMorgan Laws, \mathcal{A}^* is closed under finite intersections, and by Theorem 2.2, \mathcal{A}^* is a σ -algebra.

Now, we show that μ^* is a measure on $\sigma(S)$. From above, $S \subset A^*$, so $\sigma(S) \subset A^*$. Also, μ^* is a measure on A^* and on $\sigma(S)$, which extends μ on S. By Theorem 2.4, and under the conditions in the enunciation of this theorem, any two extensions μ^* and v^* of μ coincide on $\sigma(S)$.

Remark 2.2. $(\mathbb{X}, \mathcal{A}^*, \mu^*)$ is a complete measure space. To verify completeness, let $E \in \mathcal{A}^*$ such that $\mu^*(E) = 0$, and consider $B \subset E$. We must verify that $B \in \mathcal{A}^*$, i.e., for any $Q \subset \mathbb{X}$, it must be that

$$\mu^*(Q) = \mu^*(Q \cap B) + \mu^*(Q \cap B^c).$$

Now, $Q \cap B \subset Q \cap E \subset E \implies \mu^*(Q \cap B) \le \mu^*(E) = 0$ and, consequently $\mu^*(Q \cap B) = 0$. Also, $Q \cap B^c \subset Q \implies \mu^*(Q \cap B^c) \le \mu^*(Q)$. Hence,

$$\mu^*(Q) \ge \mu^*(Q \cap B^c) + \mu^*(Q \cap B).$$
(2.6)

By sub-additivity

$$\mu^*(Q) \le \mu^*(Q \cap B^c) + \mu(Q \cap B) \tag{2.7}$$

Given (2.6) and (2.7) we have $\mu^*(Q) = \mu^*(Q \cap B^c) + \mu^*(Q \cap B)$. In addition, $\mu^*(B) = 0$ follows from monotonicity of measures.

2.4 Lebesgue measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$

In this section, we use Carathéodory's Theorem to construct a measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. The first step is to show that $\mathcal{I}^{n,h}$ is a semi-ring.

Theorem 2.6. Let $\mathbb{R}^{n,h} = \times_{i=1}^{n} [a_i, b_i)$ for $n \in \mathbb{N}$ be a half-open rectangle in \mathbb{R}^n and $\mathcal{I}^{n,h}$ be the collection formed by all such rectangles with real endpoints. $\mathcal{I}^{n,h}$ is a semi-ring.

Proof. Let $\mathcal{I}^{1,h} = \{[a_i, b_i) : a_i \leq b_i \text{ where } a_i, b_i \in \mathbb{R}\}$ and note that:

1. if $b_i = a_i$, $[a_i, b_i) = \emptyset$,

2. if
$$[a_i, b_i), [a_j, b_j) \in \mathcal{I}^{n,h}$$
 then $[a_i, b_i) \cap [a_j, b_j) = \begin{cases} \emptyset & \in \mathcal{I}^{1,h} \\ [a_j, b_i) & \in \mathcal{I}^{1,h} \\ [a_i, b_j) & \in \mathcal{I}^{1,h} \\ [a_i, b_i) & \in \mathcal{I}^{1,h} \end{cases}$

3. if $[a_1, b_1) \subset [a_2, b_2)$ then $[a_2, b_2) = [a_2, a_1) \cup [a_1, b_1) \cup [b_1, b_2)$, where the members in the union are all disjoint.

Hence, $\mathcal{I}^{1,h}$ is a semi-ring.

Now, suppose $\mathcal{I}^{n,h}$ is a semi-ring. We will verify that $\mathcal{I}^{n+1,h}$ is a semi-ring. First, note that $\mathcal{I}^{n+1,h} = \mathcal{I}^{n,h} \times \mathcal{I}^{1,h}$ and since $\emptyset \in \mathcal{I}^{n,h}$ we immediately conclude that $\emptyset \in \mathcal{I}^{n+1,h}$. The intersection of two rectangles in $\mathcal{I}^{n+1,h}$ is given by

$$(R^{n,h} \times R^{1,h}) \cap (I^{n,h} \times I^{1,h}) = (R^{n,h} \cap I^{n,h}) \times (R^{1,h} \cap I^{1,h})$$

where $I^{n,h}$ is a half-open rectangle in \mathbb{R}^n and the righthand side of the equality is an element of $\mathcal{I}^{n+1,h}$. Also, $(\mathbb{R}^{n,h} \times \mathbb{R}^{1,h}) - (\mathbb{I}^{n,h} \times \mathbb{I}^{1,h}) = (\mathbb{R}^{n,h} \times \mathbb{R}^{1,h}) \cap (\mathbb{I}^{n,h} \times \mathbb{I}^{1,h})^c$ and note that

$$(I^{n,h} \times I^{1,h})^c = \{(x,y) : x \notin I^{n,h}, y \notin I^{1,h}, \text{ or } x \in I^{n,h} \text{ and } y \notin I^{1,h}, \text{ or } x \notin I^{n,h} \text{ and } y \in I^{1,h}\}$$
$$= ((I^{n,h})^c \times (I^{1,h})^c) \cup (I^{n,h} \times (I^{1,h})^c) \cup ((I^{n,h})^c \times I^{1,h})$$

where the components of the union are disjoint. Thus,

$$\begin{aligned} (R^{n,h} \times R^{1,h}) - (I^{n,h} \times I^{1,h}) &= [(R^{n,h} \times R^{1,h}) \cap ((I^{n,h})^c \times (I^{1,h})^c)] \cup [(R^{n,h} \times R^{1,h}) \cap (I^{n,h} \times (I^{1,h})^c) \\ & \cup [(R^{n,h} \times R^{1,h}) \cap ((I^{n,h})^c \times I^{1,h})] \\ &= [(R^{n,h} - I^{n,h}) \times (R^{1,h} - I^{1,h})] \cup [(R^{n,h} \cap I^{n,h}) \times (R^{1,h} - I^{1,h})] \\ & \cup [(R^{n,h} - I^{n,h}) \times (R^{1,h} \cap I^{1,h})] .\end{aligned}$$

By the induction assumption, $R^{n,h} - I^{n,h}$ and $R^{1,h} - I^{1,h}$ can be expressed as finite unions of disjoint rectangles, which completes the proof.

Definition 2.3. Let $\lambda^n : \mathcal{I}^{n,h} \to [0,\infty)$ be defined as $\lambda^n(R^{n,h}) = \prod_{j=1}^n (b_j - a_j)$ whenever $b_j > a_j$ for $j = 1, \dots, n$ and $\lambda^n(R^{n,h}) = 0$ if $b_j \leq a_j$ for some j.

Theorem 2.7. λ^n is a pre-measure on $\mathcal{I}^{n,h}$.

Proof. We start by showing that λ^1 is a pre-measure on $\mathcal{I}^{1,h}$. Let $[a,b) \in \mathcal{I}^{1,h}$ and $[a,b) = \bigcup_{i=1}^{n} [a_i, b_i)$ with $a_1 = a$, $a_2 = b_1$, $a_3 = b_2$, \cdots , $a_n = b_{n-1}$, $b_n = b$. Then,

$$\sum_{i=1}^{n} \lambda^{1}([a_{i}, b_{i})) = (b_{1} - a_{1}) + (b_{2} - a_{2}) + \dots + (b_{n-1} - a_{n-1}) + (b_{n} - a_{n})$$
$$= (a_{2} - a) + (a_{3} - a_{2}) + \dots + (a_{n} - a_{n-1}) + (b - a_{n}) = b - a$$
$$= \lambda^{1}([a, b]) = \lambda^{1} \left(\bigcup_{i=1}^{n} [a_{i}, b_{i}] \right).$$

Therefore, λ^1 is finitely additive. For σ -additivity, we need to show that for $[a, b] = \bigcup_{i \in \mathbb{N}} [a_i, b_i)$, where $\{[a_i, b_i)\}_{i \in \mathbb{N}}$ is a pairwise disjoint collection we have $b - a = \sum_{i=1}^{\infty} (b_i - a_i)$. For any $n \in \mathbb{N}$, let $\{[a_i, b_i)\}_{i=1}^n$ be a pairwise disjoint collection. Then, since $\mathcal{I}^{1,h}$ is a semi-ring, we can write

$$[a,b) - \bigcup_{i=1}^{n} [a_i,b_i) = \bigcup_{j=1}^{m} I_j,$$

where the last set is the finite union of pairwise disjoint half-open rectangles. Thus, since λ^1 is finitely additive on $\mathcal{I}^{1,h}$

$$\lambda^{1}([a,b)) = \sum_{i=1}^{n} \lambda^{1}([a_{i},b_{i})) + \sum_{j=1}^{m} \lambda^{1}(I_{j}) \ge \sum_{i=1}^{n} \lambda^{1}([a_{i},b_{i})).$$

Thus, $\lambda^1([a,b)) = b - a \ge \lim_{n\to\infty} \sum_{i=1}^n \lambda^1([a_i,b_i)) = \sum_{i=1}^\infty \lambda^1([a_i,b_i))$. We need only show that $b - a \le \sum_{i=1}^\infty \lambda^1([a_i,b_i))$ to complete the proof.

Let $0 < \epsilon < b - a$ and consider a pair-wise disjoint collection $\{[a_i, b_i)\}_{i \in \mathbb{N}}$ such that $[a, b) = \bigcup_{i \in \mathbb{N}} [a_i, b_i)$. Note that

$$[a, b - \epsilon) \subset [a, b - \epsilon] \subset \bigcup_{i=1}^{\infty} (a_i - 2^{-i}\epsilon, b_i)$$
$$\subset \bigcup_{i=1}^n (a_i - 2^{-i}\epsilon, b_i) \text{ for some } n \in \mathbb{N}, \text{ by the Heine-Borel Theorem}$$
$$\subset \bigcup_{i=1}^n [a_i - 2^{-i}\epsilon, b_i).$$

But $\lambda^1([a_i, b_i)) = \lambda^1([a_i - 2^{-i}\epsilon, b_i)) - \frac{1}{2^i}\epsilon$. Hence,

$$\lambda^{1}([a, b - \epsilon)) \leq \sum_{i=1}^{n} \lambda^{1} \left([a_{i} - \frac{1}{2^{i}}\epsilon, b_{i}) \right) \text{ by subadditivity}$$
$$= \sum_{i=1}^{n} (b_{i} - a_{i} + \frac{1}{2^{i}}\epsilon)$$
$$b - a - \epsilon \leq \sum_{i=1}^{n} (b_{i} - a_{i}) + \epsilon \sum_{i=1}^{n} \frac{1}{2^{i}} \text{ or}$$
$$b - a \leq \sum_{i=1}^{n} (b_{i} - a_{i}) + \epsilon \left(1 + \sum_{i=1}^{n} \frac{1}{2^{i}} \right).$$

Taking limits as $n \to \infty$ on both sides of the last inequality gives $b - a \leq \sum_{i=1}^{\infty} (b_i - a_i)$, which combined with the previously obtained reverse inequality gives $b - a = \sum_{i=1}^{\infty} (b_i - a_i)$. Hence, λ^1 is a pre-measure on $\mathcal{I}^{1,h}$. Clearly, $\lambda^n(\emptyset) = 0$. The proof is completed by using induction on n, the dimension of the space. Hence, we assume that λ^n is σ -additive on $\mathcal{I}^{n,h}$ for some n and show that λ^{n+1} is σ -additive on $\mathcal{I}^{n+1,h}$. This final step is left as an exercise.

Theorem 2.8. There exists a unique extension of λ^n from $\mathcal{I}^{n,h}$ to a measure on the Borel sets $\mathcal{B}(\mathbb{R}^n)$. This extension is denoted by λ^n and is called Lebesgue measure.

Proof. We know that $\mathcal{B}(\mathbb{R}^n) = \sigma(\mathcal{I}^{n,h})$ from Theorem 1.5. Since, $[-k,k)^n = [-k,k) \times [-k,k) \cdots \times [-k,k) \uparrow \mathbb{R}^n$ as $k \to \infty$ is an exhausting sequence of *n*-rectangles, and since $\lambda^n([-k,k)^n) = (2k)^n < \infty$, all conditions of Carathéodory's Theorem are fulfilled.

Remark 2.3. Let $(\mathbb{R}, \sigma(\mathcal{I}^{1,h}) = \mathcal{B}(\mathbb{R}))$ be a measurable space. From Theorem 1.4 if we set S = [0,1) and consider $\mathcal{I} = \mathcal{I}^{1,h} \cap S = \{[0,1) \cap A : A \in \mathcal{I}^{1,h}\}$ then $\sigma(\mathcal{I}^{1,h} \cap [0,1)) = \mathcal{B}(\mathbb{R}) \cap [0,1)$ is a σ -algebra associated with [0,1). Thus, we define $\mathcal{B}_{[0,1)} := \sigma(\mathcal{I}^{1,h} \cap [0,1))$ and note that

$$([0,1),\mathcal{B}_{[0,1)}:=\sigma(\mathcal{I}))$$

is a measurable space where $\mathcal{I} = \{[a,b) : 0 \le a \le b \le 1\}$. Define the set function $\lambda : \mathcal{I} \to [0,1]$ such that $\lambda(\emptyset) = 0$ and $\lambda([a,b)) = b - a$. Since λ is σ -additive (pre-measure) on \mathcal{I} (a semi-ring), using Carathéodory's Theorem, we can state that

$$([0,1),\mathcal{B}_{[0,1)}:=\sigma(\mathcal{I}),\lambda^*)$$

is a measure space, where λ^* is the unique extension of λ from \mathcal{I} to $\sigma(\mathcal{I})$. In addition, $\lambda^*([0,1)) = 1$. Thus, we have constructed a specific probability space.

2.5 Distribution functions and probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$

We will now construct probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. This will be done using distribution functions.

Definition 2.4. Let $F : \mathbb{R} \to [0,1]$ be a function with the following properties:

- 1. $\lim_{h \to 0} F(x+h) := F(x+) = F(x)$ for all $x \in \mathbb{R}$ and h > 0,
- 2. $x < y \implies F(x) \le F(y),$

3.
$$\lim_{x \to \infty} F(x) = 1, \ \lim_{x \to -\infty} F(x) = 0.$$

F is called a (proper or non-defective) distribution function (df). If only conditions 1 and 2 are met, F is called a defective df.

Remark 2.4. 1. Let $F(x-) := \lim_{h \downarrow 0} F(x-h)$ for h > 0. The left jump of F at x is defined as $LJ_F(x) = F(x) - F(x-)$ and the right jump of F at x is defined as $RJ_F(x) = F(x+) - F(x)$. The jump of F at x is defined as $J_F(x) = LJ_F(x) + RJ_F(x) = F(x+) - F(x-)$. If F is a df, $RJ_F(x) = 0$ for all $x \in \mathbb{R}$ and $J_F(x) = F(x) - F(x-)$. In addition, since F is nondecreasing $J_F(x) \ge 0$. If $J_F(x) = 0$ then F is continuous at x.

2. For any two $x \leq y \in \mathbb{R}$ we have that $0 \leq F(y) - F(x) \leq 1$.

Definition 2.5. Let $S(p) = \{x \in \mathbb{R} : F(x) \ge p\}$ for $p \in [0, 1]$. The left (generalized) inverse of a df F, denoted by F^- , is defined as $F^-(p) := \inf S(p)$, for $p \in [0, 1]$.

Remark 2.5. Note that when p = 0, $S(0) = \mathbb{R}$, which is nonempty but not bounded below. As such, $\inf S(0)$ is not defined as a real number. In this case, we put $F^{-}(0) := -\infty$. Also, when p = 1, either $S(1) = [a, \infty)$, which is nonempty and bounded below by a, in which case $F^{-}(1) = a \in \mathbb{R}$ or $S(1) = \emptyset$, in which case we put $F^{-}(1) = \infty$. Hence, $F^{-}: [0,1] \to \overline{\mathbb{R}} := \mathbb{R} \cup \{\infty\} \cup \{-\infty\}.$

Theorem 2.9. Let $S(p) = \{x : F(x) \ge p\}$ for $p \in (0, 1]$. Then,

- 1. S(p) is a closed set.
- $2. \ t < F^-(p) \iff F(t) < p \ or \ F^-(p) \le t \iff p \le F(t).$

Proof. 1. If $s_n \in S(p)$ and $s_n \downarrow s$, bp right continuity of F we have $p \leq F(s_n) \downarrow F(s)$. Thus, $p \leq F(s)$ and $s \in S(p)$. If $s_n \in S(p)$ and $s_n \uparrow s$, we have $p \leq F(s_n) \uparrow F(s_n) \leq F(s)$. Thus, $p \leq F(s)$ which implies that $s \in S(p)$. Consequently, by a characterization of closed sets, S(p) is closed.

2. Since S(p) is closed, its infimum $F^{-}(p) \in S(p)$ and therefore $F(F^{-}(p)) \geq p$. $t < F^{-}(p) \implies t \notin S(p) \implies F(t) < p$. The reverse implications all apply.

Theorem 2.10. Let $A \subset \mathbb{R}$, $S_F(A) = \{p \in (0,1] : F^-(p) \in A\}$ and $\mathcal{I}^1 = \{(a,b] : -\infty \le a < b < \infty\}$. If $A \in \mathcal{B}(\mathbb{R})$, then $S_F(A) \in \mathcal{B}_{(0,1]} = \sigma(\mathcal{I}^1) \cap (0,1]$.

Proof. Let $\mathcal{G} = \{A \subset \mathbb{R} : \mathcal{S}_F(A) \in \mathcal{B}_{(0,1]}\}$. Note that

$$\mathcal{S}_F((a,b]) = \{ p \in (0,1] : F^-(p) \in (a,b] \} = \{ p \in (0,1] : a < F^-(p) \le b \}$$
$$= \{ p \in (0,1] : F(a)
$$= (F(a),F(b)] \in \mathcal{B}_{(0,1]}.$$$$

Hence, $(a, b] \in \mathcal{G}$ and $\mathcal{I}^1 \subset \mathcal{G}$. If \mathcal{G} is a σ -algebra, $\sigma(\mathcal{I}^1) = \mathcal{B}(\mathbb{R}) \subset \mathcal{G}$. Hence, $A \in \mathcal{B}(\mathbb{R})$ implies $S_F(A) \in \mathcal{B}_{(0,1]}$. Consequently, we need only show that \mathcal{G} is a σ -algebra associated with \mathbb{R} .

1.
$$\mathcal{S}_F(\mathbb{R}) = \{ p \in (0,1] : F^-(p) \in \mathbb{R} \} = (0,1) = \bigcup_{n \in \mathbb{N}} (0,1-n^{-1}] \in \mathcal{B}_{(0,1]}, \text{ thus } \mathbb{R} \in \mathcal{G} \}$$

2. By definition of \mathcal{S}_F

$$\mathcal{S}_F(A^c) = \{ p \in (0,1] : F^-(p) \in A^c \} = \{ p \in (0,1] : F^-(p) \notin A \}$$
$$= (\mathcal{S}_F(A))^c \in \mathcal{B}_{(0,1]}$$

where the last inclusion statement follows if $A \in \mathcal{G}$ and the fact that $\mathcal{B}_{(0,1]}$ is a σ -algebra.

3. If $\{A_n\}_{n\in\mathbb{N}}\in\mathcal{G}$ we have by definition of \mathcal{S}_F

$$\mathcal{S}_{F}\left(\bigcup_{n\in\mathbb{N}}A_{n}\right) = \left\{p\in(0,1]:F^{-}(p)\in\bigcup_{n\in\mathbb{N}}A_{n}\right\} = \left\{p\in(0,1]:F^{-}(p)\in A_{n} \text{ for some } n\right\}$$
$$= \bigcup_{n\in\mathbb{N}}\left\{p\in(0,1]:F^{-}(p)\in A_{n}\right\} = \bigcup_{n\in\mathbb{N}}\mathcal{S}_{F}(A_{n})\in\mathcal{B}_{(0,1]}$$
(2.8)

where the last inclusion statement follows since $A_n \in \mathcal{G}$ and the fact that $\mathcal{B}_{(0,1]}$ is a σ -algebra.

Definition 2.6. Let $A \in \mathcal{B}(\mathbb{R})$ and define $P_F(A) = \lambda^1(\mathcal{S}_F(A))$ where λ^1 is the Lebesgue measure on $\mathcal{B}_{(0,1]}$.

Theorem 2.11. Let P_F be given in Definition 2.6. Then, $(\mathbb{R}, \mathcal{B}(\mathbb{R}), P_F)$ is a probability space.

Proof. First, note that

$$P_F(\emptyset) = \lambda^1(\mathcal{S}_F(\emptyset)) = \lambda^1(\{p \in (0,1] : F^-(p) \in \emptyset\}) = \lambda^1(\emptyset) = 0.$$

Second, if $\{A_n\}_{n \in \mathbb{N}}$ is a pairwise disjoint collection of sets in $\mathcal{B}(\mathbb{R})$ then

$$P_F\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \lambda^1\left(\mathcal{S}_F\left(\bigcup_{n\in\mathbb{N}}A_n\right)\right) = \lambda^1\left(\bigcup_{n\in\mathbb{N}}\mathcal{S}_F(A_n)\right) \text{ by (2.8)}$$
$$= \sum_{n=1}^{\infty}\lambda^1(\mathcal{S}_F(A_n)) = \sum_{n=1}^{\infty}P_F(A_n).$$

where the next to last equality follows from the fact that λ^1 is a measure and $\{S_F(A_n)\}_{n \in \mathbb{N}}$ is a pairwise disjoint collection.

Lastly,

$$P_F(\mathbb{R}) = \lambda^1(\mathcal{S}_F(\mathbb{R})) = \lambda^1(\{p \in (0,1] : F^-(p) \in \mathbb{R}\}) = \lambda^1((0,1))$$
$$= \lambda^1\left(\bigcup_{n \in \mathbb{N}} (0,1-n^{-1}]\right) = \lambda^1\left((0,1/2] \cup (1/2,2/3] \cup (2/3,3/4] \cup \cdots\right)$$
$$= 1/2 + (2/3 - 1/2) + (3/4 - 2/3) + \cdots = 1.$$

Remark 2.6. Note that

$$P_F((-\infty, x]) = \lambda^1 \left(\mathcal{S}_F((-\infty, x]) \right) = \lambda^1 \left\{ p \in (0, 1] : F^-(p) \in (-\infty, x] \right\}$$
$$= \lambda^1 \left\{ p \in (0, 1] : p \le F(x) \right\} = \lambda^1 \left((0, F(x)] \right) = F(x).$$

2.6 Exercises

1. Let μ be a measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $\mu([-n, n)) < \infty$ for all $n \in \mathbb{N}$. Define,

$$F_{\mu}(x) := \begin{cases} \mu([0, x)) & \text{if } x > 0, \\ 0 & \text{if } x = 0, \\ -\mu([x, 0)) & \text{if } x < 0. \end{cases}$$

Show that $F_{\mu} : \mathbb{R} \to \mathbb{R}$ is monotonically increasing and left continuous.

- 2. Let F_{μ} be defined as in question 1 and let $\nu_{F_{\mu}}(([a, b]) = F_{\mu}(b) F_{\mu}(a)$ for all $a \leq b$, $a, b \in \mathbb{R}$. Show that $\nu_{F_{\mu}}$ extends uniquely to a measure on $\mathcal{B}(\mathbb{R})$ and $\nu_{F_{\mu}} = \mu$.
- 3. If F is a distribution function, show that it can have an infinite number of jump discontinuities, but at most countably many.
- 4. Show that $\lambda^1((a, b)) = b a$ for all $a, b \in \mathbb{R}$, $a \leq b$. State and prove the same for λ^n .
- 5. Consider the measure space $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \lambda^n)$. Show that for every $B \in \mathcal{B}(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$, $x+B \in \mathcal{B}(\mathbb{R}^n)$ and that $\lambda^n(x+B) = \lambda^n(B)$. Note: $x+B := \{z : z = x+b, b \in B\}$.