Chapter 3 Measurable functions

In this chapter we will define measurable functions and study some of their properties. We start with the following definition.

Definition 3.1. Let (X, \mathcal{F}) and (E, \mathcal{E}) be two measurable spaces. A function $f : (X, \mathcal{F}) \to$ (E, \mathcal{E}) *is said to be* $\mathcal{F} - \mathcal{E}$ *measurable if for all* $A \in \mathcal{E}$, $f^{-1}(A) \in \mathcal{F}$.

- **Remark 3.1.** 1. Since $f^{-1}(\mathcal{E})$ is a σ -algebra, measurability of f is equivalent to stating *that* $f^{-1}(\mathcal{E}) \subset \mathcal{F}$ *. It is standard notation to write* $\sigma(f) := f^{-1}(\mathcal{E})$ *and call this* σ -algebra *the* σ -*algebra generated by* f *.*
	- 2. If $X := \Omega$, (Ω, \mathcal{F}, P) *is a probability space and f is* $\mathcal{F} \mathcal{E}$ *measurable, we say that* f *is a random element.* If, *in addition*, $(E, \mathcal{E}) := (R, \mathcal{B}(R))$ *we will refer to* f : $(\Omega, \mathcal{F}, P) \rightarrow (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ *as a random variable. We will normally represent random elements or random variables by uppercase roman letters, e.g., X or Y .*

The next theorem shows that measurability of a function *f* can be established by examining inverse images of sets in a collection that generates the measurable sets associated with the co-domain of *f*.

Theorem 3.1. Let C be a collection of subsets of E such that $\sigma(C) = \mathcal{E}$. Then, $f : (\mathbb{X}, \mathcal{F}) \to$ (E, \mathcal{E}) *is* $\mathcal{F} - \mathcal{E}$ *measurable* $\iff f^{-1}(\mathcal{C}) \subset \mathcal{F}$ *.*

Proof. (\implies) Assume *f* is $\mathcal{F}-\mathcal{E}$ measurable. *f* measurable \iff for all $A \in \mathcal{E}, f^{-1}(A) \in \mathcal{F}$. In particular, let *A* be an element of *C*, then $f^{-1}(A) \in \mathcal{F}$, hence $f^{-1}(\mathcal{C}) \subset \mathcal{F}$.

(\Longleftarrow) Assume that $f^{-1}(\mathcal{C}) \subset \mathcal{F}$, i.e., $f^{-1}(C) \in \mathcal{F}$, for all $C \in \mathcal{C}$. We must prove that $\forall A \in \mathcal{E}$, $f^{-1}(A) \in \mathcal{F}$ (or $f^{-1}(\mathcal{E}) \subset \mathcal{F}$). Let $\mathcal{G} = \{A \in \mathcal{E} : f^{-1}(A) \in \mathcal{F}\}$ and by construction $\mathcal{C} \subset \mathcal{G}$. If *G* is a σ -algebra, then $\sigma(C) = \mathcal{E} \subset \mathcal{G}$. Also, by construction $\mathcal{G} \subset \mathcal{E}$, hence $\mathcal{E} = \mathcal{G}$, which is what must be proven.

We need only show that *G* is a σ -algebra. Consider a sequence $A_1, A_2, \dots \in \mathcal{E}$ such that $f^{-1}(A_i) \in \mathcal{F}$, i.e., $A_1, A_2 \cdots \in \mathcal{G}$. Then, since \mathcal{E} is a σ -algebra, $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{E}$. And since $i\bar{\in}N$ f^{-1} ⁽U $i\in\mathbb{N}$ *Ai* $\Big) = U$ $i\in\mathbb{N}$ $f^{-1}(A_i)$, which is the union of elements in \mathcal{F}, f^{-1} $\Big(\bigcup_{i=1}^{n} f(i)$ $i\epsilon$ ^N *Ai* ◆ $\in \mathcal{F}.$ Now, if $A \in \mathcal{E}$ is such that $f^{-1}(A) \in \mathcal{F}$, i.e., $A \in \mathcal{G}$, then $A^c \in \mathcal{E}$ and $f^{-1}(A^c) =$ $f^{-1}(\mathbb{E}) - f^{-1}(A) = \mathbb{X} - f^{-1}(A)$ which is in *F*. Hence *G* is a σ -algebra.

Example 3.1. Let $A_4 = \{(-\infty, a] : a \in \mathbb{R}\}$ be the collection A_4 in Remark [1.2.](#page-0-0)4. Since $\sigma(\mathcal{A}_4) = \mathcal{B}(\mathbb{R}),$

$$
X:(\Omega,\mathcal{F},P)\to (\mathbb{R},\sigma(\mathcal{A}_4)=\mathcal{B}(\mathbb{R}))
$$

is a random variable if, and only if, $X^{-1}(\mathcal{A}_4) \subset \mathcal{F}$ *. Equivalently we can state* X *is a random variable if, and only if,* $X^{-1}((-\infty, a]) = {\omega \in \Omega : X(\omega) \leq a} \in \mathcal{F} \ \forall a \in \mathbb{R}$.

The next theorem shows that continuous functions are measurable.

Theorem 3.2. Let \mathcal{O}_1 and \mathcal{O}_2 be collections of open sets associated with \mathbb{X}_1 and \mathbb{X}_2 . If $f : (\mathbb{X}_1, \sigma(\mathcal{O}_1)) \to (\mathbb{X}_2, \sigma(\mathcal{O}_2))$ *is continuous, then f is measurable.*

Proof. $f^{-1}(\mathcal{O}_2) \subset \mathcal{O}_1$ by continuity. But $\mathcal{O}_1 \subset \sigma(\mathcal{O}_1)$. Thus, by Theorem [3.1,](#page-0-1) *f* is measurable. \blacksquare

The composition of measurable functions is measurable.

Theorem 3.3. Let $f : (\mathbb{X}, \mathcal{F}) \to (\mathbb{X}_1, \mathcal{F}_1)$ and $g : (\mathbb{X}_1, \mathcal{F}_1) \to (\mathbb{X}_2, \mathcal{F}_2)$ be measurable *functions. Let* $(g \circ f) : (\mathbb{X}, \mathcal{F}) \to (\mathbb{X}_2, \mathcal{F}_2)$ *. Then,* $(g \circ f)$ *is* $\mathcal{F} - \mathcal{F}_2$ *measurable.*

Proof. Let $F_2 \in 2^{\mathbb{X}_2}$.

$$
(g \circ f)^{-1}(F_2) = \{x \in \mathbb{X} : g(f(x)) \in F_2\} = \{x \in \mathbb{X} : f(x) \in g^{-1}(F_2)\}
$$

$$
= \{x \in \mathbb{X} : x \in f^{-1}(g^{-1}(F_2))\}.
$$

If $F_2 \in \mathcal{F}_2$, and given that *g* is measurable, $g^{-1}(F_2) \in \mathcal{F}_1$. Since *f* is measurable, $f^{-1}(g^{-1}(F_2)) \in$ *F*. Hence, $(g \circ f)$ is $\mathcal{F} - \mathcal{F}_2$ measurable.

The next theorem shows that measurable functions can be used to transfer measures between spaces.

Theorem 3.4. Let (X, \mathcal{F}, μ) be a measure space, $(\mathbb{E}, \mathcal{E})$ be a measurable space and $f : X \to \mathbb{E}$ *be a* $F - \mathcal{E}$ *measurable function. Then,*

$$
m(E) := \mu(f^{-1}(E)) \text{ for all } E \in \mathcal{E}
$$

is a measure on (E, \mathcal{E}) .

Proof. We verify the two defining properties of measures. First, note that if $E = \emptyset$, $m(\emptyset) =$ $\mu(f^{-1}(\emptyset)) = \mu(\emptyset) = 0$ since μ is a measure. Second, if $\{E_n\}_{n\in\mathbb{N}}$ is a pairwise disjoint collection of sets in *E* then

$$
m\left(\bigcup_{n\in\mathbb{N}}E_n\right)=\mu\left(f^{-1}\left(\bigcup_{n\in\mathbb{N}}E_n\right)\right)=\mu\left(\bigcup_{n\in\mathbb{N}}f^{-1}(E_n)\right)=\sum_{n\in\mathbb{N}}\mu(f^{-1}(E_n))=\sum_{n\in\mathbb{N}}m(E_n),
$$

where the next to last equality follows from the fact that μ is a measure and the last equality follows from the definition of m .

Example 3.2. Let $(X, \mathcal{F}, \mu) := (\Omega, \mathcal{F}, P)$, $(E, \mathcal{E}) := (R, \mathcal{B}(R))$, and $f := X : (\Omega, \mathcal{F}, P) \rightarrow$ $(R, \mathcal{B}(R))$ *then* $P_X(B) := P(X^{-1}(B))$ *is a measure on* $\mathcal{B}(R)$ *.*

The measurability of real valued functions can be characterized differently. In Example [3.1](#page-1-0) it is shown that a function $f : (\mathbb{X}, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is said to be $\mathcal{F} - \mathcal{B}(\mathbb{R})$ measurable

if for all $a \in \mathbb{R}$, the set $S_a = \{x \in \mathbb{X} : f(x) \le a\} \in \mathcal{F}$. But since $S_a \in \mathcal{F}$ and \mathcal{F} is a σ -algebra, $S_a^c \in \mathcal{F}$. Hence, f is measurable if $S_a^c = \{x \in X : f(x) > a\} \in \mathcal{F}$. Also, consider $S_{a-1/n}^c = \{x \in \mathbb{X} : f(x) > a - 1/n\}$ and let $S_a^r = \bigcap_{x \in \mathbb{R}^n}$ $n \in \mathbb{N}$ ${x \in X : f(x) > a - 1/n} = {x \in X}$ $X : f(x) \ge a$. Clearly, by the properties of σ -algebras $S'_a \in \mathcal{F}$. Hence, f is measurable if ${x \in X : f(x) \ge a} \in \mathcal{F}$. Since, ${x \in X : f(x) < a} = {x \in X : f(x) \ge a}^c$, measurability could also be defined in terms of $\{x \in X : f(x) < a\}$.

- **Example 3.3.** 1. Let $f : \mathbb{X} \to \mathbb{R}$, such that for all $x \in \mathbb{X}$, $f(x) = c$, $c \in \mathbb{R}$. Let $a \in \mathbb{R}$ and consider $S_a^c = \{x \in \mathbb{X} : f(x) > a\} = \{x \in \mathbb{X} : c > a\}$. If $a \ge c$, $S_a^c = \emptyset$, and if $c > a$, $S_a^c = X$ *. Since* σ -algebras always contain \emptyset and X , $f(x) = c$ is measurable.
	- 2. Let $E \in \mathcal{F}$ (\mathcal{F} *a* σ -algebra). Recall that the indicator function of E is

$$
I_E(x) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{if } x \notin E \end{cases}
$$

If $a \ge 1$, $S_a^c = \emptyset$; if $0 \le a < 1$, $S_a^c = E$; if $a < 0$ $S_a^c = X$. Since $X, \emptyset \in \mathcal{F}$ (always) and $E \in \mathcal{F}$ *by construction,* I_E *is measurable.*

3. Let $X = R$ *and* $F = B(R)$ *. If f is monotone increasing, i.e.,* $\forall x < x'$ *,* $f(x) \le f(x')$ *, f is measurable. Note that in this case,* $S_a^c = \{x : x > y \text{ for some } y \in \mathbb{R}\} = (y, \infty)$ or $S_a^c = \{x : x \ge y\} = [y, \infty)$ *, which are Borel sets.*

Theorem 3.5. Let f and g be measurable real valued functions and let $c \in \mathbb{R}$. Then, $cf, f^2, f + g, fg, |f|$ *are measurable.*

Proof. If $c = 0$, $cf = 0$ is a constant and consequently, measurable. If $c > 0$, then $\{x \in X :$ $cf(x) > a$ } = { $x \in X : f(x) > a/c$ } $\in \mathcal{F}$. Similarly for $c < 0$. If $a < 0$, { $x \in X : (f(x))^{2} >$ a [}] = X and X \in *F*. If $a \ge 0$, { $x \in$ X : $f^2(x) > a$ } = { $x \in$ X : $f(x) > a^{1/2}$ or $f(x) <$ $a^{-1/2}$ = {*x* \in X : *f*(*x*) > $a^{1/2}$ } \cup {*x* \in X : *f*(*x*) < $-a^{1/2}$ }. The first set in the union is in *F* by assumption (f is measurable) and the second is in $\mathcal F$ by the comments following Example [3.2.](#page-2-0)

Now, $g(x) + f(x) > a \implies f(x) > a - g(x)$ which implies that there exists a rational number *r* such that $f(x) > r > a - g(x)$. Hence, $\{x \in X : g(x) + f(x) > a\} = \bigcup_{r \in \mathbb{Q}} \{x \in X : g(x) + f(x) > a\}$ $X : f(x) > r$ \cap { $x \in X : g(x) > a - r$ }. Since the rational numbers are countable $\bigcup_{r \in \mathbb{Q}}$ is countable. Since *f* and *g* are measurable, and unions of countable measurable sets are measurable $\{x \in X : g(x) + f(x) > a\} \in \mathcal{F}$. Note that $-f = (-1)f$. Hence if *f* is measurable, $-f$ is also measurable and so is $f + (-g) = f - g$.

Now, $fg = 1/2[(f+g)^2 - (f^2+g^2)]$. Since $f^2, g^2, f+g, f-g$ and *cf* are measurable, if *f,g* are measurable, so is *fg*.

Lastly, $\{x \in X : |f(x)| > a\} = \{x \in X : f(x) > a \text{ or } f(x) < -a\} = \{x \in X : f(x) > a\}$ $a\} \cup \{x \in \mathbb{X} : f(x) < -a\} = \{x \in \mathbb{X} : f(x) > a\} \cup \{x \in \mathbb{X} : -f(x) > a\}.$ Since f and $-f$ are measurable, $\{x \in \mathbb{X} : |f(x)| > a\} \in \mathcal{F}$.

Recall that if ${x_n}_{n \in \mathbb{N}}$ is a sequence of real numbers

$$
\liminf_{n \to \infty} x_n := \sup_{k \in \mathbb{N}} \inf_{j \ge k} \{x_j\} \text{ and } \limsup_{n \to \infty} x_n := \inf_{k \in \mathbb{N}} \sup_{j \ge k} \{x_j\}.
$$

Theorem 3.6. Let $f_i(x) : \mathbb{X} \to \mathbb{R}$ for $i = 1, 2, \cdots$ be measurable. Then $\sup\{f_1, \cdots, f_n\}$, $\inf\{f_1,\dots,f_n\}$, $\sup_n f_n$, $\inf_n f_n$, $\limsup_n f_n$ and $\liminf_n f_n$ are all measurable functions.

Proof. Let $h(x) = \sup\{f_1(x), \dots, f_n(x)\}\$. Then, $S_a = \{x \in \mathbb{X} : h(x) > a\} = \bigcup_{i=1}^n \{x : h_i(x) > a\}$ $f_i(x) > a$. Consequently, since f_i is measurable, $S_a \in \mathcal{F}$. Similarly if $g(x) = \sup_{n \in \mathbb{N}} f_n(x)$, $S_a = \{x \in \mathbb{X} : g(x) > a\} = \bigcup_{\mathbb{R}^n}$ $n\bar{\in}N$ ${x : f_n(x) > a} \in \mathcal{F}$. The same argument can be made for inf. Since lim sup $\limsup_{n \to \infty} f_n = \inf_{n \ge 1} \sup_{k \ge n}$ $k \geq n$ f_k , $\limsup f_n$ is measurable. The same for $\liminf_{n\to\infty} f_n$.

Definition 3.2. Let $i \in I$ an arbitrary index set and $f_i : (\mathbb{X}, \mathcal{F}) \to (\mathbb{X}_i, \mathcal{F}_i)$ be $\mathcal{F} - \mathcal{F}_i$ *measurable.* If $G \subset F$ *is a* σ -algebra, we say that f_i *is measurable with respect to* G *if* $\sigma(f_i) \subset \mathcal{G}$. The smallest σ -algebra \mathcal{G} that makes all f_i measurable with respect to \mathcal{G} is σ $\Big(\bigcup$ *i*∈*I* $f_i^{-1}(\mathcal{F}_i)$ ◆ *and is denoted by* $\sigma(f_i : i \in I)$ *.*

3.1 Exercises

- 1. Suppose (Ω, \mathcal{F}) and $(\mathbb{Y}, \mathcal{G})$ are measure spaces and $f : \Omega \to \mathbb{Y}$. Show that: a) $I_{f^{-1}(A)}(\omega) = (I_A \circ f)(\omega)$ for all ω ; b) *f* is measurable if, and only if, $\sigma({f^{-1}(A)} :$ $A \in \mathcal{G}$ } $\subset \mathcal{F}$.
- 2. Show that for any function $f : \mathbb{X} \to \mathbb{Y}$ and any collection of subsets $\mathcal G$ of \mathbb{Y} , $f^{-1}(\sigma(\mathcal{G})) = \sigma(f^{-1}(\mathcal{G}))$
- 3. Let $i \in I$ where *I* is an arbitrary index set. Consider $f_i : (\mathbb{X}, \mathcal{F}) \to (\mathbb{X}_i, \mathcal{F}_i)$.
	- (a) Show that for all *i*, the smallest σ -algebra associated with X that makes f_i measurable is given by $f_i^{-1}(\mathcal{F}_i)$.
	- (b) Show that σ $\left(\bigcup_{i=1}^{n}$ *i*∈*I* $f_i^{-1}(\mathcal{F}_i)$) is the smallest σ -algebra associated with X that makes all *fⁱ* simultaneously measurable.
- 4. Let $X : (\Omega, \mathcal{F}, P) \to (S, \mathcal{B}_S)$ where $S \subset \mathbb{R}^k$ and $\mathcal{B}_S = \{B \cap S : B \in \mathcal{B}^k\}$ be a random vector with $k \in \mathbb{N}$, and $g : (S, \mathcal{B}_S) \to (T, \mathcal{B}_T)$ be measurable where $T \subset \mathbb{R}^p$ with $p \in \mathbb{N}$. If $Y = g(X)$, show that
	- (a) $\sigma(Y) := Y^{-1}(\mathcal{B}_T) \subset \sigma(X) := X^{-1}(\mathcal{B}_S)$,
	- (b) if $k = p$ and g is bijective, $\sigma(Y) = \sigma(X)$.