Chapter 3 Measurable functions

In this chapter we will define measurable functions and study some of their properties. We start with the following definition.

Definition 3.1. Let $(\mathbb{X}, \mathcal{F})$ and $(\mathbb{E}, \mathcal{E})$ be two measurable spaces. A function $f : (\mathbb{X}, \mathcal{F}) \to (\mathbb{E}, \mathcal{E})$ is said to be $\mathcal{F} - \mathcal{E}$ measurable if for all $A \in \mathcal{E}$, $f^{-1}(A) \in \mathcal{F}$.

- **Remark 3.1.** 1. Since $f^{-1}(\mathcal{E})$ is a σ -algebra, measurability of f is equivalent to stating that $f^{-1}(\mathcal{E}) \subset \mathcal{F}$. It is standard notation to write $\sigma(f) := f^{-1}(\mathcal{E})$ and call this σ -algebra the σ -algebra generated by f.
 - 2. If $\mathbb{X} := \Omega$, (Ω, \mathcal{F}, P) is a probability space and f is $\mathcal{F} \mathcal{E}$ measurable, we say that f is a random element. If, in addition, $(\mathbb{E}, \mathcal{E}) := (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ we will refer to f : $(\Omega, \mathcal{F}, P) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ as a random variable. We will normally represent random elements or random variables by uppercase roman letters, e.g., X or Y.

The next theorem shows that measurability of a function f can be established by examining inverse images of sets in a collection that generates the measurable sets associated with the co-domain of f.

Theorem 3.1. Let \mathcal{C} be a collection of subsets of \mathbb{E} such that $\sigma(\mathcal{C}) = \mathcal{E}$. Then, $f : (\mathbb{X}, \mathcal{F}) \to (\mathbb{E}, \mathcal{E})$ is $\mathcal{F} - \mathcal{E}$ measurable $\iff f^{-1}(\mathcal{C}) \subset \mathcal{F}$.

Proof. (\implies) Assume f is $\mathcal{F}-\mathcal{E}$ measurable. f measurable \iff for all $A \in \mathcal{E}$, $f^{-1}(A) \in \mathcal{F}$. In particular, let A be an element of \mathcal{C} , then $f^{-1}(A) \in \mathcal{F}$, hence $f^{-1}(\mathcal{C}) \subset \mathcal{F}$.

(\Leftarrow) Assume that $f^{-1}(\mathcal{C}) \subset \mathcal{F}$, i.e., $f^{-1}(\mathcal{C}) \in \mathcal{F}$, for all $\mathcal{C} \in \mathcal{C}$. We must prove that $\forall A \in \mathcal{E}$, $f^{-1}(A) \in \mathcal{F}$ (or $f^{-1}(\mathcal{E}) \subset \mathcal{F}$). Let $\mathcal{G} = \{A \in \mathcal{E} : f^{-1}(A) \in \mathcal{F}\}$ and by construction $\mathcal{C} \subset \mathcal{G}$. If \mathcal{G} is a σ -algebra, then $\sigma(\mathcal{C}) = \mathcal{E} \subset \mathcal{G}$. Also, by construction $\mathcal{G} \subset \mathcal{E}$, hence $\mathcal{E} = \mathcal{G}$, which is what must be proven.

We need only show that \mathcal{G} is a σ -algebra. Consider a sequence $A_1, A_2, \dots \in \mathcal{E}$ such that $f^{-1}(A_i) \in \mathcal{F}$, i.e., $A_1, A_2 \dots \in \mathcal{G}$. Then, since \mathcal{E} is a σ -algebra, $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{E}$. And since $f^{-1}\left(\bigcup_{i \in \mathbb{N}} A_i\right) = \bigcup_{i \in \mathbb{N}} f^{-1}(A_i)$, which is the union of elements in \mathcal{F} , $f^{-1}\left(\bigcup_{i \in \mathbb{N}} A_i\right) \in \mathcal{F}$. Now, if $A \in \mathcal{E}$ is such that $f^{-1}(A) \in \mathcal{F}$, i.e., $A \in \mathcal{G}$, then $A^c \in \mathcal{E}$ and $f^{-1}(A^c) = f^{-1}(\mathbb{E}) - f^{-1}(A) = \mathbb{X} - f^{-1}(A)$ which is in \mathcal{F} . Hence \mathcal{G} is a σ -algebra.

Example 3.1. Let $\mathcal{A}_4 = \{(-\infty, a] : a \in \mathbb{R}\}$ be the collection \mathcal{A}_4 in Remark 1.2.4. Since $\sigma(\mathcal{A}_4) = \mathcal{B}(\mathbb{R}),$

$$X: (\Omega, \mathcal{F}, P) \to (\mathbb{R}, \sigma(\mathcal{A}_4) = \mathcal{B}(\mathbb{R}))$$

is a random variable if, and only if, $X^{-1}(\mathcal{A}_4) \subset \mathcal{F}$. Equivalently we can state X is a random variable if, and only if, $X^{-1}((-\infty, a]) = \{\omega \in \Omega : X(\omega) \leq a\} \in \mathcal{F} \ \forall a \in \mathbb{R}$.

The next theorem shows that continuous functions are measurable.

Theorem 3.2. Let \mathcal{O}_1 and \mathcal{O}_2 be collections of open sets associated with X_1 and X_2 . If $f : (X_1, \sigma(\mathcal{O}_1)) \to (X_2, \sigma(\mathcal{O}_2))$ is continuous, then f is measurable.

Proof. $f^{-1}(\mathcal{O}_2) \subset \mathcal{O}_1$ by continuity. But $\mathcal{O}_1 \subset \sigma(\mathcal{O}_1)$. Thus, by Theorem 3.1, f is measurable.

The composition of measurable functions is measurable.

Theorem 3.3. Let $f : (\mathbb{X}, \mathcal{F}) \to (\mathbb{X}_1, \mathcal{F}_1)$ and $g : (\mathbb{X}_1, \mathcal{F}_1) \to (\mathbb{X}_2, \mathcal{F}_2)$ be measurable functions. Let $(g \circ f) : (\mathbb{X}, \mathcal{F}) \to (\mathbb{X}_2, \mathcal{F}_2)$. Then, $(g \circ f)$ is $\mathcal{F} - \mathcal{F}_2$ measurable. *Proof.* Let $F_2 \in 2^{\mathbb{X}_2}$.

$$(g \circ f)^{-1}(F_2) = \{x \in \mathbb{X} : g(f(x)) \in F_2\} = \{x \in \mathbb{X} : f(x) \in g^{-1}(F_2)\}\$$
$$= \{x \in \mathbb{X} : x \in f^{-1}(g^{-1}(F_2))\}.$$

If $F_2 \in \mathcal{F}_2$, and given that g is measurable, $g^{-1}(F_2) \in \mathcal{F}_1$. Since f is measurable, $f^{-1}(g^{-1}(F_2)) \in \mathcal{F}_2$. Hence, $(g \circ f)$ is $\mathcal{F} - \mathcal{F}_2$ measurable.

The next theorem shows that measurable functions can be used to transfer measures between spaces.

Theorem 3.4. Let $(\mathbb{X}, \mathcal{F}, \mu)$ be a measure space, $(\mathbb{E}, \mathcal{E})$ be a measurable space and $f : \mathbb{X} \to \mathbb{E}$ be a $\mathcal{F} - \mathcal{E}$ measurable function. Then,

$$m(E) := \mu(f^{-1}(E))$$
 for all $E \in \mathcal{E}$

is a measure on $(\mathbb{E}, \mathcal{E})$.

Proof. We verify the two defining properties of measures. First, note that if $E = \emptyset$, $m(\emptyset) = \mu(f^{-1}(\emptyset)) = \mu(\emptyset) = 0$ since μ is a measure. Second, if $\{E_n\}_{n \in \mathbb{N}}$ is a pairwise disjoint collection of sets in \mathcal{E} then

$$m\left(\bigcup_{n\in\mathbb{N}}E_n\right) = \mu\left(f^{-1}\left(\bigcup_{n\in\mathbb{N}}E_n\right)\right) = \mu\left(\bigcup_{n\in\mathbb{N}}f^{-1}(E_n)\right) = \sum_{n\in\mathbb{N}}\mu(f^{-1}(E_n)) = \sum_{n\in\mathbb{N}}m(E_n),$$

where the next to last equality follows from the fact that μ is a measure and the last equality follows from the definition of m.

Example 3.2. Let $(\mathbb{X}, \mathcal{F}, \mu) := (\Omega, \mathcal{F}, P)$, $(\mathbb{E}, \mathcal{E}) := (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, and $f := X : (\Omega, \mathcal{F}, P) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ then $P_X(B) := P(X^{-1}(B))$ is a measure on $\mathcal{B}(\mathbb{R})$.

The measurability of real valued functions can be characterized differently. In Example 3.1 it is shown that a function $f : (\mathbb{X}, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is said to be $\mathcal{F} - \mathcal{B}(\mathbb{R})$ measurable if for all $a \in \mathbb{R}$, the set $S_a = \{x \in \mathbb{X} : f(x) \leq a\} \in \mathcal{F}$. But since $S_a \in \mathcal{F}$ and \mathcal{F} is a σ -algebra, $S_a^c \in \mathcal{F}$. Hence, f is measurable if $S_a^c = \{x \in X : f(x) > a\} \in \mathcal{F}$. Also, consider $S_{a-1/n}^c = \{x \in \mathbb{X} : f(x) > a - 1/n\}$ and let $S_a' = \bigcap_{n \in \mathbb{N}} \{x \in \mathbb{X} : f(x) > a - 1/n\} = \{x \in \mathbb{X} : f(x) \geq a\}$. Clearly, by the properties of σ -algebras $S_a' \in \mathcal{F}$. Hence, f is measurable if $\{x \in X : f(x) \geq a\} \in \mathcal{F}$. Since, $\{x \in \mathbb{X} : f(x) < a\} = \{x \in \mathbb{X} : f(x) \geq a\}^c$, measurable if $\{x \in X : f(x) \geq a\} \in \mathcal{F}$. Since, $\{x \in \mathbb{X} : f(x) < a\} = \{x \in \mathbb{X} : f(x) \geq a\}^c$, measurable if $\{x \in \mathbb{X} : f(x) < a\} = \{x \in \mathbb{X} : f(x) \geq a\}^c$.

- **Example 3.3.** 1. Let $f : \mathbb{X} \to \mathbb{R}$, such that for all $x \in \mathbb{X}$, f(x) = c, $c \in \mathbb{R}$. Let $a \in \mathbb{R}$ and consider $S_a^c = \{x \in \mathbb{X} : f(x) > a\} = \{x \in \mathbb{X} : c > a\}$. If $a \ge c$, $S_a^c = \emptyset$, and if c > a, $S_a^c = \mathbb{X}$. Since σ -algebras always contain \emptyset and \mathbb{X} , f(x) = c is measurable.
 - 2. Let $E \in \mathcal{F}$ (\mathcal{F} a σ -algebra). Recall that the indicator function of E is

$$I_E(x) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{if } x \notin E \end{cases}$$

If $a \ge 1$, $S_a^c = \emptyset$; if $0 \le a < 1$, $S_a^c = E$; if a < 0 $S_a^c = X$. Since $X, \emptyset \in \mathcal{F}$ (always) and $E \in \mathcal{F}$ by construction, I_E is measurable.

3. Let X = R and F = B(R). If f is monotone increasing, i.e., ∀x < x', f(x) ≤ f(x'),
f is measurable. Note that in this case, S^c_a = {x : x > y for some y ∈ R} = (y,∞) or
S^c_a = {x : x ≥ y} = [y,∞), which are Borel sets.

Theorem 3.5. Let f and g be measurable real valued functions and let $c \in \mathbb{R}$. Then, $cf, f^2, f + g, fg, |f|$ are measurable.

Proof. If c = 0, cf = 0 is a constant and consequently, measurable. If c > 0, then $\{x \in \mathbb{X} : cf(x) > a\} = \{x \in \mathbb{X} : f(x) > a/c\} \in \mathcal{F}$. Similarly for c < 0. If a < 0, $\{x \in \mathbb{X} : (f(x))^2 > a\} = \{x \in \mathbb{X} \text{ and } \mathbb{X} \in \mathcal{F}.$ If $a \ge 0$, $\{x \in \mathbb{X} : f^2(x) > a\} = \{x \in \mathbb{X} : f(x) > a^{1/2} \text{ or } f(x) < -a^{1/2}\} = \{x \in \mathbb{X} : f(x) > a^{1/2}\} \cup \{x \in \mathbb{X} : f(x) < -a^{1/2}\}.$ The first set in the union is in \mathcal{F} by assumption (f is measurable) and the second is in \mathcal{F} by the comments following Example \mathbb{R} .

Now, $g(x) + f(x) > a \implies f(x) > a - g(x)$ which implies that there exists a rational number r such that f(x) > r > a - g(x). Hence, $\{x \in \mathbb{X} : g(x) + f(x) > a\} = \bigcup_{r \in \mathbb{Q}} \{x \in \mathbb{X} : f(x) > r\} \cap \{x \in \mathbb{X} : g(x) > a - r\}$. Since the rational numbers are countable $\bigcup_{r \in \mathbb{Q}}$ is countable. Since f and g are measurable, and unions of countable measurable sets are measurable $\{x \in \mathbb{X} : g(x) + f(x) > a\} \in \mathcal{F}$. Note that -f = (-1)f. Hence if f is measurable, -f is also measurable and so is f + (-g) = f - g.

Now, $fg = 1/2[(f+g)^2 - (f^2 + g^2)]$. Since $f^2, g^2, f + g, f - g$ and cf are measurable, if f, g are measurable, so is fg.

Lastly, $\{x \in \mathbb{X} : |f(x)| > a\} = \{x \in \mathbb{X} : f(x) > a \text{ or } f(x) < -a\} = \{x \in \mathbb{X} : f(x) > a\} \cup \{x \in \mathbb{X} : f(x) < -a\} = \{x \in \mathbb{X} : f(x) > a\} \cup \{x \in \mathbb{X} : -f(x) > a\}.$ Since f and -f are measurable, $\{x \in \mathbb{X} : |f(x)| > a\} \in \mathcal{F}.$

Recall that if $\{x_n\}_{n \in \mathbb{N}}$ is a sequence of real numbers

$$\liminf_{n \to \infty} x_n := \sup_{k \in \mathbb{N}} \inf_{j \ge k} \{x_j\} \text{ and } \limsup_{n \to \infty} x_n := \inf_{k \in \mathbb{N}} \sup_{j \ge k} \{x_j\}$$

Theorem 3.6. Let $f_i(x) : \mathbb{X} \to \mathbb{R}$ for $i = 1, 2, \cdots$ be measurable. Then $\sup\{f_1, \cdots, f_n\}$, $\inf\{f_1, \cdots, f_n\}$, $\sup_n f_n$, $\inf_n f_n$, $\limsup_n f_n$ and $\liminf_n f_n$ are all measurable functions.

Proof. Let $h(x) = \sup\{f_1(x), \dots, f_n(x)\}$. Then, $S_a = \{x \in \mathbb{X} : h(x) > a\} = \bigcup_{i=1}^n \{x : f_i(x) > a\}$. Consequently, since f_i is measurable, $S_a \in \mathcal{F}$. Similarly if $g(x) = \sup_{n \in \mathbb{N}} f_n(x)$, $S_a = \{x \in \mathbb{X} : g(x) > a\} = \bigcup_{n \in \mathbb{N}} \{x : f_n(x) > a\} \in \mathcal{F}$. The same argument can be made for inf. Since $\limsup_{n \to \infty} f_n = \inf_{n \ge 1} \sup_{k \ge n} f_k$, $\limsup_{n \to \infty} f_n$ is measurable. The same for $\liminf_{n \to \infty} f_n$.

Definition 3.2. Let $i \in I$ an arbitrary index set and $f_i : (X, \mathcal{F}) \to (X_i, \mathcal{F}_i)$ be $\mathcal{F} - \mathcal{F}_i$ measurable. If $\mathcal{G} \subset \mathcal{F}$ is a σ -algebra, we say that f_i is measurable with respect to \mathcal{G} if $\sigma(f_i) \subset \mathcal{G}$. The smallest σ -algebra \mathcal{G} that makes all f_i measurable with respect to \mathcal{G} is $\sigma\left(\bigcup_{i\in I} f_i^{-1}(\mathcal{F}_i)\right)$ and is denoted by $\sigma(f_i : i \in I)$.

3.1 Exercises

- 1. Suppose (Ω, \mathcal{F}) and $(\mathbb{Y}, \mathcal{G})$ are measure spaces and $f : \Omega \to \mathbb{Y}$. Show that: a) $I_{f^{-1}(A)}(\omega) = (I_A \circ f)(\omega)$ for all ω ; b) f is measurable if, and only if, $\sigma(\{f^{-1}(A) : A \in \mathcal{G}\}) \subset \mathcal{F}$.
- 2. Show that for any function $f : \mathbb{X} \to \mathbb{Y}$ and any collection of subsets \mathcal{G} of \mathbb{Y} , $f^{-1}(\sigma(\mathcal{G})) = \sigma(f^{-1}(\mathcal{G}))$
- 3. Let $i \in I$ where I is an arbitrary index set. Consider $f_i : (\mathbb{X}, \mathcal{F}) \to (\mathbb{X}_i, \mathcal{F}_i)$.
 - (a) Show that for all i, the smallest σ -algebra associated with X that makes f_i measurable is given by $f_i^{-1}(\mathcal{F}_i)$.
 - (b) Show that $\sigma\left(\bigcup_{i\in I} f_i^{-1}(\mathcal{F}_i)\right)$ is the smallest σ -algebra associated with X that makes all f_i simultaneously measurable.
- 4. Let $X : (\Omega, \mathcal{F}, P) \to (S, \mathcal{B}_S)$ where $S \subset \mathbb{R}^k$ and $\mathcal{B}_S = \{B \cap S : B \in \mathcal{B}^k\}$ be a random vector with $k \in \mathbb{N}$, and $g : (S, \mathcal{B}_S) \to (T, \mathcal{B}_T)$ be measurable where $T \subset \mathbb{R}^p$ with $p \in \mathbb{N}$. If Y = g(X), show that
 - (a) $\sigma(Y) := Y^{-1}(\mathcal{B}_T) \subset \sigma(X) := X^{-1}(\mathcal{B}_S),$
 - (b) if k = p and g is bijective, $\sigma(Y) = \sigma(X)$.